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Abstract

Motivated by the analysis of social networks, we study a model of random networks that
has both a given degree distribution and a tunable clustering coefficient. We consider two
types of growth process on these graphs that model the spread of new ideas, technologies,
viruses, or worms: the diffusion model and the symmetric threshold model. For both
models, we characterize conditions under which global cascades are possible and compute
their size explicitly, as a function of the degree distribution and the clustering coefficient.
Our results are applied to regular or power-law graphs with exponential cutoff and shed
new light on the impact of clustering.
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1. Introduction

In this paper we analyze two different types of epidemic modeled by simple growth processes
that we now describe. In a given network, each node can either be active or inactive. The
diffusion process corresponds to the case where each node of the network that becomes active
transmits the activation to her neighbors with a given probability, independently from each
other. On the other hand, in the symmetric threshold model, a threshold is associated to each
node, and the dynamics of the process correspond to the case where a node of the network
becomes active as soon as the number of her active neighbors exceeds the threshold of the
node. Thresholds are (possibly) random, with a distribution depending on the degree of the
node, and such that thresholds are independent among nodes. The symmetric threshold model
will allow us to analyze the contagion process [24]. For both models, we will first consider a
case where there is only one initial active node and characterize conditions under which global
cascades are possible (see a precise definition below). In such cases we compute the probability
of a cascade and its size. Then, we consider the cascade size when a positive fraction of the
population is initially active. The initial activations are random in that case, and the probability
that a node belongs to the seed might depend on its degree.

We now describe the model of random graphs studied in this paper. For many real-world
networks, the underlying graph G is a power-law graph, i.e. a graph whose degree distribution
follows a power law. Random graphs with a given degree sequence allow such behavior to be
modeled. This model is usually called the configuration model [7]. There is a vast literature on
the analysis of the diffusion for such graphs [26]. The contagion process has also been studied
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986 E. COUPECHOUX AND M. LELARGE

for such graphs through heuristics [30], or rigorously in [21] or [2]. Random graphs are not
considered to be highly realistic models of most real-world networks, and they are used as a first
approximation since they are a natural choice for sparse interaction networks in the absence of
any known geometry. One essential drawback of this model is that these graphs are ‘locally
tree-like’: short cycles are very rare. However, real-world networks are often highly clustered,
meaning that there is a large number of triangles and other short cycles [25]. For social graphs,
this is a consequence of the fact that friendship circles are typically strongly overlapping so
that many of our friends are also friends of each other.

There are works in the physics and biology literature on models of random graphs with
clustering [27]. Our model is inspired from [29] in which random graphs with positive clustering
and possibly power-law degree distribution are modeled. The idea is to ‘add’ clustering to a
standard configuration model by replacing some vertices by cliques. By choosing the fraction
of vertices replaced, this leads to a graph where the amount of clustering can be tuned by
adjusting the parameters of the model. This model generalizes the standard configuration
model to incorporate clustering. Understanding how clustering affects diffusion and contagion
remains largely an open question. Our work is a first step towards addressing this issue in a
systematic and rigorous way. In particular, we are able to make a rigorous analysis of the impact
of the clustering coefficient while the degree distribution in the graph is kept fixed. In [29] and
[15], the diffusion process on such graphs is analyzed by a heuristic approximation through
a branching process with additional cliques. We derive rigorous proofs for these results. A
different random graph model with clustering, called the random intersection graph, has been
studied rigorously in [13] and, in [9], the diffusion process is studied on such graphs. However,
the degree distribution for this kind of graph has to be a Poisson distribution and clustering
cannot vary independently of the degree distribution. A generalization of the diffusion process
(with general infectious periods) in random graphs with clustering has been studied rigorously
by Ball et al. [3], [4], and heuristically in [5] (see the end of Section 2.1 for a comparison with our
model). The impact of clustering on the diffusion process is studied in [5], but only for Poisson
degree distributions (using a property of this distribution). To the best of our knowledge, results
on the contagion model have not been proved previously for random graphs with clustering. (A
preliminary version without proofs of our work appeared in [10] and we also recently studied
a simple model with overlapping communities in [12].) Recently, Acemoglu et al. [1] derived
bounds which are valid for the contagion model [24] on deterministic networks. Our analysis in
contrast gives asymptotic results as the size of the graph tends to ∞ and allows us (by looking
at a more specific model) to neatly identify the impact of clustering.

The paper is organized as follows. In Section 2 we present the graph model, and compute its
asymptotic degree distribution and clustering coefficient. In Section 3 we study the diffusion
process on such graphs with a seed of only one vertex and with degree-based activation.
Similarly, in Section 4 we deal with the symmetric threshold model. Proofs are given in
Section 5 and conclusions in Section 6.

Notation. In the following, we consider asymptotics as n → ∞, and we denote by ‘
P−→’

the convergence in probability as n → ∞. The abbreviation ‘w.h.p.’ (‘with high probability’)
means with probability tending to 1 as n → ∞, and we use the notation oP and �P(n) in a
standard way (see [18] for instance): X = oP(n) means that, for every ε > 0, P(X > εn) → 0
as n → ∞, and X = �P(n) means that, for every δ > 0, there exist constants c > 0 and C > 0
such that P(cn ≤ X ≤ Cn) > 1 − δ for large enough n. We also set [n] = {1, 2, . . . , n}.
In addition, for integers s ≥ 0 and 0 ≤ r ≤ s, let bsr denote the binomial probabilities
bsr (p) := P(Bin(s, p) = r) = (

s
r

)
pr(1 − p)s−r .
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2. Random graph model and its basic properties

We first present the model for the random graph, compute its asymptotic degree distribution
and its asymptotic clustering coefficient, and finally explain how to tune the clustering coefficient
while keeping the asymptotic degree distribution fixed.

2.1. Model of random graph with clustering

We first consider the uniform random graph with fixed degree distribution: since this graph
has asymptotically no clustering, we will then modify it to obtain a graph with clustering.
Finally, we compare our clustered random graph model to those that are close in the literature
[4], [5], [29].

Let n ∈ N, and let d = (d
(n)
i )ni=1 = (di)

n
1 be a sequence of non-negative integers such that∑

i di is even. The integer n is the number of vertices in the graph and vertex i ∈ [n] has
degree di in the graph. Let G(n, d) be a graph chosen uniformly at random among all simple
(i.e. with no multiedges or self-loops) graphs with n vertices and degree sequence d (assuming
such graphs exist) [7].

We will let n → ∞, and assume that we are given d satisfying the following regularity
conditions which are standard in the random graph literature; see [23].

Condition 1. For each n, d = (di)
n
1 is a sequence of nonnegative integers such that

∑
i di is

even. We assume that there exists a probability distribution p = (pr)
∞
r=0 (independent of n)

such that

(i) nr/n = |{i : di = r}|/n → pr as n → ∞ for all r ≥ 0;

(ii) λ := ∑
r rpr ∈ (0, ∞);

(iii)
∑

i d3
i = O(n).

The random graph model G(n, d) is ‘locally tree-like’, i.e. it contains very few (i.e. o(n))
short cycles in its structure. We now use the idea of Trapman [29] to generalize this random
graph model to incorporate clustering. We replace some vertices by a clique of size the degree
in the original graph, i.e. a vertex of degree r in the original graph G(n, d) is replaced by r

new vertices with r(r − 1)/2 new edges connecting them, each new vertex being connected
to exactly one of the neighbors of the original vertex, as illustrated on Figure 1. Note that if
r = 0, i.e. if the original node is isolated, this procedure removes the node. By convention, a
clique of size 0 is empty.

In order to be able to tune the clustering coefficient in the graph, we will not replace all
vertices by a clique but do a probabilistic choice whether to replace a vertex or not: for all
r ≥ 0, γr ∈ [0, 1] represents the probability that a vertex of degree r in G(n, d) is replaced
by a clique of size r in the new model denoted by G̃(n, d, γ ), where γ = (γr)

∞
r=0 is shorthand

Figure 1: Transformation.
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notation for the sequence of γrs. The choice of whether or not to replace a vertex by a clique
is made independently at each vertex of the original graph G(n, d). In particular, if γr = 0
for all r ≥ 0 then we simply obtain G̃(n, d, γ ) = G(n, d), whereas if γr = 1 for all r ≥ 0,
all vertices in G(n, d) are replaced by cliques (and isolated vertices are removed). We write
G̃(n, d, γ ) for the graph G̃(n, d, γ ) in which the sequence γ is constant and equal to γ .

