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Zero and uniqueness sets for Fock spaces
D. Aadi and Y. Omari

Abstract. We characterize zero sets for which every subset remains a zero set too in the Fock spaceFp ,
1 ≤ p < ∞. We are also interested in the study of a stability problem for some examples of uniqueness
set with zero excess in Fock spaces.

1 Introduction

Let β be a positive real number. The Gaussian measure on the complex plane C is
defined as

dμβ(z) ∶= β
2π

e−
β
2 ∣z∣

2
dA(z), z ∈ C,(1)

where dA is the Euclidean area measure. The Fock space Fp ∶= F
p
π , where 1 ≤ p < ∞,

is the collection of entire functions f ∶ C → C such that

∥ f ∥p ∶= (∫
C

∣ f (z)∣ pdμpπ(z))
1
p
< ∞.

The space Fp endowed with the norm ∥.∥p is a vector Banach space, for every p ≥ 1.
For the particular case when p = 2, F2 is a reproducing kernel Hilbert space with the
reproducing kernel given by

K(z, w) ∶= eπz̄w , z, w ∈ C.

For instance, see the textbook [19, Chapitre 2] and the references therein.
A countable set Z = {zn}n∈N ⊆ C is called a zero set forFp if there exists a function

f ∈ Fp/{0} such that the zero set {z ∈ C ∶ f (z) = 0} of f , counting multiplicities,
coincides with Z. We say that Z is a uniqueness set for Fp if the unique function of Fp

that vanishes on Z is the zero function. It is known that a complete characterization,
of zero and uniqueness sets for the Fock spaces, still remains an open question, and
we refer to [1, 13, 18, 19].

Due to the distinctiveness of Fock spaces among other spaces of analytic functions,
there exist particular sets, uniqueness set with zero excess. These are those uniqueness
sets that they become zero sets by removing just one point. Numerous examples of
uniqueness sets with zero excess are known for Fp . The first typical example is the
square lattice for Fp , when 2 < p < ∞, and the square lattice without one point for
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Zero and uniqueness sets for Fock spaces 533

every 1 < p ≤ 2. More generally, for every 0 ≤ ν ≤ 1, the sequence �ν is a uniqueness
set with zero excess for Fp , for every 2

1+ν < p < 2
ν , where

�ν ∶= {γm ,n ∶= m + in ∶ (m, n) ∈ Iν} ,(2)

and where Iν ∶= (Z × (Z/{0})) ∪ (Z− × {0}) ∪ {(m + ν, 0)}m≥0 (see [11, 18]). It is
simple to see that �ν is a separated sequence in the complex plan and of critical density
for Fp in the study of interpolating and sampling problems (see, for example, [16, 18,
19]). Motivated by the results in [8, 14, 18], we are interested in the study of a stability
problem of sequences �ν , for every 0 ≤ ν ≤ 1.

The second kind of uniqueness sets with zero excess for Fp is an example of a
nonseparated sequence localized at the real and imaginary lines. It constitutes the
zero set of the sin-cardinal type function

S(z) ∶= (z2 − 1)
sin ( π

2 z2)
πz2 , z ∈ C,(3)

and it is given by

� ∶= {±
√

2n, ±i
√

2n ∶ n ≥ 1} ∪ {±1} .(4)

This sequence was constructed by Ascensi, Lyubarski, and Seip in [2] for the Hilbert
case. It is still of the same kind for Fp , for every 1 < p < ∞.

As in the work of the second author in [14], we are interested in the study of a
stability problem of the sequences � and �ν , for every 0 ≤ ν ≤ 1, for the spaces Fp , and
for a fixed 1 < p < ∞. Namely, if Λ = {λσ ∶ σ ∈ Σ} is a sequence of complex numbers,
where Σ = � or �ν , we write λσ = σ eδσ e iθ σ , where δσ , θσ ∈ R for every σ ∈ Σ. We are
interesting in giving optimal conditions on (δσ) and (θσ) for which Λ fails to be a
uniqueness set with zero excess for Fp , for a fixed 1 < p < ∞. Before stating our main
results, we need some notations. For Λ ∶= {λγ ∶= γeδγ e iθγ ∶ γ ∈ �ν}, we denote

δ̂(Λ) ∶= lim inf
R→∞

1
log R ∑

∣γ∣≤R
δγ and δ(Λ) ∶= lim sup

R→∞

1
log R ∑

∣γ∣≤R
δγ .

