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On transonic boundary-layer receptivity over a
vibrating flat plate coated with a thin liquid film

F. Khoshsepehr'> and A.I. Ruban!
lDepartment of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK

(Received 26 March 2022; revised 11 August 2022; accepted 14 August 2022)

In this paper we study the generation of Tollmien—Schlichting waves initiated by vibrations
of a wall where the wall is coated with a thin liquid film in a transonic flow regime.
Motion of fluids are described by the two-dimensional Navier—Stokes equations assuming
the Reynolds number is large. To find asymptotic solutions of the transonic boundary
layer, we conduct an inspection analysis on the affine transformations of the triple-deck
model for a subsonic flow and the unsteady full potential equations, with the intention
of obtaining the order quantity of the free-stream Mach number in the transonic flow.
We construct a modified triple-deck model for the transonic flow by considering the
scalings of the perturbations that lead to the viscous—inviscid interaction problem for
the flow in a subsonic regime. In particular, we are interested in the region where the
subsonic scalings become invalid as the flow approaches transonic regime. We assume
the wall oscillates in the vertical direction to the oncoming flow and these vibrations are
periodic in time. We outline the process where the flow in the boundary layer converts
the wall vibration perturbations into the instability modes which are measured by the
receptivity coefficient. The viscous—inviscid interaction problem describes the stability of
the boundary layer on the lower branch of the neutral curve. We show that the governing
equations for the air viscous sublayer and the film flow are quasi-steady. The equation
describing the inviscid layer of the airflow is unsteady and its referred to as the unsteady
Karman—Guderley equation. The influence of the film surface tension is expressed through
normal shear stress condition at the interface. We present an analytic formula for the
amplitude of the Tollmien—Schlichting waves that are formed in the boundary layer. We
analysed our model with different values of surface tension, initial film thickness and
Karman—Guderley parameter. Depending on the value of these parameters, the initial
amplitude of the instability waves may grow or decay.
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1. Introduction

Envisage the airflow around the wing of a commercial aircraft in a flight condition where
the wing surface is covered with a thin water film that may be formed due to the de-icing
process or while the aircraft encounters high liquid clouds particularly in the ascent and
descent phases of flight. We conducted linear stability analysis and found that the boundary
layer over a flat plate that is covered by a liquid film is receptive to the wall vibrations.
The full linear stability analysis of multi-fluid flows is presented in Khoshsepehr (2020,
pp. 11-56). Now to predict the position of laminar—turbulent transition of the flow past the
wing, we perform the linear receptivity analysis which is concerned with the first stage
of the transition; that is, concerned with process of the external disturbances such as wall
vibrations transforming into the instability modes in the form of Tollmien—Schlichting
waves. Receptivity theory is one of the well-studied topics in fluid mechanics and it
has been inspected by many researchers. Initially it was Lin (1946) who developed the
triple-deck model in context of linear stability analysis of the boundary layer. The studies
by Neiland (1969) and Stewartson & Williams (1969) are the first theoretical analyses
that describe the separation phenomena of a steady supersonic boundary layer using
a triple-deck structure. Stewartson (1969) and Messiter (1970) took the same approach
to examine the incompressible flow near the trailing edge of a flat plate. Eventually it
was Smith (1979) who verified the formulation of the triple-deck model to describe the
instability modes of the boundary later.

Receptivity theory is an advanced theoretical method in fluid dynamics, employed by
many authors to study different types of high-speed flows. However, transonic flows and
especially multi-fluid flows have not received much attention. Hence, we investigate the
stability analysis of a transonic boundary layer over a vibrating wall coated with a thin
liquid film. Analyses presented in this paper are based on the triple-deck structure that
describes the interaction of viscous and inviscid parts of the airflow. This structure is

composed of (i) the near-wall nonlinear viscous sublayer with thickness O(Re™>/%) which
occupies an O(Re™!/8) portion of the boundary layer. The flow velocity in this tier is
relatively slow, hence it is very sensitive to pressure variations. Even a slight raise in the
pressure could lead to growth of the airflow filaments and alteration of the streamlines due
to the significant deceleration of fluid particle in this tier. The slope of the streamlines
is transmitted through (ii) the main part of the boundary layer with O(Re~!/?). This
middle tier has no contributions to the streamline displacement and merely acts as a
transmitter between the viscous sublayer and (iii) the potential flow region situated outside
the boundary layer with O(Re™3/%). The latter tier is able to convert the slope perturbations
into the pressure perturbations. Then these perturbations are transmitted back through
the middle tier (boundary layer) to the viscous sublayer, intensifying the process of
fluid deceleration. Assuming the film thickness is the same order quantity of the viscous
sublayer, we derive a set of governing equations and appropriate boundary and interfacial
conditions for the film flow. Consequently, the pressure perturbations produced and
transmitted to the viscous sublayer by the film is considered in the hierarchical structure.
As we assume the vertical dimension of the film is much smaller than the horizontal
dimension, the lubrication theory is valid and the so-called lubrication equations describe
the film flow.

To develop our model, we focus on the theory proposed by Timoshin (1990) that is
devoted to transonic boundary-layer receptivity analysis of flows to external disturbances.
This work is concerned with asymptotic description of instability modes in transonic flow,
and we shall adopt a similar approach to find the quantity order of the free-stream Mach
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number. We extend the description of the transonic flow suggested by Timoshin (1990) to
a multi-fluid flow where the flow encounters a subsonic and then a transonic free-stream
flows. Specifically, we formulate the interaction problem to drive the affine transformation
variables for both air and film flows. Then we match these variables with the estimates
for fluid dynamic quantities of the unsteady potential equation in the free-stream flow, as
the unsteady Karman—Guderley equation is recovered. This leads to realisations that the

compressibility parameter in transonic flow becomes 0(03/ "Re~1/ 18) and the time scale

is O(Re™2/?¢=11/9). Consequently, we present the description for the three tiers of the
airflow and of the film flow in the interaction region. We display the receptivity coefficient
to the vibrating wall perturbations by deriving the amplitude of the Tollmien—Schlichting
waves in analytic form.