In the rest of the paper, when no random graph model is specified, we tacitly assume that
we consider the model G̃(n, d, γ ) for a sequence d satisfying Condition 1 with probability
distribution p = (pr)

∞
r=0, and clustering parameter γ = (γr)

∞
r=0.

There are several differences with the model of Trapman [29]. The main difference is that
we allow the probability γr to depend on the vertex degree r , while γr = γ is constant in [29].
In our model, the degree di of each vertex i, 1 ≤ i ≤ n, is also fixed (i being a vertex of
the unclustered model), and the proportion of vertices with degree r tends asymptotically to
pr , while the degree of each vertex in Trapman’s model is a random variable with distribution
(pr)r , where the random variables are independent and identically distributed (i.i.d.) among
vertices. Finally, a minor difference is that self-loops and multiedges are allowed in [29]: this
difference is minor since we will also consider multigraphs in the proofs, and, as explained at
the beginning of Section 5, theorems are valid for both simple graphs and multigraphs.

In the model of Ball et al. [5], the sizes of ‘cliques’ are i.i.d. (called households, and possibly
of size 1). Each node v inside a household is assigned a number dext

v of ‘external’ half-edges,
with all dext

v being i.i.d. among vertices. A matching of these half-edges is then chosen uniformly
at random, as in the configuration model. In our model, vertices belonging to a clique have
always only one ’external’ edge, whereas, for vertices not belonging to a clique, the number of
external edges equals the degree. In the particular cases where γr = 1 for all r or γr = 0 for
all r , our model is a special case of that given in the work of Ball et al. [4], [5].

2.2. Degree distribution in G̃(n, d, γ )

As we will see in the next subsection, the procedure described above introduces clustering
at soon as γr > 0 for some r . It also modifies the degree distribution in the graph, and we can
easily derive the new degree distribution using Condition 1 (a detailed proof can be found in
[11]).

Proposition 1. For all r ≥ 0, let ñr be the number of vertices with degree r in G̃(n, d, γ ),
and let ñ = ∑

r ñr be the total number of vertices in G̃(n, d, γ ). Then we have, as n → ∞,
ñ/n

P−→γ̃ := ∑
d≥0[dγd + (1 − γd)]pd > 0 and, for all r ≥ 0, the proportion of vertices with

degree r in G̃(n, d, γ ) has the following limit as n → ∞: ñr/ñ
P−→ p̃r := [rγr +(1−γr)]pr/γ̃ .

2.3. Clustering coefficient

We now compute the clustering coefficient of the graph G̃(n, d, γ ). The most common
definition of the clustering coefficient of a finite graph is given by

C = 3 × number of triangles

number of connected triples
∈ [0, 1]. (1)

In our model of random graphs where vertices are exchangeable, this definition can also be
interpreted as the conditional probability that there is an edge between two vertices j and k,
given that they have a common neighbor i.

Note that the number of connected triples in G̃(n, d, γ ) is simply
∑

v dv(dv − 1)/2. On the
other hand, for any vertex v in G̃(n, d, γ ), let Pv be the number of pairs of neighbors of v that
share an edge together. More precisely, if Nv is the set of neighbors of v (whose cardinality is
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|Nv| = dv) then Pv is the number of pairs {w, w′} ⊂ Nv, w 
= w′, such that w and w′ are also
neighbors of each other. Thus, three times the number of triangles in G̃(n, d, γ ) is given by∑

v Pv . Hence, following (1), we define the clustering coefficient C(n) of the graph G̃(n, d, γ )

by

C(n) = 2
∑

v Pv∑
v dv(dv − 1)

∈ [0, 1].

Using Condition 1 and the fact that G(n, d) has asymptotically no clustering, we can easily
derive the following asymptotics for C(n) (see [11] for a detailed proof).

Proposition 2. The clustering coefficient of G̃(n, d, γ ) is given by

C(n) P−→ C :=
∑

r≥2 r(r − 1)(r − 2)γrpr∑
r≥2((r − 1)γr + 1)r(r − 1)pr

.

2.4. Tunable clustering coefficient with fixed degree distribution

Following the idea of Trapman [29], we show how to use our model to generate graphs with
a given degree distribution and clustering. This construction will allow us to compare graphs
with a given degree distribution but with various clustering coefficients and to see the impact
of clustering on the epidemic. In order to provide a graph with a given asymptotic degree
distribution p̃ and a positive clustering coefficient, we need the following assumptions on p̃.

Condition 2. We assume that the probability distribution p̃ satisfies

(i)
∑

r r2p̃r < ∞;

(ii)
∑

r≥3 p̃r > 0;

(iii) p̃0 = 0.

Under these conditions, we have the following proposition (see [29] or [11] for a proof).

Proposition 3. Let p̃ = (p̃r )r≥0 be a probability distribution satisfying Condition 2. For any
value C such that 0 ≤ C ≤ Cmax := 1 − 2

∑
r≥2(r − 1)p̃r/

∑
r≥2 r(r − 1)p̃r , there exists a

sequence d (satisfying Condition 1 with probability distribution p = (pr)
∞
r=0) and a value of

γ ∈ [0, 1] such that the model G̃(n, d, γ ) has asymptotic degree distribution p̃ and asymptotic
clustering coefficient C.

More precisely, γ is the solution of the equation

C = C(γ ) :=
∑

r≥3 r(r − 1)(r − 2)γ p̃r/((r − 1)γ + 1)∑
r≥2 r(r − 1)p̃r

,

and p can be defined as follows. Let

F(γ ′) :=
∑
r≥1

r

(r − 1)γ ′ + 1
p̃r for all γ ′ ∈ [0, 1].

We set λ := F(γ )(1 − γ )/(1 − γF(γ )) if γ 
= 1, and λ := 1/(
∑

r≥1 p̃r/r) if γ = 1. Then
we have pr := p̃r [(λ − 1)γ + 1]/((r − 1)γ + 1) for all r ≥ 1, and p0 := 0.

Note that, for a fixed p̃, the function C(γ ) is increasing in γ [11].
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3. Diffusion threshold for random graphs with clustering

3.1. Diffusion model

In this section we study a simple diffusion model depending on a single parameter π ∈ [0, 1].
For a given graph G, the dynamics of the diffusion are as follows: some set of nodes S starts
out being active; all other nodes are inactive. When a node becomes active, each of her
neighbors becomes active with probability π , independently from each other. The final state
of the diffusion can also be described in term of a bond percolation process in the graph G.
Randomly delete each edge with probability 1−π, independently of all other edges, and denote
by Gπ the resulting bond percolated graph. Then any node in S will activate all nodes in its
connected component in Gπ .

3.2. Phase transition for the diffusion with a single activation

In this subsection we consider diffusion starting from one active node with all other nodes
being inactive, and we derive conditions under which a single starting active node can activate a
large fraction of the population in G = G̃(n, d, γ ). This problem corresponds to the existence
of a ‘giant component’ in the random graph obtained after bond percolation.

In order to state our result, we first recall some basic results about random graphs with small
order. Let Kd, d ∈ N, be the complete graph on d vertices, and let Kd(π), π ∈ [0, 1], be the
random graph obtained from Kd after bond percolation with parameter π . The probability that
the component in Kd(π) containing vertex 1 has k vertices is denoted by f (d, k, π), and can
be computed as follows (note that f (d, d, π) is simply the probability that Kd(π) is connected
and has been computed in [14]):

f (d, d, π) = 1 −
d−1∑
k=1

(
d − 1

k − 1

)
f (k, k, π)(1 − π)k(d−k),

f (d, k, π) =
(

d − 1

k − 1

)
f (k, k, π)(1 − π)k(d−k) for any k ≤ d.