Our first main result in this paper is the following theorem.

Theorem 1.1 Let 0 ≤ ν ≤ 1, and let Λ = {λγ}γ∈�ν be a sequence of complex numbers.
We write λγ = γeδγ e iθγ , for every γ ∈ �ν , where δγ , θγ ∈ R. If
(1) Λ is separated,
(2) the sequences (γ2δγ)γ∈�ν and (γ2θγ)γ∈�ν are bounded, and
(3)

ν − 2
p
< δ̂(Λ) ≤ δ(Λ) < ν + 1 − 2

p
,

then Λ is a uniqueness set with zero excess for Fp, whenever 2
1+ν < p < 2

ν .
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534 D. Aadi and Y. Omari

Now, for the Ascensi–Lyubarskii–Seip sequence �, if Λ ∶= {λγ ∶= γeδγ e iθγ ∶ γ ∈ �}
is a sequence of C, we will denote by Δn the quantity

Δn ∶= ∑
∣γ∣=
√

2n
δγ = δ√2n + δ−√2n + δ i

√
2n + δ−i

√
2n .

Our second main result is the following.

Theorem 1.2 Let � ∶= {±
√

2n, ±i
√

2n ∶ n ≥ 1} ∪ {±1}, and let Λ = {λγ ∶= γeδγ e iθγ ∶
γ ∈ �} be a sequence of complex numbers. Suppose that:
(1) There exists c > 0 such that ∣λγ − λγ′ ∣ ≥ c/min{∣γ∣, ∣γ′∣}, for every γ, γ′ ∈ �.
(2) The sequences (γ2δγ)γ∈� and (γ2θγ)γ∈� are bounded.

(3) Δ(Λ) ∶= lim sup
n→∞

1
log n ∣

n
∑
k=1

Δk ∣ < 1
2 max{p,q} , where q is the Hölder conjugate num-

ber of p.
Then, Λ is a uniqueness set with a zero excess for Fp, where 1 < p < ∞.

Another extreme case of sequences, we are interesting in, is motivated by the zero
set of the sin-cardinal type function

s(z) =
sin ( π

2 z2)
z2 ∈ Fp .

The zero set of s, denoted by Z(s), is a zero sequence for Fp , for every 1 ≤ p < ∞.
However, if we remove the subset which belongs to the imaginary axis from Z(s),
the remaining part is not a zero set anymore for Fp . Such result can be viewed as
a consequence of Lindelöf ’s theorem (see [5, Theorem 2.10.1]). Therefore, a natural
question is: which zero set for Fp remains a zero set too for Fp , even an infinite subset
was removed?

Actually, the example above is a variant to the one given by Zhu in [17]. This
phenomenon is one of the main deference between Fock spaces and Hardy spaces
and even Bergman spaces of the unit disk where zero sets are well stable [6, 7].

In the following theorem, we give a complete description of zero sets for which all
their subsequences are also zero sets for Fp .

Theorem 1.3 Let Z = {zn}n∈N be a zero set for Fp, 1 ≤ p < ∞. The following state-
ments are equivalents:
(1) Every subset of Z is a zero set for Fp .
(2) Z satisfies

∑
n∈N

1
∣zn ∣2

< ∞.(5)

Before stating the proofs of our main results, we give first some remarks:
(1) In Theorem 1.1, if ν = 1, we then get 1 < p < 2. Actually, the result remains valid

for p = 2, and this case was treated in [14]. Theorem 1.1 gives a result analogous to
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those related to complete interpolating sequences for the Paley–Wiener spaces
(see [3, 12]), and small Fock spaces [4, 15].