Another early study of the transonic boundary-layer transition by employing the
viscous—inviscid interaction was conducted by Bowles & Smith (1993). For a review
on the generation of the Tollmien—Schlichting wave provoked by wing vibrations see
Ruban, Bernots & Pryce (2013). In addition, an extensive description of transonic flows is
presented in Ruban (2015). He focused on shock waves and separation analysis of transonic
flows where the flows are treated as irrotational. As most commercial aircraft travel at
transonic speed and transonic flows have immense practical importance to the aerospace
industry; these flows are well investigated in the context of separation and shock waves.
However, the receptivity of multi-fluid flows and surface tension effects have not been
fully studied. In this work we diagnose such flows. In the following study we advance
the analysis of an unsteady two-dimensional transonic flow by developing a triple-deck
model that describes the instability waves. These waves appear as the first stage of the
laminar—turbulent transition begins to unfold. A more recent study on transonic flow was
presented by Ruban, Bernots & Kravtsova (2016), who focused on linear and nonlinear
receptivity analyses of the flow to a weak acoustic noise with an assumption that there is
a small roughness on the wall surface. They also analysed the effect of flow separation
on transition to turbulence. They found that the flow separation leads to a significant
enhancement of the receptivity process.

In the next section we formulate a problem which enables us to find the receptivity
coefficient for compressible boundary layer to a vibrating wall where the Mach number

is close to one. The frequency of the vibration is chosen to be w = 0(0,11/ 'Rt/ 18) and

the length of the vibration section Ax = O(O'M_]/ SRe=1/ 3), these scalings ensure that the

triple-deck model is valid for the transonic flow. Then we assess the effect of film surface
tension and its initial thickness as Karman—Guderley parameter varies. Figure 1 displays
a schematic of the transonic flow regimes. We start the next section by showing how the
incompressible flow theory may be extended to subsonic flow as the Mach number M,
approaches one.

2. Problem formulation

Let us consider a perfect gas flow past a flat plate coated with a liquid film. We assume that
the plate is aligned with the velocity vector in the oncoming flow. We further assume that
the flat plate is vibrating periodically in time. Our task is to study the interaction of these
wall vibrations with a small roughness on the plate surface at distance L from the leading
edge. To study a two-dimensional flow we use the Cartesian coordinates (%, y), with x
measured along the flat plate surface from its leading edge O and y in the perpendicular
direction. The velocity components in these coordinates are denoted by (i1, 0). We denote
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Figure 1. Schematic comparison of different flow regimes.

time, gas density, pressure, enthalpy and dynamic viscosity coefficient by 7, 4, p, h and /i,
respectively. The non-dimensional variables in the airflow are introduced as

(2.1

with Vi, Poos Poo and 1o being the dimensional free-stream velocity, pressure, density
and viscosity, respectively. The ‘hat’ is used here for dimensional variables and ‘prime’ for
physical quantities in the film flow. The non-dimensional variable for the interface shape
is defined as

H=LH. (2.2)

In the non-dimensional variables, the Navier—Stokes equations are written as
8u+ 8u+ ou 8p+1 0 40u  20Jv
— 4 u—+tv— | =——+ — 1 — - =
P\ T T %y ox Re lox |"\39x " 30y
0 ou ov
— — 4 — , 2.3
oy [“(ay+ax)]} (230
8v+ 8v+ av 8p+ 1 (0
—tu—+v— | =——+ —1 —
P\ T T Y%y ay  Re | oy |©
0 ou  ov
— — 4+ — , 2.3b
w5 a0} e
8h+ 8h+ oh 8p+ 8p+ 8p+1 1[0 oh +8 oh
— 4 u—+v—|=——+u—+v—+ =1 — | — — — —
P ot dx ay at ax dy Re | Pr|[ox Max ay “ay

N 49u  209v ou 49v  29u 8v+ 8u+8v 2 230
—— | = —— -] = — 4+ — , 3c
F\39x " 30y ox " H\30y " 30x)ay T \5y T ox
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ap  dpu  Jdpv
at ox ay
1 1 y p

(y—=DM%p y—1p

Here Pr is the Prandtl number and y is the specific heat ratio, for air Pr ~ 0.713, y = 7/5.
The Reynolds number, the free-stream Mach number and the speed of sound are defined

as
VoL 1%
Re=Pxlox oy 4 = [yP= (2.4a—c)
Moo oo Poo

respectively. In this study, we assume that Re is large and M, remains finite. First, we
shall restrict our attention to the subsonic flows where My, < 1. When performing the
flow analysis, we assume that the viscosity and density ratios

=0, (2.3d)

(2.3¢)

%, - %, (2.5a.b)

are small. We assume that o, ~ 1/70 and o, ~ 1/800; for more details, see Coward
& Hall (1996). Here our task is to generalise the formulation of the incompressible
viscous—inviscid interaction problem to the case of compressible airflow. Now we consider
the three layers in the airflow.

2.1. Airflow viscous sublayer

We present the fluid-dynamic functions of the viscous sublayer, for a subsonic flow with
order-one Mach number, in the form of asymptotic expansions:

u= Re_l/gU*(t*,x*, Yo+,
v =Re BV (ty, xs, Yi) + -+,
p=Re P (ti,x, V) + -, ¢ (2.6)
p=py+ORe )+
p= o+ ORe™ )+,

where the independent variables are defined as
Iy =0y Rel/4t, Xy = Re3/8(x —1), Y,= Res/gy. (2.7a—c)

Note that o, first appears in the asymptotic solution for the film. Namely, the asymptotic
solution for the vertical component of the film flow which is obtained by considering the
shear-stress continuity between the two fluids. Consequently, o;, re-appears in the time
scale by assuming that the kinematic condition holds at the interface. The substitution of
(2.6)—(2.7a—c) into the Navier—Stokes equations (2.3) yields

AU, U, dpP, 92U,
U V,— ) = - —* —, 2.8
pw( o T *ay*) & v (2-8a)
AU, 9V,
=0. 2.8b
9X,4 + Y, (2.85)
948 A39-5
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We assume that the interface between the air and liquid film is situated underneath of the
lower tier in the triple-deck structure, and is represented by the equation

Y, = Ho(ts, X5). (2.9

We write the boundary conditions for (2.8) as

Uy =V, =0 atY, = Hy(t, xs), (2.10a)
Ue=AY, —Hj) + -+ asx, — —00, (2.10b)
Ui =AY +Au(ty,x) +--- as Y, — oo, (2.10¢)

where Hj is a constant representing the film thickness before the interaction region and
A represents the dimensionless skin friction in the airflow. To find the value of A for
a compressible boundary layer we used numerical methods, namely, the fourth-order

Runge—Kutta method with Newton’s iteration.