(2)

For d ∈ N and π ∈ [0, 1], we define the random variable K(d, π, γ ) by

P(K(d, π, γ ) = k) = (1 − γd)1(d = k) + γdf (d, k, π),

where f is defined in (2).
In addition, set, for all k ≥ 1,

�k := pk(1 − γk) +
∑
d≥k

d

k
f (d, k, π)pdγd, (3)

� :=
∑

	

�	, (4)

μ :=
∑

	

	�	

�
, (5)

σk := pk(1 − γk) +
∑
d≥k

d f (d, k, π)pdγd .
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Using the notation γ̃ of Proposition 1, we set (omitting the dependence on p and γ )

L(z) :=
∑

s

σs

γ̃
[1 − (1 − π + πz)s],

h(z) :=
∑

s

s
�s

�
(1 − π + πz)s,

ζ := sup{ z ∈ [0, 1) : μz(1 − π + πz) = h(z)}. (6)

For a graph G = (V , E) and a parameter π ∈ [0, 1], we denote by Cb(π) the size of the
largest component in the bond percolated graph Gπ .

Theorem 1. Let D∗ be a random variable with distribution p∗
r given by p∗

r−1 = rpr/λ for all
r ≥ 1. We define πc as the solution of the equation

πE[K(D∗ + 1, π, γ ) − 1] = 1.

(i) If π > πc, we have ζ ∈ (0, 1). In addition, the asymptotic size of the largest component
of the percolated graph Gπ obtained from G̃(n, d, γ ) is

Cb(π)

ñ

P−→ L(ζ ) > 0.

(ii) If π < πc, we have Cb(π) = oP(ñ).

Note that in the particular case where γr = 0 for all r , we have K(d, π, 0) = d, so we
obtain πc = E[D]/E[D(D − 1)], where D is the typical degree in the random graph, and our
result reduces to a standard result in the random graph literature (see Theorem 3.9 of [16]).

We have the following interpretation of the different quantities in terms of an approximating
branching process. The random graph G̃(n, d, γ ) can be approximated by a rooted random
graphGr distributed as follows (to simplify explanations, when the root ofGr belongs to a clique,
we call the ‘root’ the whole clique). The root of Gr is a single node of degree d (respectively
a clique of size d) with probability proportional to (1 − γd)pd (respectively dγdpd ). Each
subsequent ‘individual’ of the root is a single node of degree d (respectively a clique of size d)
with probability proportional to d(1 − γd)pd (respectively dγdpd ).

We prove that the mean offspring number in Gr
π is πE[K(D∗ + 1, π, γ )− 1] and that L(ζ )

is the survival probability in Gr
π .

We first delete independently with probability 1 − π (in Gr) each ‘internal’ edge, i.e. each
edge inside a clique, and call Gr

π,int the resulting graph: the cliques in Gr
π,int can be broken

into several components, thus losing some of their children (see Figure 2). The probability that
a vertex has degree k in Gr

π,int, knowing that its degree in Gr is d, is given by (1 − γd)1(d =
k) + γdf (d, k, π) = P(K(d, π, γ ) = k). Since the degree of a vertex in Gr is distributed
as D∗ + 1, the offspring number of a vertex in Gr

π,int is distributed as K(D∗ + 1, π, γ ) − 1
(by definition, the offspring number of a vertex inside a clique is the number of children of the
clique). Equivalently, the probability that a vertex in Gr

π,int has k − 1 children is proportional
to k�k .

We then remove independently with probability 1 − π each ‘external’ edge, i.e. each edge
outside a clique. The mean offspring number of the resulting graph Gr

π is thus πE[K(D∗ +
1, π, γ )−1], and the probability that a vertex in Gr

π has r−1 children is
∑

k≥r k�kbk−1,r−1(π).
A simple calculation shows that z �→ h(z)/μ(1 − π + πz) is the generating function of the
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Figure 2: Left: the random graph Gr (before percolation). Right: the random graph Gr
π,int: after

percolation inside cliques, some children are lost (filled circles).

offspring number in Gr
π . Hence, ζ is the extinction probability of Gr

π and, taking into account
the offspring distribution of the root, we find that L(ζ ) is the survival probability in Gr

π .
The case where a positive fraction of individuals belong to S (not only a single node) is

discussed in Section 3.4. Now we study the effect of clustering on the diffusion with a single
activation.

3.3. Effect of clustering on the diffusion

In this subsection we assume that γr = γ for all r ≥ 0.

Proposition 4. Let p̃ be a probability distribution satisfying Condition 2. For each j = 1, 2, let
(pj , dj , γj ) be chosen as described in Proposition 3 so that G̃(n, d1, γ1) and G̃(n, d2, γ2) both
have asymptotic degree distribution p̃ with clustering C(γ1) ≤ C(γ2). Let π

j
c be the diffusion

threshold defined in Theorem 1 for the random graph G̃j = G̃(n, dj , γj ), j = 1, 2. Let S
j
π

be the epidemic size in G̃j , j = 1, 2 (i.e. S
j
π = lim Cb(π)/ñ with the notation of Theorem 1).

Then we have π1
c ≤ π2

c and S1
π ≥ S2

π for all π ≥ 0.

Proof. First note that C(γ1) ≤ C(γ2) implies that γ1 ≤ γ2 [11].
As explained in the previous subsection, the random graph G̃j , j = 1, 2, can be approx-

imated by a branching process Gr,j ; the diffusion threshold π
j
c is the solution of Mj = 1,

where Mj is the mean offspring number in G
r,j
π , and the epidemic size is the nonextinction

probability of G
r,j
π .

Let Z
j
0 and Z

j
1 respectively be the offspring numbers of the root and of any individual

different from the root in G
r,j
π . Proving that Z1

0 ≤st Z2
0 and Z1

1 ≤st Z2
1 will complete the proof

(where ‘≤st’ denotes the stochastic order).
By definition, the degree of the root is distributed in both Gr,1 and Gr,2 according to p̃.

Knowing that its degree is d , it belongs to a clique with probability p
j
clique(d) = dγj /(1 −

γj + dγj ), in which case Z
j
0 is distributed as Bin(Kd,1(π), π) (where Kd,1(π) is the size of

the connected component of vertex 1 in Kd(π)); otherwise, it is distributed as Bin(d, π). Since
p1

clique(d) ≤ p2
clique(d) and P(Kd,1(π) ≤ d) = 1, we have Z1

0 ≤st Z2
0.

We set λj := ∑
r rp

j
r . The degree Dj of an individual different from the root in Gr,j is

given by: P(Dj = d) = dp
j
d/λj . Using the expression of p

j
d in Proposition 3, we have

P(D1 = d)

P(D2 = d)
= λ2

λ1

(λ1 − 1)γ1 + 1

(λ2 − 1)γ2 + 1

(d − 1)γ2 + 1

(d − 1)γ1 + 1
,

which increases with d . Thus, D1 ≤lr D2 (where ‘≤lr’ denotes the likelihood ratio order),
which implies that D1 ≤st D2 (see Theorem 1.C.1 of [28]). By the same arguments as those
used for the root, it follows that Z1

1 ≤st Z2
1, which completes the proof.
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Figure 3: Left: evolution of the diffusion threshold with respect to the clustering coefficient for d-regular
graphs. Right: evolution of the epidemic size with respect to the clustering coefficient for d-regular graphs

(with infection probability π = 0.22).

In the left-hand diagram of Figure 3 we illustrate the proposition above for d-regular graphs
(p̃r = pr = 1(r = d) for all r ≥ 0) and show how the diffusion threshold increases with the
clustering coefficient for different values of d. In addition, the epidemic size also decreases
with the clustering. In the right-hand diagram of Figure 3 we plot the ratio of the largest
connected component in the percolated graph over the whole population. When the starting
infected individual is a vertex chosen uniformly at random, this ratio also corresponds to the
probability of explosion. Hence, as the clustering increases, it ‘inhibits’ the diffusion process.
These results are in accordance with those given in [15].

These results are intuitive (for d-regular graphs) in the sense that the removal of edges inside
cliques can stop the diffusion inside a clique in the graph G̃(n, d, γ ), while this phenomenon
does not occur in the original graph G(n, d).

We refer the reader to [11] for an analysis of the diffusion on graphs with power-law degree
distribution.

3.4. Phase transition for the diffusion with degree-based activation

In this subsection we allow a positive fraction of nodes to be active at the beginning of the
diffusion process. More precisely, on a given graph G, the set S of initial active nodes is random,
and each node of degree d in G belongs to S with some probability αd > 0, independently for
each node. We set α = (αd)d≥0.