(2) Note that if there exists a positive integer N such that

sup
n≥0

n + 1
N

∣
n+N
∑

k=n+1
Δk ∣ <

1
2 max{p, q} ,(6)

then lim sup
N→∞

1
log N ∣

N
∑

k=0
Δk∣ < 1

2 max{p,q} and the converse is not true (see [14,

Lemma 5.4]). On the other hand, in Theorem 1.2, for p = 2, we have q = 2.
This case was treated in [14]. Theorem 1.2 with the Avdonin-type condition (6)
appears like the result proved by Lyubarskii and Seip in [12] concerning com-
plete interpolating sequences for Paley–Wiener spaces. Such result generalizes
those by Kadets and Avdonin for the Hilbert case (see [3, 9]).

(3) The conditions on the sequences (δγ) and (θγ) in Theorem 1.1 are optimal. The
proof is similar to Theorem 1.5 and Proposition 5.3 in [14].

(4) An interesting fact appears in the proof of Theorem 1.2 (namely Lemma 2.2)
is a confirmation of the result which confirms that Fp and Fq , p > q, do not
share the same zero sets, a result that we have already got in [1]. We provided a
sequence with positive Beurling uniform density, while the example that we can
construct here, by a precise choice of δ, is of null lower Beurling density.

We end this section with some words on notation: throughout this paper, the nota-
tion A ≲ B means that A ≤ cB for a certain positive constant c, and the notation A ≍ B
will be used to say that A ≲ B and B ≲ A hold in the same time. The paper is organized
as follows: in the next section, we state some key lemmas containing estimates of
some modified infinite products. Section 3 is devoted to prove Theorems 1.1 and 1.2.
Theorem 1.3 will be proved in the last section.

2 Some lemmas

In this section, we introduce some modified Weierstrass products. These functions
will play an important role in the proof of our main results. First, we recall that for
every 0 ≤ ν ≤ 1, the sequence �ν = {γm ,n ∶ m, n ∈ Z} is given by

{γm ,n ∶= m + in ∶ (m, n) ∈ Z × (Z/{0})} ∪Z− ∪ {m + ν}m≥0 .

If Λ = {λm ,n ∶ m, n ∈ Z} is a sequence of complex numbers, we will write λm ,n ∶=
γm ,n eδm ,n e iθ m ,n , where δm ,n , θm ,n ∈ R, for every m, n ∈ Z. We associate with Λ the
following infinite product

GΛ(z) ∶= (z − λ0,0) ∏
m ,n∈Z

′ (1 − z
λm ,n

) exp [ z
γm ,n

+ z2

2γ2
m ,n

] , z ∈ C.

The product with the prime is taken over all integers m and n such that (m, n) ≠ (0, 0).
The following lemma provides an estimates of the function GΛ .
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536 D. Aadi and Y. Omari

Lemma 2.1 [14, Lemma 3.2] If Λ satisfies the conditions of Theorem 1.1, GΛ is an entire
function vanishing exactly on Λ and verifying

(1 + ∣ Im(z)∣)M

(1 + ∣z∣)ν−δ̂+M
dist(z, Λ) ≲ ∣GΛ(z)∣e− π

2 ∣z∣
2
≲ (1 + ∣z∣)−ν+δ+M

(1 + ∣ Im(z)∣)M dist(z, Λ), z ∈ C,

for some positive constant M, where δ = δ(Λ) + ε and δ̂ = δ̂(Λ) − ε for a positive ε small
enough.

On the other hand, for the Ascensi–Lyubarskii–Seip sequence given in [2] by

� = {±
√

2n, ±i
√

2n ∶ n ≥ 1} ∪ {±1},

we associate the modified sin-cardinal function G�(z) ∶= z2−1
πz2 sin ( π

2 z2). Now, if Λ =
{λγ ∶= γeδγ e iθγ ∶ γ ∈ �} is a sequence of complex numbers, we associate with Λ the
infinite product

GΛ(z) ∶= lim
r→∞

∏
λ∈λ , ∣λ∣≤r

(1 − z
λ
) , z ∈ C.