2.2. Upper tier
In the upper tier, the fluid-dynamic functions are represented by the asymptotic expansions

u=1+Re VU, (ty, X, vi) + -+,
V= Re_1/4v*(t*,x*,y*) +-
p=Re Vp.(te.xiy) 4+, (2.11)

p=1 +R€_1/4,0*(t*7x*,y*) T
1

= o TR el ey £
o0

h

with the independent variables are
Ly =0y Rel/4t, Xy = Re3/8x, Vi = Re3/8y. (2.12a—c)

Substituting (2.11) and (2.12a—c) into the Navier—Stokes equations (2.3) yields the
following leading-order terms which describe the pressure p, in the inviscid upper tier:

azp* 32[’*
1—M> =0. 2.13
( 50) 72 02 (2.13a)
To solve (2.13a) we define the boundary conditions as
9 19%A
Pe _ 20 % iy, =0, (2.13b)
dyx A xZ
px— 0 as xﬁ +yi — 00. (2.13¢)

The condition (2.130) is deduced by matching with the solution in the middle tier of the
airflow.

948 A39-6
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2.3. Film flow
The asymptotic expansions of the fluid-dynamic functions in film flow are written as

u=oy Re_]/SU;(t*,x*’ Yo )+, v= on Re—3/8v>;(t*’x*’ Y )+,

_ p—l/4p .1 .1 (2.14)
p_Re P*(t*,x*,Y*)—i—-.., p—_poo+, /’L__MOO+,
Op oy

with independent variables defined by (2.7a—c). We substitute (2.14) and (2.7a—c) into the
Navier—Stokes equations (2.3) while assuming oﬁ /o, < 1. Dominant terms yield

P, 3’U.,

ax, Y2
0Py _o, 2.15)
3,

ouL v

0xy 8_Y>f<

’

=0.

We allow the body surface to deform in pure vertical motion
Y, = Y:;(t*, Xs), (2.16)

then the no-slip conditions on the body surface are written as

*
U,=0, V.= on, at Yy = Y (e, Xy4). (2.17)
oty
In addition, we need to formulate the boundary conditions on the interface. First, we
consider the tangential stress to be continuous across the interface and the interface is the
kinematic (impermeability) condition. When dealing with the normal stress, we remember
that the pressure does not change across the tiers in the airflow. At the interface, we need to
consider the pressure jump which is due to the surface tension. Thus, we formulate surface
tension of the liquid film using the normal stress condition

. 9°H
px =P, +0-—> (2.18)
Xz
where o represents surface tension. By considering equal tangential stress condition at the

interface, we define the initial condition as

U, =AY, atx,=—00, Y, € [0, H}). (2.19)

2.4. Affine transformation

The viscous—inviscid interaction problem involves five parameters: the dimensionless skin
friction before the interaction region A, the fluid density p,, and viscosity coefficient u,,
on the body surface, the compressibility parameter 8 and the initial film thickness H.
We begin with the airflow in the lower tier regime which is described by (2.8) subject to

boundary conditions (2.10). We define the compressibility parameter as 8 = /1 — M2,
948 A39-7
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for a subsonic flow and introduce the affine transformations as

-32 —1/4 ,—1/2
- Hw T _M}V{
T gt T T saAgya
4 1) 1/4 —1/2
Hw Pw ¢ Mo Pv__ ¢
Vo= Zamgra ¥+ Haxo), U= "o U
34 172 172 =
Mw /OM_/ O OH Hw P
Vo= mmgmiaV T Uy Pe= g
14 172 Von '
wil” pw o Hw  Pw T
A= gt — () e = T g

These expressions (2.20) show how the standard affine transformations of the
triple-deck theory is related to Prandtl’s transposition. The latter introduces the body-fitted
coordinates ()v( , f’) with X measured along the interface and Y in the normal direction. As
a result, the governing equations for the lower tier assume the canonical form

o

L0U  L0U AP 9T

U = +V 9} ———v+f, (221(1)
0X Y dX 9Y2

au v
-+ — =0, (2.21b)

X dY

whereas the boundary conditions become

U=V=0 at¥=0, (2.21¢)
U=YV+--- asX— —oo, (2.21d)
U=Y+AX) +--- as¥ — co. (2.21e)

We introduce the following transformations for the upper tier:

—-1/4 —1/2 1/2
Mw/pw/ MW/ o

Vi = /15/4—,87/45)’ Dx = Wp, (2.22a,b)

which turn the governing equations and boundary condition for the inviscid region (2.13)
into

2p  9%p
fp + Tp
ax2  9y?

ap %A 9%H
?';:@‘ﬁ aty =0, (2.23b)
p—0 asX’>+3j* — oo. (2.23¢)

=0, (2.23a)

948 A39-8
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The solution for the pressure at the bottom of the upper deck may be written as

P _ , (2.24)
X  m)w  s—X

ap 1 /00 A"(s) — H'(s)
= = — s

see Ruban (2015) for more details. Now we turn our attention to the film flow and introduce
the following affine transformations:

5/4 —1/2 7/4 —1/2
U/ _ Mw  Pw l"’]/ V/ _ Mw  Pw 7/
* /171/4131/4 ’ * /173/41871/4 ’
'ul/2 M1/4,0_1/2
/ w D/ * _ Mw w N,
Po= gt Yo = g e
—1/4 1/2 —-1/4 —1/2
H*_ w/ w/ Yrsk _,va/pw/v
0= yapg-iathe @ = ismpra@

These transformations (2.25) turn governing equations and boundary conditions of the
film flow (2.15) to the following canonical form:

dP 92U
- — T,
e or (2.26)
U’  av’
-+ —=0
0X oY
No-slip conditions (2.17) assume the form
ry/ <7/ 8?W v v v
U=0 V=— atY=Y,(T,X), (2.27)
oT
and the conditions (2.15) at the interface turn into
au AU VY
— = — atY = H(T, X), (2.28a)
oY’ aY’|.
Y=0
O 0H e .
Vi=—+U— atY =H(, X). (2.28b)
oT 0X
Further, we transformed the normal stress condition (2.18) as
P—i)’+“82i] (2.29)
B Coxe '
Lastly, the initial condition for the film takes the following form:
Uly_ =Y aty €[0,Hol. (2.30)

We realised that the canonical interaction problem coincides with the interaction
problem describing an incompressible flow. Hence, we can use the asymptotic solutions to
a subsonic flow to describe the flow behaviour just before encountering the transonic flow
regime, see Khoshsepehr & Ruban (2022) for more details.

948 A39-9
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3. Transonic flow regime

One strategy to determine the scalings in the transonic regime is to focus on the
regime where the subsonic flow becomes invalid as it approaches the transonic regime.
We implemented this approach by finding an appropriate scale for the compressibility
parameter which allows the governing equation of the transonic flow to take the order
quantities as the dominant terms in the subsonic flow in the upper deck. Consequently, we
found that

B~ o /"Re 1. 3.0

The compressibility parameter (3.1) implies that the free-stream Mach number takes the
following order:

M3, =1+Re Pc3°M;, (3.2)

where M; = O(1) and referred to as Karman—Guderley parameter, see Appendix A for
more details. The analyses on subsonic flow show that the dominant terms in the upper
tier are described by the Laplace equation. Compared to the subsonic flow, Bowles &
Smith (1993) showed that the dominant terms for the unsteady linearised transonic small
perturbance equations include an extra dominant term. The governing equation for the
transonic upper tier may be written as

2 2 2
°p3 3p3 _ 9p3 _ 0. (3.3)

2M

Now we consider the triple-deck structure with the film flow starting with the upper tier
where the airflow encounters the transonic free-stream flow.

3.1. Upper tier

The structure of the interaction region over a vibrating surface is presented in figure 2.
While considering (3.1), we find that in the transonic flow regime the longitudinal extend
of the interaction region yields

A~ LRe V3g71/3, (3.4

with the characteristic time being

. L
AF ~ V—LRe—2/9a—1‘/9. (3.5)

o

The lateral coordinate y may be estimated in the upper tier by considering (2.2) and its
affine transformation (2.22a,b) and these yield to

§~LRe™/Bq 717, (3.6)

To find the order quantity of the pressure in the transonic regime, we consider lateral and
longitudinal orders of the viscous sublayer (2.7a—c) along with the asymptotic expansions
of the upper tier (2.11) and the affine transformations defined in (2.22a,b) and (3.1) which

948 A39-10
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Figure 2. Triple-deck structure with a liquid film over a vibrating wall where § = Re

yield to

P — Peo ~ Re~ 29 —2/9
PV

—11/18 _—1/9
/186,109

(3.7)

Equation (3.7) suggests that the solution in the upper tier should be sought in the form of

asymptotic expansions:

u = 1 + R€_2/90’;2/9M3 (t*v X*, )/3) + Re_l/?’o—i/?)

v =Re B3 Pv3(t, xi, y3) + Re B0} vs3 (4, x4, y3) + -+

134 2/3

p=Re 0,2 p3(t,. x4, y3) + Re” P33t Xy 3) + -

1 _ 2M, _ _
= Y —Re Po ;ng + Re 2/90M2/9h3(t*,x*,y3)

+Re o233 (1, xesy3) + -
with the independent variables

t x—1 y

[ - S S
* Re—2/90711/9 e = Re~1/35, /% 3= Re=5/180, "%

M33(t*,x*, )’3) + RS

(3.8)

(3.9a—c)
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We substitute (3.8) and (3.9a—c) into the Navier—Stokes equations (2.3) which leads to the
following leading-order approximations:

ou 0
duy | opy _

0,
0Xy  OXy
0 0
2y,
09X ay3
Ohs _9ps _ (3.10)
02Xy 02Xy
0 0
03 us _ 0.
02Xy 00Xy
h3 + o7 p3 =0.
y—1 y-1

It is easily seen that this set of (3.10) is degenerate, as the equations are not independent
of each other. Indeed, by manipulating these equations we find that

us = —p3, p3=p3, h3=ps, (3.11a—c)

with p3 remaining arbitrary. To find p3 we need to consider the next approximation
equations which are written as

ou 0 u
33 + P33 3

00Xy 00Xy oty
duzz  dp3z 93
X 9y3 oty

dhss  9dp33 _ dp3  h3
Ox,  Oxx Ot Ot
a ou a av
P33 duss p3  dvs

. (3.12)

axe | Ox. Oty Ay
033 % 2M,

h33 + - P33 = 03.
y—1 y-1 y—1

Note that the first-order approximations are 0(0,1/ "Rel/ %) and the second order
approximations are O(o,,). By algebraic manipulations, we simplify these equations (3.12)

and find the governing equation for pressure as

92 92 92
P, 9P 9P (3.13)

M
Vo2 T Tanex, 0y
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3.2. Lower tier

The fluid-dynamic functions for the viscous sublayer, region 1 in figure 2, are represented
in the form of asymptotic expansions