Using the notation γ̃ defined in Proposition 1, and definitions (3)–(5), we define (omitting
the dependence on α, p, and γ )

L(z) :=
∑

s

(1 − γs)ps

γ̃
[1 − (1 − αs)(1 − π + πζ)s]

+
∑
d≥s

df (d, s, π)
γdpd

γ̃
[1 − (1 − αd)s(1 − π + πζ)s],
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h(z) :=
∑

s

s(1 − γs)ps

�
[1 − (1 − αs)(1 − π + πζ)s]

+
∑
d≥s

df (d, s, π)γdpd

�
[1 − (1 − αd)s(1 − π + πζ)s],

ζ := sup{ z ∈ [0, 1) : μz(1 − π + πz) = h(z)}. (7)

Theorem 2. We are given an activation set S drawn according to the distribution α on the
random graph G = G̃(n, d, γ ). For the diffusion model defined in Section 3.1, if ζ = 0, or if
ζ ∈ (0, 1], and, furthermore, ζ is such that there exists ε > 0 with μz(1 − π + πz) < h(z)

for z ∈ (ζ − ε, ζ ), the size Cb(π, α) of the active nodes at the end of the diffusion satisfies
Cb(π, α)/ñ

P−→ L(ζ ).

4. Symmetric threshold model for random graphs with clustering

4.1. Symmetric threshold model

We now describe the symmetric threshold model on a finite graph G = (V , E) with given
thresholds k(v) for v ∈ V . The progressive dynamics of the epidemic on the finite graph G

operates as follows: some set of nodes S starts out being active; all other nodes are inactive.
Time operates in discrete steps t = 1, 2, 3, . . . . At a given time t , any inactive node v becomes
active if its number of active neighbors is at least k(v) + 1. This in turn may cause other nodes
to become active. It is easy to see that the final set of active nodes depends only on the initial set
S (and not on the order of the activations) and can be obtained as follows. Set Yv = 1(v ∈ S)

for all v. Then, as long as there exists v such that
∑

w∼v Yw > k(v), set Yv = 1, where w ∼ v

means that v and w share an edge in G. When this algorithm finishes, the final state of node v

is represented by Yv: Yv = 1 if node v is active and Yv = 0 otherwise. In this paper we do not
analyze the dynamics of the epidemics, we concentrate on the final state only.

We consider the symmetric threshold model on G(n, d) as in [21], and define an adaptation
for the random graph G̃(n, d, γ ). More precisely, let (ts	)0≤	≤s be a probability distribution for
all s ≥ 0, and set t = (ts	)s,	. We allow the threshold k(i) of a node i in G(n, d) to be a random
variable with distribution depending on the degree of i: knowing that the degree di of node i is
s, threshold k(i) is drawn according to the conditional probability distribution (ts	)0≤	≤s , i.e.
P(k(i) = 	 | di = s) = ts	. We assume that thresholds are independent among the nodes of
G(n, d). Of particular interest to us will be the particular case in which k(v) = qdv, where
q ∈ [0, 1

2 ] and dv is the degree of v. We refer the reader to [24] and [21] for a description of a
game-theoretic framework leading to this model.

Throughout this section, we consider the following epidemic model on G̃(n, d, γ ): when
a vertex i of G(n, d) is replaced by a clique in G̃(n, d, γ ), we associate to each vertex inside
the clique the original threshold k(i), so that vertices inside a clique have the same threshold
(also referred to as the ‘threshold of the clique’). We still denote by k(v) the threshold of a
vertex v in G̃(n, d, γ ). Note that, unlike the usual symmetric threshold model, thresholds are
not independent among the nodes of G̃(n, d, γ ), but we can still deal with the k(v) = qdv case
motivated by [24].

4.2. Phase transition for the symmetric threshold model with a single activation

For a graph G = (V , E) and thresholds k = (k(v))v∈V , we consider the largest connected
component of the induced subgraph in which we keep only vertices of threshold 0, and call
the vertices in this component pivotal nodes. If only one pivotal node becomes active then the
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whole set of pivotal nodes will eventually become active. Thus, if the set of pivotal nodes is
large (in �(|V |) as |V | → ∞) then a single pivotal node u can trigger a global cascade (i.e.
the number of active nodes at the end of the epidemic starting from u is �(|V |)).

We now consider the random graph G = G̃(n, d, γ ), and set, for a node v, C(v, t) for the
final number of active vertices, when the initial state consists of only v active nodes with all
other nodes inactive. Informally, we say that C(v, t) is the size of the cascade induced by node
v; if C(v, t) = �P(ñ), we say that node v can trigger a global cascade.

Using the notation γ̃ defined in Proposition 1 and the binomial probabilities bsr (p) defined
at the end of Section 1, we set (omitting the dependence on t , p, and γ )

L(z) :=
∑

s

[sγs + (1 − γs)]ps

γ̃
ts0(1 − zs)

+
∑

s

(1 − γs)ps

γ̃

(
1 − ts0 −

∑
	
=0

ts	
∑

r≥s−	

bsr (z)

)
,

h(z) :=
∑

s

sps[ts0z
s + γs(1 − ts0)z] +

∑
s

ps(1 − γs)
∑

s≥	
=0

ts	
∑

r≥s−	

rbsr (z),

ζ := sup{ z ∈ [0, 1) : λz2 = h(z)}. (8)

Theorem 3. We call the following condition the cascade condition:∑
r

r(r − 1)pr tr0 >
∑

r

rpr . (9)

(i) If condition (9) is satisfied then there is a unique ξ ∈ (0, 1) such that∑
d

dpdtd0(1 − ξd−1) = λ(1 − ξ). (10)

Let P̃ (n) be the set of pivotal nodes in G̃(n, d, γ ). Then we have

|P̃ (n)|
ñ

P−→
∑
d

[dγd + (1 − γd)]pdtd0

γ̃
(1 − ξd) > 0, (11)

where γ̃ is defined in Proposition 1. Moreover, for any u ∈ P̃ (n), we have w.h.p.,

lim inf
C(u, t)

ñ
≥ L(ζ ) > 0,

where ζ is defined by (8). If, in addition, ζ = 0 or ζ is such that there exists ε > 0 with
λz2 < h(z) for z ∈ (ζ − ε, ζ ), then we have, for any u ∈ P̃ (n),

C(u, t)

ñ

P−→ L(ζ ).

(ii) If
∑

r r(r − 1)pr tr0 <
∑

r rpr for a uniformly chosen node u, we have C(u, t) = oP(ñ).
The same result holds if o(n) nodes are chosen uniformly at random.

We use a branching process approximation to give the cascade condition and the size for the
set of pivotal nodes. We approximate the random graph G̃(n, d, γ ) by a rooted random graph
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Gr whose root is a single node of degree d (respectively a clique of size d) with probability
proportional to (1 − γd)pd (respectively dγdpd ), and in which each subsequent ‘individual’ of
the root is a single node of degree d (respectively a clique of size d) with probability proportional
to d(1 − γd)pd (respectively dγdpd ). The vertices in Gr that are active (after a long enough
time, and when the root of Gr is initially active) are exactly those with a zero threshold. Let
Gr

t be the subgraph of Gr induced by these vertices. Then the cascade condition (9) is the
condition for Gr

t to be infinite with positive probability, and ξ is the extinction probability of
Gr

t . In addition, if we assume that the root is a pivotal node (i.e. a node with zero threshold)
then the survival probability of Gr

t is given by
∑

d [dγd + (1 − γd)]pdtd0(1 − ξd)/γ̃ , as in the
right-hand side of (11).

When γr = 0 for all r ≥ 0 in Theorem 3, we recover a result of [21]. When we add cliques
in the graph, the effect on the epidemic is described by the following lemma.

Lemma 1. We consider a clique in G̃(n, d, γ ) where all vertices are inactive, and at least one
has a neighbor outside the clique which is active. If the threshold k of the (vertices in the) clique
is 0, then the epidemic will propagate to the whole clique. On the contrary, if k is positive then
the clique cannot become active, even if all neighbors outside are active.

Indeed, if k = 0, each vertex in the clique needs only one active neighbor to become active.
If k > 0, each vertex in the clique needs at least two active neighbors to become active.
Yet each vertex of the clique has only one (active) neighbor outside, other neighbors being
(inactive ones) inside the clique. Hence, a clique with positive threshold in which all vertices
are initially inactive will always stop the epidemic. This observation that cliques can stop the
epidemic allows a comparison between the epidemics in G(n, d) and G̃(n, d, γ ): if there is no
global cascade in G(n, d) then it is also the case in G̃(n, d, γ ) (see the proof in Section 5.4 for
more details). What is remarkable is that the converse is also true: if there is a global cascade
in the original graph G(n, d) then there is one in G̃(n, d, γ ) (note that the cascade condition
(9) depends only on the original distribution p and threshold distribution t , and not on γ ).
More precisely, the cliques with positive threshold will reduce the size of the cascade, but they
have no influence on whether a cascade is possible or not. It comes from the fact that a global
cascade is possible if and only if the set of pivotal nodes is large (this equivalence is shown in
[21] for the random graph G(n, d)).