According to the proof of [14, Theorem 1.10], we have the following lemma that gives
an estimate of the function GΛ .

Lemma 2.2 If Λ satisfies the conditions of Theorem 1.2, the infinite product GΛ
converges uniformly on every compact set of C and verifies

dist(z, Λ)
dist(z, �)

(1 + ∣ Im z2∣)M

(1 + ∣z∣)2δ+2M ∣G�(z)∣ ≲ ∣GΛ(z)∣,

∣GΛ(z)∣ ≲ dist(z, Λ)
dist(z, �)

(1 + ∣z∣)2δ+2M

(1 + ∣ Im z2∣)M ∣G�(z)∣,

for every z ∈ C/�, where δ = Δ(Λ) + ε for a small positive ε.

3 Proofs of Theorems 1.1 and 1.2

This section is devoted to the proofs of Theorem 1.1 and 1.2.

3.1 Proof of Theorem 1.1.

First, we show that Λ/{λ} is a zero set for Fp , for some fixed (any) λ ∈ Λ. To this end,
it suffices to prove that GΛ

z−λ belongs to Fp . Indeed, by Lemma 2.1, we have

∫
C

∣GΛ(z)
z − λ

e−
π
2 ∣z∣

2
∣

p

dA(z) ≲ ∫
C

(1 + ∣z∣)p(−1−ν+δ+M)

(1 + ∣ Im(z)∣)pM dA(z)

≍ ∫
C

1
(1 + ∣z∣)p(1+ν−δ) dA(z),
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and the last integral converges if and only if p(1 + ν − δ) > 2. In view of the third
assumption, the integral converges. Hence, GΛ

z−λ ∈ Fp (obviously, z ↦ GΛ(z)
z−λ is an entire

function).
Second, we prove that Λ is a uniqueness set for Fp . Let F be a function of Fp that

vanishes on Λ. Then there exists an entire function h such that F = hGΛ . According
to the estimates of GΛ in Lemma 2.1, we have

∣h(z)∣ (1 + ∣ Im(z)∣)M

(1 + ∣z∣)ν−δ̂+M
dist(z, Λ) ≲ ∣h(z)GΛ(z)∣ e− π

2 ∣z∣
2
= ∣F(z)∣e− π

2 ∣z∣
2
≲ 1.

This implies that h is a polynomial of z, and we denote later by k its degree. Integrating
the last inequality with respect to the measure dA(z), we get

∫
C

∣F(z)e−
π
2 ∣z∣

2
∣

p
dA(z) ≳ ∫

C

∣h(z)∣p (1 + ∣ Im(z)∣)pM

(1 + ∣z∣)p(ν−δ̂+M)
dist(z, Λ)pdA(z)

≍ ∫
C

(1 + ∣ Im(z)∣)pM

(1 + ∣z∣)p(ν−k−δ̂+M)
dA(z)

≍ ∫
C

1
(1 + ∣z∣)p(ν−k−δ̂)

dA(z).

The last integral converges if and only if p(ν − k − δ̂) > 2, and this implies that k + δ̂ <
ν − 2/p. This is in contradiction with the assumption ν − 2/p < δ̂(Λ). Thus, h is zero
and F too. This completes the proof of Theorem 1.1.

3.2 Proof of Theorem 1.2.

First, we need the lemma below, which is analogous to Lemma 3.4 in [14], we include
the proof for completeness. We denote

dνp,α ,β(z) = ( 1 + ∣z∣2
1 + ∣ Im z2∣ )

α p 1
(1 + ∣z∣)pβ e−

pπ
2 ∣z∣

2
dA(z),

where 1 ≤ p < ∞ and α and β are two real numbers.