—2/18 _—2/1
/SGM /8u1(t*ax*ay1)+ )

u = Re
vV = R€_7/180—5/18v1(t*9 x*’ yl) + ]

p= Re_2/90;2/9p1(t*7 Xy Y1)+,

(3.14)
h = hy + ORe™ "),
p = pw+ ORe™ ),
L=y + ORe™'79),
with the independent variables defined as
! x—1
"= Re 219 0" T peipg A T m, (3.15a-c)

where h,,, p,, and u,, are positive constants representing enthalpy, density and viscosity
on the wall surface. We substitute (3.14) and (3.15a—c) into the Navier—Stokes equations
(2.3) and we find the following governing equations:

duy duy ap1 3%u
oy _ o1 07U1 3.16
Pw (ul %, + vg 8y1> ox, + Uy Hy% ( a)
d
P _ ), (3.16b)
ay1
0 0
a9y, (3.16¢)
0x4 ay1
3.3. Film flow

We define the fluid-dynamic functions for the film flow as
u= Refz/lgaljz/lgu/l (L X, Y1) + - -+,
v=Re ot/ By (ty, x0, y1) + -+, (3.17)
p=Re o 2P (e, s y) + -

with the independent variables defined in (3.15a—c). By substituting (3.17) and (3.15a—c)
into Navier—Stokes equations (2.3) we derive the lubrication equations that describe the
motion of the film:

ap) 3%}
Axe 9y
oo (3.18)
duy v
— 4+ —=0.
0x4 ay1
We solve these (3.18) with conditions (2.27) and (2.28).
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3.4. Main part of boundary layer

The middle tier must have the same longitudinal orders as the rest of the interaction regions
and its thickness coincides with the thickness of the Blasius boundary layer, region 2 in
figure 2. By analysing the solution in the overlap region that lies between regions 1 and 2
and using the fact that y; = (Re O‘M)_l/ 9y1, we seek the solutions in region 2 in the form
of the asymptotic expansions

u = Uy +R€_2/180’M_2/18u2(t*, Xy y2) +---,
v = Re_s/lsaﬁ/lsvz(t*, Xy Y2) o0y

p= R672/90M—2/9p2(t*’ Xy Y2) + o,

_ —2/18 _—2/18 (3.19)
p = poo +Re = Co, 0ot Xeey y2) -
MK = poo +Re_2“80,22/18m(t*, Xe, y2) o ey
h=hoo + Re > o 2/ By 1y, xpo y2) + -+,
with the independent variables
fy = L ox= ] = (3.20a—c)
T Re_2/90,;”/9 CT Re—1/3cm_l/3’ T Re=1/2 o
In (3.19), the leading-order terms are defined as
Uoo(y2) = Ay2 + - -
00(y2) = pw + -+
POOY2) = as y, — 0. (3.21)

moo(y2) = fhy + - -+
hoo(y2) = hy + - -

These functions (3.21) satisfy the classical boundary-layer equations and admit a
self-similar solution for a thermally isolated wall in case of a flow past a flat wall.

We found that the perturbation terms exhibit the following behaviour at the bottom of
region 2:

up = Aly, X5) + - - -

A as yy — 0. (3.22)

V) = ———
2 ax*y2+
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The substitution of (3.20a—c) and (3.19) into the Navier—Stokes equations (2.3) results in
inviscid leading-order terms to be written as

dun dUyo
U 22 o,
00(y2) ox, + vzady2
0
P _
dy2
dohy dhoo
Uoo(y2) — +vo——,
X4 dy; (3.23)
duy Yo vy dpoo ’
P00 (y2)— + Uoo(y2) — + poo(y2) — + vo— =0,
DX DX, ay2 dy>
" 1 1
0="—"—""5" ")
(y — HMZ, poo
1
By — — P2

(y — DMZ, p3y

Note that the middle tier displays its usual behaviour which is inability to make any
contributions to the displacement effect of the boundary layer. The middle tier simply
transmits the streamline deformations produced by the viscous sublayer in region 1 to the
upper tier in region 3. Equations (3.23) are easily solved by eliminating pgo and hog which

lead to
0 v
—(—]=0. (3.24)
dy2 \ Uoo
By integrating (3.24) with the limits defined in (3.21) and (3.22) we find
) 1 0A
— == . (3.25)
Uoo A 0xy

Note that the longitudinal velocity component u; can simply be found by using
the continuity equation. The viscous—inviscid interaction problem is composed of (i)
governing equations of the viscous lower tier, (ii) the equation describing pressure in the
upper tier and (iii) governing equations of the film flow. Now, we need to introduce a new
set of affine transformations for all the tiers in the transonic regime. The transformations
for the airflow are

Xy = 27 VRSB, = 292090770 =40y o,

oH
"y = 2_1/9Mi/9/12/9/0_4/9U» v = 21/9MZV/9/17/90_5/9 [V Fu 7} ’
*

pr= 275919089 p=29p A = 27192100770 =494, — AH (x,), - (3.26)
H=2719020007109 =40, My = 219 =20 =20 p419g,
vy = 270U 19y, g = 029 =5/9 W0 pm 19
and for the film
X = 27V By 919209 )=T/9 =49y

W = 2—1/9Mv1‘/1/9/12/9p—4/9U/’ v = 21/9/Lv11/6/9/1_1/9,0_5/9v/, (3.27)

o= 2—5/9MVIV/9/178/91072/9P/’ 0= 277/9M;4/91713/9p71/9@'
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The transformation of the interaction problem into a canonical form is presented in
Appendix B.

4. Linear receptivity theory

We begin the receptivity analysis with introducing the dimensions for frequency and
surface function of the wall vibration which are written as

.V N - _
o= %Re4/180‘11/9w*, Yw = LRe II/ISO’M %, (4.1a,b)
and the affine transformation for frequency w, is defined as
Wy = 22/9@/9/114/9/)1/90). 4.2)

We consider the viscous—inviscid problem for the case where T > 0. We introduce the
asymptotic expansion in order to linearise the problem:

U:Y—{—gﬁein+..., U=Y+eil la)T+ .
(V, V/’P,P/ *)—8(1} U pp A)ela)T . (43)
H*=HO+8Hele+"', Yw:8)~7welw,

where Y, is the non-dimensional function of the wall surface. The full set of equations
that describes the perturbed interaction problem is presented in Appendix C. To solve this
problem, we apply Fourier transform to the equations for viscous sublayer, upper tier and
the film. The Fourier transform is defined as

(T, Y; k) = / WT,X,Y)e gy, (4.4)

—0o0
This transformation turns the problem to an initial-boundary value problem (IVP) that can
be solved analytically, see Appendix C. The quantities u, v, p, A and H are the Fourier
transforms of the perturbations u, v, p, Aand H, respectively.