The two graphs (G(n, d) and G̃(n, d, γ )) do not however have the same asymptotic degree
distribution. What is interesting now is to compare two graphs that have the same asymptotic
degree distribution p̃ = (p̃r )r≥0, but different clustering coefficients.

4.3. Effect of clustering on the contagion threshold

We use our results to highlight the effect of clustering for the game-theoretic contagion
model proposed by Blume [6] and Morris [24], in which the threshold distribution is given by
ts	 = 1(
qs� = 	) for all 0 ≤ 	 ≤ s. The cascade condition (9) is satisfied if and only if the
parameter q of the contagion is less than the contagion threshold

qc := sup

{
q :

∑
r<q−1

r(r − 1)pr >
∑

r

rpr

}
. (12)

We restrict ourselves to the case where γr = γ for all r ≥ 0 and we use Proposition 3
to construct two graphs with the same asymptotic degree distribution p̃: one with a positive
clustering coefficient and another with no clustering. We then compare the contagion thresholds
in these two graphs.
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Figure 4: Left: contagion thresholds in two graphs with the same degree distribution p̃r ∝ r−τ e−r/50.
Right: contagion thresholds in two graphs with the same degree distribution p̃r = e−λλr−1/(r − 1)!.

In the left-hand diagram of Figure 4 we consider a power-law degree distribution with
parameter τ > 0 and exponential cutoff: for all r ≥ 1, p̃r ∝ r−τ e−r/50. On the one hand,
we consider the graph G1(τ ) (solid line) for C = Cmax (so that γ = 1 and the distribution in
the original graph is pr ∝ r−(τ+1)e−r/50). On the other hand, we consider the graph G0(τ )

(dashed line) for C = 0, i.e. γ = 0. In this subfigure we make the parameter τ vary: the solid
(respectively dashed) curve corresponds to the contagion threshold q1

c (τ ) (respectively q0
c (τ ))

of the graph G1(τ ) (respectively G0(τ )), defined in (12). Contagion thresholds are given with
respect to the mean degree λ̃ = ∑

r rp̃r (which is a decreasing function of τ ).
In the right-hand diagram of Figure 4 we consider another form for the degree distribution

p̃: let λ > 0, and set p̃r = e−λλr−1/(r − 1)! for all r ≥ 1. As before, we consider the graph
G1(λ) for C = Cmax (γ = 1 and p is a Poisson distribution with parameter λ: pr = e−λλr/r!),
and the graph G0(λ) with C = 0, i.e. γ = 0. In this subfigure we plot the contagion thresholds
for these two graphs, with respect to the mean degree λ̃ = λ + 1.

Both the left- and right-hand diagrams of Figure 4 show that, when the mean degree λ̃ of
the graph is low, the contagion threshold q0

c of the graph with no clustering is greater than the
threshold q1

c of the graph with positive clustering. Hence, if the parameter q of the contagion
process is in the interval (q1

c , q0
c ), a global cascade is possible only in the graph with no

clustering: in that case, the clustering ‘inhibits’ the contagion process. On the contrary, for
high values of the mean degree, we have q0

c < q1
c , so the clustering increases the range of

parameter q for which a global cascade is possible.
Now we study more precisely what happens if we fix the mean degree in the graph (which

corresponds to a vertical cut in Figure 4), and increase the clustering coefficient between 0 and
its maximal value Cmax.

In the left-hand (respectively middle and right-hand) diagram of Figure 5 we consider a
power-law degree distribution with exponential cutoff: p̃r ∝ r−τ e−r/50, with parameter τ =
2.5 (respectively τ = 1.81 and τ = 0.1). We plot the contagion threshold qc for the graph given
by Proposition 3, when the degree distribution is p̃ and the clustering coefficient varies from 0
to Cmax. We consider three different slices of Figure 4 (left), and we go from the dashed curve
(C = 0) to the solid curve (C = Cmax), progressively increasing the clustering coefficient. For
a very low value of the mean degree (λ̃ ≈ 1.65—left-hand diagram of Figure 5), the contagion
threshold decreases with the clustering. The opposite happens when the mean degree is very
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Figure 5: Evolution of the contagion threshold in a graph with mean degree λ̃ with respect to the clustering
coefficient C (for a fixed power-law degree distribution).

high (λ̃ ≈ 46—right-hand diagram of Figure 5). In addition, for some intermediate values of
the mean degree, as for λ̃ ≈ 3.22 (middle diagram of Figure 5), low values of the clustering
‘helps’ the contagion process, but, as the clustering coefficient becomes higher, the opposite
happens: it ‘inhibits’ more and more the contagion process.

4.4. Effect of clustering on the cascade size for the contagion model

We consider the game-theoretic contagion model proposed by Morris [24] and the case in
which γr = γ for all r ≥ 0, as in the previous subsection. Now the parameter q ∈ (0, 1) of the
contagion process is fixed, and we want to highlight the effect of the clustering on the cascade
size.

First we compare two graphs with the same asymptotic degree distribution p̃: one with a
positive clustering coefficient and another with no clustering. In Figure 6 we plot the sizes of
the cascade and the pivotal nodes set for each of these graphs.

Cascade size in the graph with no clustering

Pivotal players in the graph with no clustering
Pivotal players in the graph with positive clustering

Cascade size in the graph with positive clustering

Mean degree
1 2 3 4 5 6 7 8 9

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6: Set of pivotal nodes and cascade sizes for q = 0.15.
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More precisely, in Figure 6 we fix q = 0.15. The solid curves correspond to a graph with
positive clustering, constructed as follows: we start from a Poisson distribution with parameter
λ for p, and γ = 0.2. This gives

p̃r = 0.2r + 0.8

0.2λ + 0.8

e−λλr

r!

and clustering coefficient C = 0.2λ/(0.2λ + 1.2) > 0. The dashed curves correspond to a
graph with the same asymptotic distribution p̃, but no clustering (in this case, p = p̃ and
γ = 0). We make the parameter λ vary, and the sizes of the cascade (solid and dashed lines)
and the pivotal nodes set (dotted and dot–dash lines) are plotted with respect to the mean degree
λ̃ = ∑

r rp̃r in the graph.

For each graph, we observe that there is a cascade if and only if the set of pivotal nodes is
large, as explained in Section 4.2. In addition, the interval of mean degrees for which a cascade
is possible moves to the right when the clustering coefficient increases, which is consistent
with our observations on Figure 4. Finally, we observe that the size of the cascade (when it
exists) decreases with the clustering. This comes from the fact that cliques of degree d ≥ q−1

(i.e. cliques with positive threshold) stop the contagion process (as explained in Lemma 1). In
the extreme case when γ = 1 (each vertex of degree d is replaced by a clique of size d), the
cascade is exactly the set of pivotal nodes. When the probability γ of replacing a vertex by a
clique increases, the cascade triggered by a pivotal node becomes closer and closer to the set
of pivotal nodes only (until it is exactly the set of pivotal nodes). We refer the reader to [11]
for more numerical results about the effect of the clustering on the cascade size.

4.5. Phase transition for the symmetric threshold model with degree-based activation

In this subsection we still consider the symmetric threshold model of Section 4.1, but we
allow a positive fraction of nodes to be active at the beginning of the process. More precisely,
we define an adaptation of the usual degree-based activation (defined in Section 3.4) for the
random graph G̃(n, d, γ ). For all d ≥ 0, let αd ∈ (0, 1], and set α = (αd)d≥0. We first
consider the usual degree-based activation on the original graph G(n, d): for each vertex i (of
degree di in G(n, d)), we draw a Bernoulli random variable a(i) with parameter αdi

. When
a vertex i of G(n, d) is replaced by a clique in G̃(n, d, γ ), we associate to each vertex inside
the clique the same activation variable a(i) (if i is not replaced by a clique, it keeps its own
activation variable). Each vertex v in G̃(n, d, γ ) belongs to the initial seed S if and only if
a(v) = 1. Note that each node of degree d in G̃(n, d, γ ) belongs to S with probability αd > 0
(since vertices inside the clique generated by i have the same degree as i). Thus, the only
difference with the usual degree-based activation on G̃(n, d, γ ) is that activation variables are
not independent inside a clique.