Lemma 3.1 Let α and β be two real numbers. The sin-cardinal type function G�

belongs to Lp(C, dνp,α ,β) if and only if β > 1
p .

Proof Let 1 ≤ p < ∞. Recall that

∣sin(z)∣ 2 = (sin (Re z))2 + (sinh(Im z))2 , z ∈ C.

It follows that, G� belongs to Lp(C, dνp,α ,β) if and only if sinh ( π
2 z2) does. This is

equivalent to

∫
C

⎛
⎝

e π
2 ∣ Im z2 ∣

1 + ∣z∣β
⎞
⎠

p

( 1 + ∣z∣2
1 + ∣ Im z2∣ )

pα

e−
pπ
2 ∣z∣

2
dA(z) < ∞.
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Using the Tonelli theorem, we obtain

I ∶= ∫∣z∣>1

1
(1 + ∣z∣)pβ−2pα

1
(1 + ∣ Im z2∣)pα e−

pπ
2 (∣z∣

2−∣ Im z2 ∣)dA(z)

≍ 8∫
∞

1
∫

x

0

e−
pπ
2 (x−y)2

(x2 + y2)p(β−2α)/2
1

(1 + x y)pα d ydx .(7)

On the other hand, we have

∫
x

0

e−
pπ
2 (x−y)2

(x2 + y2)p(β−2α)/2
1

(1 + x y)pα d y ≍ 1
x p(β−2α) ∫

∞

0

e−
pπ
2 y2

(1 + x2 − x y)pα χ[0,x](y)d y.

(8)

Combining (7) and (8), we obtain

I ≍ ∫
∞

1
∫
∞

0

1
x p(β−2α)

e−
pπ
2 y2

(1 + x2 − x y)pα χ[0,x](y)dxd y

= ∫
∞

0
e−

pπ
2 y2

∫
∞

max{1, y}

1
x p(β−2α)(1 + x2 − x y)pα dxd y.

Consequently, the integral needed converges if and only if

∫
∞

max{1, y}

1
x p(β−2α)(1 + x2 − x y)pα dx

converges too. That is, if and only if, β > 1
p . ∎

Now, we can start the proof of Theorem 1.2. First, we will show that Λ/{λ} is a zero
set for Fp , for fixed λ ∈ Λ, and for every 1 < p < ∞. To do this, it suffices to prove that
GΛ
z−λ belongs to Fp . According to Lemma 2.2 and by a subharmonicity argument, we
have

∫
C

∣GΛ(z)
z − λ

e−
π
2 ∣z∣

2
∣

p

dA(z) ≍ ∫
C

∣GΛ(z)
z − λ

dist(z, �)
dist(z, Λ) e−

π
2 ∣z∣

2
∣

p

dA(z)

≲ ∫
C

∣G�(z)∣p ( 1 + ∣z∣2
1 + ∣ Im z2∣ )

pM e−
pπ
2 ∣z∣

2

(1 + ∣z∣)p(1−2δ) dA(z)

= ∫
C

∣G�(z)∣pdνp,M ,1−2δ(z).

By Lemma 3.1, the last integral converges since 2δ < 1 − 1
p = 1

q .
To prove that Λ is a uniqueness set for Fp , 1 < p < ∞, let F be a function of Fp

that vanishes on Λ. Write F(z) = h(z)GΛ(z), for some entire function h. Again, by
Lemma 2.2, we have

∣F(z)∣ dist(z, �)
dist(z, Λ) ≳ ∣h(z)G�(z)∣ (1 + ∣ Im z2∣)M

(1 + ∣z∣)2δ+2M .(9)
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Integrating both sides of the last inequality over C with respect to the measure
dμpπ(z) = e−

pπ
2 ∣z∣

2
dA(z),

∫
C

∣F(z)∣p dμpπ(z) ≍ ∫
C

∣F(z) dist(z, �)
dist(z, Λ) ∣

p

dμpπ(z)

≳ ∫
C

∣h(z)G�(z)(1 + ∣ Im z2∣)M

(1 + ∣z∣)2δ+2M ∣
p

dμpπ(z)

≳ ∫
C

∣ h(z)G�(z)
(1 + ∣z∣)2δ+2M ∣

p

dμpπ(z).