4.1. Receptivity analysis
The full derivation of solutions to the IVP problem is presented in Appendix C.3. We found
that the general solution to the longitudinal velocity in the viscous sublayer is described
by the Airy equations which is written as
du 1y 1/3
= =3AAi(z), z=(ik)'Y; (4.5)
z

see Abramowitz & Stegun (1964) for more details on Airy equations. We found the general
solution of the pressure takes the form

o ik?
p:—(A H). (4.6)

The solution (4.6) depends on the sign of M and we define s as

lwk + K2M|'/2 if k € (—oo, —M‘;‘)U(O 00), .
3 forM > 0 4.7
ilok+ M|\ if ke [-2,0] orm = (4.7a)
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M| for M < 0. (4.7b)

lwk + K2M|'/2if k € (0, -2),
i|wk + K2M|'/? if k € (—o0, O]U[M%,oo),

We are interested in the relations between the function describing the initial film
thickness and air pressure, thus we eliminate A in our solutions (4.5) and (4.6). As a result,

we found
- [V
=p|l—— 1. 4.8
P [3Ai/(0) "2 (4.8)

Now we focus on the solution of film equations, see Appendix C.3 for more details. The
velocity components of the film are written as

-/ ik 2 — -
u = Ep 'YE+ BY -y, k), (4.9a)
K? Y?
—/ 3 o
v = S —pY’ — & g + iky,, ()Y + 1wy, (k), (4.9b)

where & = [(ik)*/3(Ai(0)/Ai'(0))p — ikHop'].

Considering the kinematic condition and pressure condition with the transverse velocity
solution of the film at the interface yields to another relationship between the pressure and
film surface function which is written as

K*H? H2 Ai(0)
. KH) o, — B 0 ik)3/3.0
) (o + kHo)yw — p (—3 + (ik) > AT)
H= 4.10
KH3 o *10)
+ i(w + kHp)

We found the final solution for the pressure by eliminating H in (4.8) and (4.10) which
results in

__ 1w+ kHo)yw (k)

; 4.11
0 (4.11)
where the denominator D(k) is defined as
((ik)1/3 )
3Ai'(0 ik? 2 Ai(0)
Dby = © - T G R S CREY
o *H Q) ac
1w +

We can derive the dispersion equation, describing the instability modes of the airflow
over a vibrating section of the wall that is coated with a thin film, by equating the
denominator of the first term in (4.12) to zero and let

(w+ Mk) = —1. (4.13)

Note that this condition implies that the airflow is incompressible and because the
airflow in the viscous sublayer has a relatively slow speed we assume the flow to be
incompressible in this layer. Thus, the dispersion equation for the incompressible flow
is valid in the lower tier of the transonic flow. We assume that w € R and k € C in our
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Figure 3. Solution to D(k) = 0 is denoted by ko. These graphs display kg in the k-complex plane for different
values of M: (a) 0 =0, Hy = 1.5 and (b) 0 = 0.5, Hy = L.5.

receptivity analysis. By obtaining the roots of the dispersion equation kg we can determine
at which frequency values the airflow is unstable. We seek the root of the dispersion
equation in the k-complex plane, where k = Re{k} 4 ilm{k}, using Newton’s iteration
method. Based on the perturbations in (4.3) we can see that if Im{k} > 0, then the airflow
is stable, and if Im{k} < 0, the flow is unstable. Figure 3 shows that the airflow is unstable
for the case where surface tension o is zero however the airflow becomes stable when
0 > 0. The results presented in figure 3(b) show the airflow is unstable for small values of
Re{ko} however the airflow becomes stable as Re{kq} increases. Frequency values at which
Im{k} = 0 is referred to as neutral frequency wy. The value of neutral frequency varies as
Karman—Guderley parameter changes as shown in figure 4. As the value of thickness or
surface tension increase, wg becomes sensitive to the presence of the film flow compared
with zero-valued surface tension.

We apply inverse Fourier transform to the pressure presented in (4.11) which leads to
the following expression:

1 [>i kH .
PR s O AE T (4.14)
21 ) _»  Dk)
To choose the contour integration for the integral (4.14) we turn our attention to the
frequency values that are larger than the neutral frequencies for both positive and negative

M. The behaviour of the root when © = 0 is different from that of the root when o # 0.
In the first case, the root stays in the third quadrant as the frequency increases (figure 3a).
In the latter case, increasing the frequency further the trajectory of the root crosses the
real axis to the second quadrant and remains there in the complex k-plane (figure 3b).
We turn our attention to root in the second quadrant where ¢ #= 0 which represents the
Tollmien—Schlichting wave.