Using the notation γ̃ defined in Proposition 1 and the binomial probabilities bsr (p) defined
at the end of Section 1, we define (omitting the dependence on α, t , p, and γ )

L(z) :=
∑

s

[sγs + (1 − γs)]ps

γ̃
[(1 − αs)ts0(1 − zs) + αs]

+
∑

s

(1 − γs)ps

γ̃
(1 − αs)

(
1 − ts0 −

∑
	
=0

ts	
∑

r≥s−	

bsr (z)

)
,
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h(z) :=
∑

s

(1 − αs)sps[ts0z
s + γs(1 − ts0)z]

+
∑

s

(1 − αs)ps(1 − γs)
∑

s≥	
=0

ts	
∑

r≥s−	

rbsr (z),

ζ := sup{ z ∈ [0, 1) : λz2 = h(z)}. (13)

Theorem 4. For the symmetric threshold model defined in Section 4.1, on the random graph
G̃(n, d, γ ), if ζ = 0, or if ζ ∈ (0, 1], and, furthermore, ζ is such that there exists ε > 0
with λz2 < h(z) for z ∈ (ζ − ε, ζ ), then the size C(t, α) of the active nodes at the end of the
symmetric threshold process satisfies C(t, α)/ñ

P−→ L(ζ ).

5. Proofs

5.1. Generalities

5.1.1. Configuration model. In order to prove Theorem 1, it will be more convenient to work
with the configuration model G∗(n, d) (see, for instance, [7]): each vertex i, 1 ≤ i ≤ n, has di

half-edges, and the random graph G∗(n, d) is obtained by taking a uniform matching among
all possible matchings of half-edges into pairs. Conditioned on this multigraph being simple,
it is distributed as G(n, d). Condition 1 implies (in particular) that

lim inf P(G∗(n, d) is simple) > 0 (14)

(see [17]), which allows us to directly transfer results that hold in probability for G∗(n, d) to
the model G(n, d).

As for the simple graph, we consider the model G̃∗(n, d, γ ): we associate to each i ∈ [n] a
Bernoulli variable X(i) with parameter γdi

, all variables being independent. If X(i) = 1, we
replace node i by a clique of size di in which each vertex has exactly di − 1 neighbors inside
the clique, and one half-edge outside. Then we match half-edges as for G∗(n, d). Hence,
G̃∗(n, d, γ ) is simple if and only if G∗(n, d) is. So, conditioned on G̃∗(n, d, γ ) being simple,
it is distributed as G̃(n, d, γ ), and (14) implies that lim inf P(G̃∗(n, d, γ ) is simple) > 0. Thus,
Theorems 1–3 can be proved for either the model G̃∗(n, d, γ ) or G̃(n, d, γ ) (and they will be
true for both).

5.1.2. Definitions and additional notation. Let G̃ be distributed as G̃(n, d, γ ). We say that a
vertex in G̃ has parent i ∈ [n] if it belongs to a clique that replaces the vertex i of G(n, d)

(when X(i) = 1) or if it is i (when X(i) = 0). For any subgraph H̃ ⊂ G̃, we obtain the graph
φ(H̃ ) by identifying in H̃ the vertices that have the same parent and that are connected in H̃

(see Figure 7). We use the same definitions when G̃ is distributed as G̃∗(n, d, γ ).
For any graph G, set ν(G) for the number of vertices in G and νr(G), r ≥ 0, for the number

of vertices with degree r in G.

Figure 7: Transformation of a subgraph H̃ ⊂ G̃ by φ. Left: four vertices of H̃ ⊂ G̃ with the same
parent; thick lines are in both H̃ and G̃, while dashed lines are in G̃ only. Right: these vertices in φ(H̃ ).
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5.1.3. Link between the graph G̃(n, d, γ ) and the original graph G̃(n, d). The next lemma
will be useful in several proofs.

Lemma 2. Let H̃ be a subgraph of G̃ = G̃(n, d, γ ) such that ν(φ(H̃ )) = oP(n). Then we
have ν(H̃ ) = oP(ñ).

Proof. Set H = φ(H̃ ). Using Cauchy-Schwarz inequality, we have

ν(H̃ )

n
≤

∑
r rνr (H)

n
≤

√∑
i d2

i

n

√
ν(H)

n
.

The result follows from Condition 1(iii) and Proposition 1.

5.2. Proof of Theorem 1

We first give the idea of the proof. Let G̃ be distributed as G̃∗(n, d, γ ) and π ∈ [0, 1]. In
the percolated graph G̃π , the removal of some edges inside a clique can split the clique into
several connected components. We thus proceed in three steps.

Step 1. Let G̃
(1)
π be the random graph constructed from G̃ by deleting, independently and with

probability 1 − π , only the edges that are inside a clique. Conditioned on its number of
vertices n′ and its degree sequence d ′, the projected graph G′ = φ(G̃

(1)
π ) is distributed as

G∗(n′, d ′). In this step, we compute the asymptotic distribution of the degree sequence
d ′.

Step 2. We apply results of [16] in order to study the component sizes in the percolated graph
G′

π (i.e. we now delete independently and with probability 1 − π only the edges that are
outside a clique).

Step 3. By construction, G′
π is distributed as φ(G̃π ). We deduce the component sizes in G̃π

from those of φ(G̃π ) computed in the previous step.

In the following, when we consider the model G̃∗(n, d, γ ), we take the multiplicity of edges
into account when we compute the degree of a vertex. More precisely, we say that a vertex in
G∗(n, d) or G̃∗(n, d, γ ) has ‘degree’ d if it has d (simple) half-edges. For instance, each loop
of a given vertex has contribution 2 in its degree.

Step 1. For d ≥ 1, let V
(n)
d be the set of vertices i in G(n, d) with degree d and such that

X(i) = 1: i is replaced by a clique K(i) of size d in G̃. Let K(i, π) be the subgraph of K(i)

obtained after a bond percolation of parameter π . Let F̃d(π) be the subgraph of G̃π containing
the percolated version of the cliques with initial size d: F̃d(π) = ⋃

i∈V
(n)
d

K(i, π). The next

lemma gives the limit, as n → ∞, for the number N(n)(d, k, π) of connected components in
F̃d(π) whose size is k ≤ d .

Lemma 3. For any d ≥ 1 and k ≤ d , we have N(n)(d, k, π)/n
P−→ (d/k)f (d, k, π)pdγd,

where f (d, k, π) is given by (2).

Proof. For each vertex i in V
(n)
d , we label the vertices of K(i, π) from 1 to d. We look at

all the vertices with label 1, and we let M(n)(d, k, π) be the number of such vertices whose
connected component in K(i, π) has size k. Using the law of large numbers and the fact
that |V (n)

d |/n
P−→ pdγd , we have M(n)(d, k, π)/n

P−→ f (d, k, π)pdγd , where f (d, k, π) is by
definition the probability that the component of 1 contains k vertices. So the total number of
vertices in F̃d(π) that belongs to a component of size k is df (d, k, π)pdγdn + oP(n) and, in
order to have the number of such components, we have to divide by k, which proves the lemma.
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Let G̃
(1)
π be the graph obtained from G̃∗(n, d, γ ) when we replace each vertex i such

that X(i) = 1 by the percolated clique K(i, π). For any k ≥ 0, let n′
k be the number of

vertices with ‘degree’ k in the projected graph G′ = φ(G̃
(1)
π ). In order to compute n′

k , we
have to consider the vertices i such that X(i) = 0 (there are nk − |V (n)

k | such vertices, where
nk is the number of vertices with ‘degree’ k in G∗(n, d)), and the vertices that come from a
clique of initial size d for some d ≥ k (each such vertex corresponds to a component of size
k in F̃d(π), so there are N(n)(d, k, π) such vertices). This gives the following relation for all
k ≥ 0: n′

k = nk − |V (n)
k | + ∑

d≥k N(n)(d, k, π). So Lemma 3 gives the following asymptotic
distribution for the degree sequence d ′.