In the second line, we have used a subharmonicity argument. Since 2δ < 1
max{p,q} ≤

1
2 ,

then for a fixed γ ∈ �, we have

∫
C

∣ h(z)G�(z)
(1 + ∣z∣)2δ+2M ∣

p

dμpπ(z) ≳ ∫
C

∣ h(z)G�(z)
(z − γ)P2M(z) ∣

p

dμpπ(z),

where P2M is a polynomial of degree ⌊2M⌋ + 1, that vanishes on ⌊2M⌋ + 1 points
of �/{γ}. This implies that the function z ↦ h(z)G�(z)

(z−γ)P2M(z) belongs to Fp . Since the
sequence �/{γ} is a maximal zero sequence for Fp , then h must be a polynomial
of degree less than ⌊2M⌋ + 1 (see [18, 19]). Suppose that h is not zero and denote by
k its degree. Now, return to (9) and integrate both sides over C with respect to the
measure dμpπ again, and we obtain

∫
C

∣F(z)∣pdμpπ(z) ≍ ∫
C
∣F(z) dist(z, �)

dist(z, Λ) ∣
p

dμpπ(z)

≳ ∫
C

∣h(z)G�(z)(1 + ∣ Im z2∣)M

(1 + ∣z∣)2δ+2M ∣
p

dμpπ(z)

≍ ∫
C

∣G�(z) (1 + ∣ Im z2∣)M

(1 + ∣z∣)2δ+2M−k ∣
p

dμpπ(z)

= ∫
C

∣G�(z)∣pdνp,−M ,2δ−k(z).

By Lemma 3.1, the latter integral converges if and only if 2δ − k > 1/p. Since δ <
1/(2p), we then get

1/p < 2δ − k < 2δ < 1/p.

This is a contradiction. Hence, h and F are zero. Therefore, Λ is a uniqueness set for
Fp . This completes the proof of Theorem 1.2.

4 Proof of Theorem 1.3

The proof of Theorem 1.3 is essentially based on Lindelöf ’s theorem below. First, we
recall some main tools very useful for our proof, and we refer to [5, 10] for more
details. If f is an entire function and r is a positive real number, we denote M(r, f )
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the maximum modulus of f on the circle ∣z∣ = r:

M(r, f ) = max
∣z∣=r

∣ f (z)∣.

The order of f is given by the quantity

ρ f ∶= lim sup
r→∞

log log M(r, f )
log(r) .

Always, we have 0 ≤ ρ f ≤ ∞. In the case 0 < ρ f < ∞, the type of f is defined as

τ f ∶= lim sup
r→∞

log M(r, f )
rρ f

.

Let Z = {zn}n∈N be the zero set of an entire function f. Following [5], the convergence
exponent of the sequence Z = {zn}n∈N (excluding 0 if it belongs to Z) is defined as the
infimum of all positive numbers s such that

∑
n∈N

1
∣zn ∣s

< ∞,(10)

and it will be denoted by ρ1 (for short, the convergence exponent of f ). A consequence
of Jensen’s formula gives the following relations among the order ρ f and the exponent
of convergence ρ1 of an entire function f (see [5] for complete proof):

ρ1 ≤ ρ f .(11)

The following theorem characterizes entire functions of integral order and of finite
type.

Theorem 4.1 (Lindelöf [5]) If ρ is a positive integer, the entire function f of order ρ f =
ρ is of finite type if and only if:
(1) n(r) = O(rρ f ), where n(r) is the number of zeros of f in the disk ∣z∣ ≤ r, counting

multiplicity, and
(2) the sums

S(r) ∶= ∑
∣zn ∣≤r

1
zρ

n
(12)

are bounded, where {zn}n is the zero sequence of f.