Considering the analytical branch of the function (ik)'/° we set a branch cut along
the positive axis in the k-plane. We split integration interval in (4.14) into two parts,
negative and positive real semi-axes. The chosen contour of integration for integral (4.14)
is displayed in figure 5(a). For M < 0, the contour along the negative real semi-axis is
closed by the arc Cp, with large radius R, ray C_ along the negative real semi-axis and
ray C"_ along the positive imaginary semi-axis. We denote by p~ the analytic extension
of the integrand (4.11) in the region enclosed inside this contour along the real negative
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Figure 4. Neutral frequency as a function of M: (a) Hy = 0.01, (b) Hy = 1.5 and (¢) Hy = 1.5.

semi-axis. On the positive semi-axis, the contour is composed of two closed contours
(C,.,CY,Cl, Cp)and (Cf, CF, C,). Note that the position of (C;, C}')) depends on
value of w/ |]\7I |. We denote by frf and fa; the analytic extensions of the integrand (4.11)
in the regions enclosed inside the contours along CfL and C, respectively. The analytic
extension of the denominator (4.11) for contour C_ is given by the expression

i3 (—wk — MKH'/?
3Ai'(0) k2 CH3
D™ (k) = - K
435\ " 3
. . 0@
iw ~+ ikHy +
H2 Ai(0)
ik)>/3 2 —00, 0).
TS 0 e 0

(4.15)

Here ko is the solution to D™ (k) = 0 and it is found numerically by employing Newton’s
iteration. The value of ky depends on values of the surface tension ¢ and initial film

thickness Hy.
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Figure 5. Deformation of the contour of integration in the complex k-plane for () negative M < 0 and
(b) positive M > 0 values of Karman—Guderley parameter.

The integrand (4.11) along the negative real semi-axis can by divided into the sum of
three integrals, written as

i(w + kHy) _ kX
([ ) e

The function p has a residue which is a simple pole at ko. By the residue theorem we find
the solution to integral (4.16) to be written as

kH,
(/ f : / ) I(Q;L(k)())_ (k)X dk = 2miRes (5™ ko). (417)

The residue is evaluated as

(koHo + o) _

1kX
DGk (ko) /dk yw(ko) ™ (4.18)

2miRes(p™ kX ko) = —

According to the Jordan lemma the integral along arc Cj is zero as the arc radius
R — oo. The integral along C_ recovers the original integral. The integral along C_ is
a Laplace-type integral and it can be evaluated with the help of Watson’s lemma at large
values of X. First, we need to determine the behaviour of the integrand p~ in (4.16) at
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small values of k. We found the dominant term is written as
(o + kHo)yw (k) _ ik/?
N D~ (k) Jo

The integral along C”_ can be rewritten as

ywk) ask— 0, = 0(1). (4.19)

0 .
/ ek g~ i 20O [ a2 i gy (4.20)
_ @ .

We perform the calculation of (4.20) along the left-hand side of the branch cut, in this
case we found that k3/2 = |k|3/ 242 (1 i). The solution to the integral (4.20) yields

/_1-) kX qp — Xys’/”z(i)/)_ {(1 +i)r (2> as X — 00. (4.21)

Now, we turn our attention to the integral (4.11) along the positive real semi-axis which
consists of two contours. The analytic extensions of the integrand’s denominator (4.12) for

the contours along C fr and C;r are expressed as

(V3 (wk + MK)1/?
kK*H?

3AI(0) ik2
D} (k) =
! 4r3=\ 7! 3
. . k Hyo
iw + ikHy + 3
A1(O) w
+(ik)>P =L Hy ke (0, —) (4.22)
2 Ai'(0) M|
()3 (—wk — MK?)1/2
3Ai(0) k2 CH
D+(k) — ] + 0
k4H3é - 3
iw + ikHy + 30
A1(O) w
+(ik)>3 =2 Hy ke (— oo), (4.23)
2 AV'(0) M|

respectively. According to Cauchy’s theorem, the closed contours (C;, CL+ , C;{ ,C/,)and
(C, CJr C+) are equal to zero because these integrals do not enclose any singularities;
asa result we found that

—+ kX g7 —4 kX
/;+ple dk = (/C++/C++/,>ple dk, (4.24)
1 Ly Ry +
/ py e X dk = — / + / pa e dk. (4.25)
e G, Jc

948 A39-21


https://doi.org/10.1017/jfm.2022.708

https://doi.org/10.1017/jfm.2022.708 Published online by Cambridge University Press

F. Khoshsepehr and A.I. Ruban

The integrals along CZLI and Czrz are along the same line with opposite directions, therefore
these two integrals cancel each other as the integration is performed. According to Jordan’s
lemma the integrals along arcs C;l and C;z are also zero as the radii tend to infinity. The

remaining integral is along ray C/, which is of Laplace type and may be evaluated by
Watson’s lemma. We found the behaviour of the integrand I_?T at small values of & to be
expressed as
. i(w+kH)yw(k) ik
=" w0 /e

The integral along C’, can be rewritten as

yw(k) ask — 0. (4.26)

. 5..(0 .
/ e gk 2O [ g ik g (4.27)
cf o Jcf

We perform the calculation of (4.27) along the right-hand side of the branch cut, in this

case we found that k3/2 = |k|3/ 2“/TE(—I + 7). Consequently, we find the solution to the
integral (4.20) is expressed as

L () V2 (5
/C+ B dk ~ ijzﬂT(—l DI (F) asX — oo, (4.28)
1

By considering the solutions (4.18), (4.21) and (4.28) we find the pressure solution p is

~ _ ; 1 y,(0) 5
_ ikoX W = L.
PT.X) = K@)ulko) ¥ =\ [ o= =2m T ( 2) +oee, (4.29)
where the receptivity coefficient is written as
(koHo + )
Klw)=——F"—-. 4.30
(@) = = 4D (ko) /dk (4.30)

which represents the amplitude of the Tollmien—Schlichting wave in a transonic boundary
layer over the vibrating section of a flat surface, coated by a thin liquid film. We obtain
the receptivity coefficient of the transonic flow where M > 0 (figure 6) with a similar
procedure except that the integration contour takes a different form which is presented in
the k-plane shown in figure 5(b). This led us to find the same expression for the receptivity

coefficient as in (4.30) in the transonic flow regime with positive M.

5. Discussion and conclusion

Our main goal in this paper was to understand the perturbations in a transonic boundary
layer and their downstream behaviour. First, we showed how the external disturbances
produced by the wall vibrations penetrates the boundary layer and lead to the generation
of instability waves. The main assumption that needed to be satisfied is the order of
compressibility parameter is g ~ a,j/ "Re~1/18, We developed a triple-deck model to

analyse the motion of airflow over a thin liquid film in transonic regime. To ensure that the

triple-deck theory is valid we assumed w ~ 0(0,11/ ? Re*/ 18y and Ax ~ O(o, 13 Re=1/ 3.