Lemma 4. Let n′ := ∑
k n′

k be the total number of vertices in G′. Then the proportion of
vertices with degree k in G′ has the limit

n′
k

n′
P−→ p′

k := �k∑
	 �	

as n → ∞,

where �k := pk(1 − γk) + ∑
d≥k(d/k)f (d, k, π)pdγd .

In addition, the uniform summability of knk/n implies the uniform summability of kn′
k/n′,

so
∑

k kn′
k/n′ P−→ ∑

k kp′
k .

Step 2. We apply Theorem 3.9 of [16] to the random graph G′. Indeed, we can assume
without loss of generality that the previous convergences (Lemma 4) hold almost surely, and
not just in probability (as in [16]: using the Skorokhod coupling theorem, see [19, Theorem 3.30]
for instance, or arguing by selecting suitable subsequences). Then there is a giant component
in the percolated graph G′

π if and only if π
∑

d d(d − 1)p′
d >

∑
d dp′

d , which is equivalent to
the fact that πE[K(D∗ + 1, π, γ ) − 1] > 1.

Step 3. The proof of (ii) follows easily from the previous step, and Lemma 2. We give the
main lines of the proof of (i). Assume that π > πc, which corresponds to π

∑
d d(d − 1)p′

d >∑
d dp′

d . Let C1 be the largest connected component in G′
π = φ(G̃π ), and let C̆1 be the

connected component of G̃π such that φ(C̆1) = C1.
We compute the limit of ν(C̆1)/ñ as n → ∞. The results in [16, see Section 2.2 and the

proof of Theorem 3.9] show that, for r ≥ 0,

νr (C1)

n′
P−→

∑
	≥r

b	r (
√

π)p′
	(1 − (1 − π−1/2 + π−1/2ζ )r ), (15)

where ζ is defined in (6) and is the unique solution in (0, 1) of μζ(1 − π + πζ) = h(ζ ).
Computing ν(C̆1) requires a little more precision than the computation in (15). We set ξ :=
1 − π−1/2 + π−1/2ζ, and let ν0

r (C1) and ν1
r (C1) be the numbers of vertices i with degree r in

C1 such that X(i) = 0 and X(i) = 1, respectively. Then we have

ν0
r (C1)

n′
P−→

∑
	≥r

b	r (
√

π)p	(1 − γ	)
1 − ξ r

�
,

ν1
r (C1)

n′
P−→

∑
	≥r

b	r (
√

π)
∑
d≥	

d

	
f (d, 	, π)pdγd

1 − ξ r

�
.

To summarize, d represents the degree of vertices in the initial graph G̃, 	 represents the degree of
vertices in G̃

(1)
π (after the percolation inside cliques), and r represents the degree of vertices after

https://doi.org/10.1239/aap/1418396240 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1418396240


How clustering affects epidemics in random networks 1003

the percolation on external edges. In order to recover ν(C̆1), we multiply each term in ν1
r (C1)

by 	, and then sum over all r , which gives ν(C̆1)/n′ P−→ (1/�)
∑

k≥1σk(1−(1−π1/2+π1/2ξ)k)

(exchanging summations on r and 	). Using the facts that n′/n
P−→ � and ñ/n

P−→ γ̃ , we obtain
ν(C̆1)/ñ

P−→ L(ζ ).
Let C̃1 be the largest component in G̃π . We prove that C̆1 = C̃1 w.h.p. (adding cliques

changes the sizes of the connected components). Let C̃ be any other component of H̃ different
from C̆1. Its projection C = φ(C̃) is different from C1, so Theorem 3.9 of [16] implies that
ν(C)/n

P−→ 0. Using Lemma 2 with H = C shows that ν(C̃)/ñ
P−→ 0. Hence, C̆1 is the largest

connected component of G̃ w.h.p., which completes the proof.

5.3. Proof of Theorem 2

This proof differs from the previous in that instead of using Theorem 3.9 of [16] in steps 2
and 3, we use Theorem 10 of [21].

Indeed, the first step is the same: the graph G′ = φ(G̃
(1)
π ) (where G̃

(1)
π is the graph obtained

from G̃(n, d, γ ) after a bond percolation on the edges inside cliques only) has asymptotic
degree distribution p′ = (p′

k)k , with p′
k = �k/�.

We apply (a slight extension of) Theorem 10 of [21] for the graph G′ (with ts	 = 1{	=0}).
Let ν0

s be the number of vertices i such that X(i) = 0, and assume that the degree of i in G′
(that is to say before the bond percolation in G′) is s and that i is active at the end of the process.
Let ν1

ds be the number of vertices i such that X(i) = 1, and assume that the degree of i in the
original graph φ(G̃) is d , that the degree of i in G′ is s ≤ d, and that i is active at the end of
the process. The probability that such a node i (with degree d in φ(G̃) and s in G′) does not
belong to the original seed S is (1−αd)s (and initial activations are independent among nodes).
Hence, we have

ν0
s

n′
P−→ ps(1 − γs)

�
[1 − (1 − αs)(1 − π + πζ)s],

ν1
ds

n′
P−→ d

s

f (d, s, π)γdpd

�
[1 − (1 − αd)s(1 − π + πζ)s],

where ζ is given by (7). The result follows easily (using the fact that Cb(π, α) = ∑
s ν0

s +∑
d,s sν1

ds).

5.4. Proof of Theorem 3

For any graph G and any vertex v of G, let D(v, t) be the subgraph of G induced by the
final set of active vertices, when v is the only vertex in the initial seed. When H is a subgraph
of G, we set D(H, t) for the subgraph induced by the final set of active vertices in G, when the
initial vertices in the seed are those of H .

In the whole proof, we set G̃ := G̃(n, d, γ ) and G := φ(G̃) (distributed as G(n, d)).
We first prove case (ii) using the next lemma.

Lemma 5. Let u be a vertex of G̃, and let i be its parent in G. Then we have

φ(D(u, t)) ⊂ D(i, t). (16)

Assume that
∑

r r(r − 1)pr tr0 <
∑

r rpr and that u is chosen uniformly at random among the
vertices of G̃. Then we have

C(i, t) = ν(D(i, t)) = oP(n). (17)
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Before proving this lemma, we conclude the proof of case (ii). Using (16) and (17), we
obtain ν(φ(D(u, t))) = oP(n). We then apply Lemma 2 with H̃ = D(u, t).

Proof of Lemma 5. Let K be the clique generated by i if X(i) = 1 (otherwise, set K = {u}).
Then we have φ(D(u, t)) ⊂ φ(D(K, t)), and (16) follows from Lemma 1.

To prove (17), we apply Theorem 10 of [21], with a parameter α = (αd)∞d=0 that satisfies
αd = (dγd + 1 − γd)α for all d , where α is a positive constant. Then the same arguments as
used in the proof of Theorem 11(ii) of [21] apply.

We now assume that the cascade condition (9) is satisfied and prove case (i). We first prove
(11). Let H̃ and H respectively be the subgraphs of G̃ and G induced by the vertices of threshold
0, and let C̃1 and C1 respectively be the largest connected components in H̃ and H . Note that
φ(H̃ ) = H . The number νr(C1) of vertices with degree r in C1 is computed in the proof of
Theorem 11 of [21] (applied on the graph G, and with π = 1): νr(C1)/n

P−→ pr tr0(1 − ξ r ),
where ξ is defined in (10). Hence, we can deduce the size of the connected component C̆1 in
H̃ such that φ(C̆1) = C1 : ν(C̆1)/ñ

P−→ ∑
d [dγd + (1 − γd)]pdtd0(1 − ξd)/γ̃ . We show that

C̆1 = C̃1 w.h.p. by a similar argument as used at the end of the proof of Theorem 1. This proves
(11).

Now the idea is to make a coupling between the epidemic on G̃ (with threshold distribution
t), and an epidemic on G, with a threshold distribution t ′ = (t ′s	)s,	 that we define below.

Proposition 5. Assume that the epidemic on G̃ starts from a vertex u that has threshold 0, and
let i be the parent of u in G. We consider the following distribution of thresholds t ′ = (t ′s	)0≤	≤s
for each s ≥ 0: t ′s0 = ts0; t ′s	 = (1−γs)ts	 for all 0 < 	 < s; t ′ss = (1−γs)tss+γs(1−ts0). Then
there exist random thresholds (k′(j))1≤j≤n with this distribution t ′ and such that φ(D(u, t)) =
D(i, t ′), where D(i, t ′) is the subgraph induced by the final set of active vertices in the symmetric
threshold model starting from i in G, with threshold distribution t ′.