In the sequel, our constructions are based on dividing the complex plane into
sectors with some defined opening aperture. To this end, for a given two angles
β ∈ (−π, π] and θ ∈ (0, π], define

S(β, θ) ∶= {z ∈ C ∶ ∣ arg(z) − β∣ ≤ θ} ∪ {z ∈ C ∶ ∣ arg(−z) − β∣ ≤ θ}.

The following lemma will be of prominent role in the proof of Theorem 1.3 later on.
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Lemma 4.2 Let 1 ≤ p < ∞. If Z = {zn}n∈N is a zero set for Fp such that Z ⊂ S(β, θ)
for some 0 ≤ θ < π

4 and β ∈ (−π, π], then Z satisfies

∑
n∈N

1
∣zn ∣2

< ∞.(13)

Proof Without loss of generality, we may suppose β = 0. Aiming to come to a
contradiction, assume that

∑
n∈N

1
∣zn ∣2

= ∞.(14)

If g is a function in Fp with Z(g) = Z, then by [19, Theorem 5.1], for every ε > 0, we
have

∑
n∈N

1
∣zn ∣2+ε < ∞.(15)

Thus, Z = {zn}n∈N is of convergence exponent ρ1 = 2. Combining (11), (14), and (15),
we obtain

2 = ρ1 ≤ ρg ≤ 2.

Hence, g is of order 2, and of type τg less than or equal to π
2 . Since g is of integral order,

Lindelöf ’s theorem applies. Writing zn = ∣zn ∣e iθ n , n ∈ N, a straightforward calculation
gives

∣S(r)∣2 =
222222222222
∑
∣zn ∣≤r

1
z2

n

222222222222

2

=
222222222222
∑
∣zn ∣≤r

e−2iθ n

∣zn ∣2
222222222222

2

=
222222222222
∑
∣zn ∣≤r

cos (2θn) − i sin (2θn)
∣zn ∣2

222222222222

2

=
⎛
⎝ ∑
∣zn ∣≤r

cos (2θn)
∣zn ∣2

⎞
⎠

2

+
⎛
⎝ ∑
∣zn ∣≤r

sin (2θn)
∣zn ∣2

⎞
⎠

2

≥
⎛
⎝ ∑
∣zn ∣≤r

cos (2θn)
∣zn ∣2

⎞
⎠

2

≥ cos2(2θ)
⎛
⎝ ∑
∣zn ∣≤r

1
∣zn ∣2

⎞
⎠

2

3→ ∞, as r → ∞.

This contradicts Lindelöf ’s Theorem 4.1. As a conclusion,
∞
∑
n=0

1
∣zn ∣2

< ∞. ∎
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Remark 1 We mention that the constant π
4 , which appears in Lemma 4.2, is the best

possible. A counterexample is given by the zero set of the sin-cardinal function

s(z) =
sin( π

2 z2)
z2 ∈ Fp .

Now, we can prove Theorem 1.3.

4.1 Proof of Theorem 1.3.

Let Z = {zn}n∈N be a sequence of complex numbers which is a zero sequence for Fp

and satisfies (5). If Z′ is any subsequence of Z, then it is a zero sequence too for Fp by
the sufficient condition [19, Theorem 5.3]. Therefore, Z belongs to the desired class.

Conversely, let Z be a zero sequence for Fp with the property: every subset of Z is
also a zero set for Fp . Now, we divide the sequence Z into eight subsets, by writing

Z =
7
⋃
k=0

Zk ,

where for each 0 ≤ k ≤ 7,

Zk ∶= Z ∩ {z ∈ C ∶ −π
8
≤ arg(z) − kπ

4
< π

8
} ⊂ S(π

8
, π

8
+ ε),

and ε is an arbitrary small positive number in (0, π
8 ). By the assumption, each Zk ,

k ∈ {0, 1, . . . , 7} is a zero set for Fp . We conclude by Lemma 4.2.
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