Proof. As explained in Lemma 1, we can have φ(D(u, t)) � D(i, t), since a clique K of G̃

stops the epidemic: if j is the parent of K in G, we will change its original threshold k(j) into
a new threshold k′(j) so high that j cannot become active in the new epidemic that we define
on G.

More precisely, we start the epidemic in G from the parent i of u (if u belongs to a clique
then the whole clique becomes active at the next step). Let v be the neighbor of u outside
the clique (any neighbor if X(i) = 0), and let j be the parent of v. If k(v) = 0, then v (and
its whole clique if it has one) becomes active (Lemma 1): we set k′(j) := 0, so that j also
becomes active in G. If k(v) > 0, we distinguish two cases.

• If X(j) = 1, vertex v and its clique stay inactive (Lemma 1): we set k′(j) := dj (so that
j stays inactive).

• If X(j) = 0, vertex v becomes active if and only if it has at least k(v)+1 active neighbors:
we set k′(j) := k(v) = k(j).

Since the random variables X(j) for j in G are independent, the thresholds we associate to each
node are also independent. In addition, we can easily verify that the conditional probability
distribution of thresholds (knowing that the degree of the node is s) is given by (t ′s	)0≤	≤s

.

More precisely, let Cs	(u, t) (respectively C′
s	(i, t

′)) be the final number of active vertices
with degree s ≥ 0 and threshold 	 at the end of the symmetric threshold epidemic on G̃

(respectively G), with threshold parameter t (respectively t ′), when the only vertex in the initial
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seed is u (respectively i). Then, using the coupling described above, we have the following
results, for each degree s ≥ 0.

• Cs0(u, t) = C′
s0(i, t

′)[sYs + (1 − Ys)], where Ys is the proportion of vertices j in G such
that X(j) = 1, among those that have degree s and that belong to the cascade triggered
by i.

• For all 	 
= 0, we have Cs	(u, t) = C′
s	(i, t

′), since the vertices of positive threshold that
belong to the cascade triggered by u are exactly those that are not replaced by a clique.

We have Ys/n
P−→ γs for all s, and the limit for C′

s	(i, t
′) is given by the following lemma.

Lemma 6. Assume (using the notation of Theorem 3) that ζ = 0 or ζ is such that there exists
ε > 0 with λz2 < h(z) for z ∈ (ζ − ε, ζ ). Then, for any i that belongs to the set of pivotal
nodes in G, we have

C′
s	(i, t

′)/n
P−→ pst

′
s	(1 −

∑
r≥s−	

bsr (ζ )).

In particular, for 	 = 0, we have

C′
s0(i, t

′)/n
P−→ pst

′
s0(1 − ζ s).

Proof. By slight extension of Theorem 11 of [21], the number of inactive nodes with degree
s in the original graph, degree r in the graph of inactive nodes and threshold 	 tends to∑

i≥s−r−	

pst
′
s	bsr (ζ )bs−r,i (0) = pst

′
s	bsr (ζ )1{r ≥ s − 	}.

Hence, summing over r it follows that the number of inactive nodes with original degree s and
threshold 	 tends to pst

′
s	

∑
r≥s−	 bsr (ζ ), which completes the proof.

We assume that ζ = 0 or ζ is such that there exists ε > 0 with λz2 < h(z) for z ∈ (ζ −ε, ζ ).
Let u be a vertex in G̃ whose parent i belongs to the set of pivotal nodes in G. Let Cs(u, t)

be the final number of active vertices with degree s ≥ 0 at the end of the symmetric threshold
epidemic on G̃, with threshold parameter t , when the only vertex in the initial seed is u. Then
we have

Cs(u, t)

ñ

P−→ [sγs + (1 − γs)]ps

γ̃
t ′s0(1 − ζ s) + ps

γ̃

∑
	
=0

t ′s	
(

1 −
∑

r≥s−	

bsr (ζ )

)
.

Using the definition of t ′, we have t ′s0 = ts0 and∑
	
=0

t ′s	
∑

r≥s−	

bsr (ζ ) =
∑
	
=0

(1 − γs)ts	
∑

r≥s−	

bsr (ζ ) + γs(1 − ts0),

which finally gives

Cs(u, t)

ñ

P−→ [sγs + (1 − γs)]ps

γ̃
ts0(1 − ζ s) + (1 − γs)ps

γ̃

(
1 − ts0 −

∑
	
=0

ts	
∑

r≥s−	

bsr (ζ )

)
.

Then, by an argument similar to that used at the end of the proof of Theorem 1 or (11), u

belongs to the set of pivotal nodes in G̃, which completes the proof.
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5.5. Proof of Theorem 4

We use the same idea as in the previous proof. The same statement as for Proposition 5
holds when the epidemic starts from a set (instead of a single vertex u). Indeed, let S be the
initial seed in G. By definition, the initial seed S̃ in G̃ consists of the vertices whose parent
belongs to S.

Let Cs	(S̃, t) (respectively C′
s	(S, t ′)) be the final number of active vertices with degree s ≥ 0

and threshold 	 at the end of the symmetric threshold epidemic on G̃ (respectively φ(G̃)), with
threshold parameter t (respectively t ′, defined in Proposition 5), when the initial seed is S̃

(respectively S).
Using a slight extension of Theorem 10 of [21], we have, for all s ≥ 0 and 	 ≥ 0,

C′
s	(S, t ′)

n

P−→ pst
′
s	

(
αs + (1 − αs)

(
1 −

∑
r≥s−	

bsr (ζ )

))
,

where ζ is defined in (13). More precisely, the first term pst
′
s	αs comes from the vertices that

belong to the initial seed S, and the second term pst
′
s	(1−αs)(1−∑

r≥s−	 bsr (ζ )) comes from
those that are activated during the process. In order to obtain the asymptotic for Cs	(S̃, t)/n, we
have to multiply the first term by (sγs +1−γs). The multiplicative constant for the second term
depends on the value of the threshold 	: if 	 = 0, we multiply the second term by (sγs +1−γs),
and if 	 > 0, we multiply it by 1 (since the vertices with positive threshold that are activated
during the process necessarily do not belong to a clique). Summing over s and 	, and replacing
t ′ by its expression gives the following limit as n → ∞:

C(t, α)

n

P−→
∑

s

psts0(sγs + 1 − γs)[αs + (1 − αs)(1 − ζ s)]

+
∑

s

ps(1 − γs)αs(sγs + 1 − γs)(1 − ts0)

+
∑

s

ps(1 − γs)(1 − αs)

[
(1 − ts0) −

∑
	
=0

ts	
∑

r≥s−	

bsr (ζ )

]

+
∑

s

psγs(1 − ts0)αs(γs + 1 − γs).

Gathering some terms and using the fact that ñ/n
P−→ γ̃ completes the proof of Theorem 4.

6. Conclusions

Our analysis is one of the first systematic studies of random graphs with both a tunable
asymptotic degree distribution and a clustering coefficient. Our model allows a rigorous analysis
of diffusion and symmetric threshold models.

For both models, we were able to derive explicit formulae for the cascade condition, i.e. the
condition under which a single infected individual can turn a positive fraction of the population
into infected individuals. When such a cascade was possible, we provided an analytic expression
of its size. In the case of random regular graphs, we proved that the clustering ‘inhibits’ the
diffusion process. Numerical evaluations also showed that clustering decreases the cascade size
of the diffusion process for regular graphs, and ‘inhibits’ the diffusion process for power-law
graphs. The impact of clustering on the symmetric threshold model was studied in the particular
case of the contagion model [24]: numerical evaluations showed that the effect of clustering on
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the contagion process depends on the value of the mean degree in the graph: while clustering
‘inhibits’ the contagion for a low mean degree, the contrary happens in the high-value regime.
When a cascade was possible, we observed that clustering decreases its size.

As discussed in [22], the impacts of clustering and degree correlation also have to be
separated, and it seems important, as a future work, to separate the impacts of these different
features on the processes. In addition, we can also compute explicitly the cascade size for a
degree-based activation, in both diffusion and symmetric threshold models. This theoretical
analysis paves the way to a possible control of such epidemic processes, as done in [8] or [20].
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