We found that the transonic flow is receptive to the perturbations from the vibrating wall
and the initial amplitude of instability waves grow. However, when we considered the film

948 A39-22


https://doi.org/10.1017/jfm.2022.708

https://doi.org/10.1017/jfm.2022.708 Published online by Cambridge University Press

On boundary-layer receptivity

(a) 14 — (b) 0.12
1.2} 0.10 |
101

0.08 |
08! / |
IK| ’ 0.06 |
061 g o 4
04|
04| / 0.0
—M=2
02/ — =1 | 0.02
—M=-1
— =2
0 1 2 3 4 5 6 7 8 0
@ w

Figure 6. Modulus of the receptivity coefficient for various values of M: (a) = 0 and Hy = 0.5 and
(b)o =1.5and Hy = 1.5.

flow and its surface tension, we observed that the initial amplitude of the instability wave
tends to a certain value for increasing frequency. We also found that the maximum value
of the initial amplitude varies for different values of Karman—Guderley parameter, M.
We may eliminate the effects of the film flow and its surface tension by setting o0 = 0
and Hyp = 0.01. The graphs in figure 4 display how the neutral frequency changes with
varying M. Note that in the absence of a liquid film the maximum neutral frequency

occurs very close to M = 0 which corresponds to Mach number at one (figure 4a). We

also observed similar behaviour for maximum value of || at M = 0, without the film
(0 = 0) (figure 7a). For non-zero surface tension, the maximum point of || occurs at
M = 3.15 while Hy is fixed, see figures 7(b) and 7(e).

Comparing our results to other relevant theoretical and numerical works, similar
behaviour is observed by the airflow. For example, in the study by Ruban et al. (2016) on
receptivity of transonic flows to an acoustic wave in the absence of a liquid film, the authors
showed that the airflow behaves similarly to our findings, where M = 0; however, their
maximum value || ~ 0.12 which is much smaller than our result || & 3.10 (figure 7a).
The validation of asymptotic theory of receptivity for a compressible boundary layer by
numerical methods at low Mach number is conducted by De Tullio & Ruban (2015).
They found that as the Mach number increases, the error between the numerical results
and theoretical solutions increases slightly, albeit there is a good agreement between the
two methods. Based on their findings, we conclude that the theoretical model presented
in this paper is also in good agreement with the numerical solutions of Navier—Stokes
equations. However, to determine the exact error and draw direct comparisons between
numerical analyses with linear and nonlinear receptivity theories for a wider range of
Mach number, we need to conduct further investigations. In our previous investigation
(Khoshsepehr & Ruban 2022) we found that the initial film thickness and surface tension
affect the behaviour of the airflow. Once a thin film over the flat plate is considered, the
initial amplitude of the instability wave is reduced. Similarly, in this paper, we found that
the initial amplitude growth drops considerably for the cases where o > 0.

In summary we have found that for both positive and negative M, the receptivity
coefficient increases as the frequency increases in the absence of a liquid film. For
non-zero surface tension, the growth of the receptivity coefficient slows down and tends
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Figure 7. Maximum modulus of the receptivity coefficient for various values of M, ¢ and Ho: (a) & = 0.01
and Hy=0.01, b)) 0o =0and Hy=1.5,(c) o =Hp=1.5,(d) 0 =0and Hy = 1.5, (¢) 0 = Hyp = 1.5 and
(fyo=0.5and Hy = 1.5.

to a certain number as the initial film thickness increases for both positive and negative M,
see figure 8. The further we increase the initial film thickness or the surface tension, the
further the maximum value of receptivity coefficient decreases which could suggest the
instability waves decay farther downstream.
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Appendix A. Transonic flow regime

We assume that the compressibility parameter 8 is small. Our task here is determining
when the flow description for the subsonic flow presented in § 2.2 becomes invalid as
the flow reaches a transonic regime. We expect this to happen in the upper tier of the
triple-deck structure that is described by the full potential equation

A\ 2 A AN\ 2 ~
[0 ’o |, [0 32D
a —\ 5= — t|a —| = YR

0% 0x2 a9y 092

term 1 term 2
3D 0P 20 _0d 3*Pd _od 3*d 3’
=2t 2= ==+ (A1)
0x 0y dxady 0x 9tox ~ dy 910y 912
———— —
term 3

where & and & represent the velocity potential and local value of the speed of sound,
respectively. The full potential equation is obtained from the Euler equations governing
the inviscid motion of unsteady compressible flow, see Ruban & Gajjar (2014) for more
details. Equation (A1) should be considered together with the Bernoulli equation which is
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ad 1| [96\ 9b\’ e %3 a?
— 4 - = - © A2
P ol ) T 3 + + (A2)

written as

<
I
—_
[}
<
I
—_

In the subsonic flow regime, terms 1 and 2 are dominant in (Al). We wish to examine
when term 3 becomes the same order quantity as terms 1 and 2 in (A1) and under which
conditions. In the case of small perturbations, term 1 can be written as

@ - v3) 82@. (A3)
0x2
Representing the derivative 32 /052 by finite differences, we can write
term 1 ~ (&° — V2,) ? (A4)
(AX)?
Similarly, term 3 may be estimated as
term 3 = ZVMﬁ ~ VooiiA. (AS5)
0tox ATAx
By comparing terms 1 and 3 we find that
@ —v) L. Voo%. (A6)
(AX)? ATAX
Taking into account that M is close to one, we can reduce (A6) to
Voo B2 ~ A):C. (A7)
At
To express (A7) in dimensionless form, we also need to consider the following variables:
AX = LAx, A= LAL (A8)
VOO

Substituting (A8) into (A7) results in
~— (A9)

In the interaction region, the scales of time ¢ and longitudinal coordinate x are defined by
triple-deck theory as

-3/8 Re~!/*
Ax = Re Axy, At= Aty. (A10)
Ou
Using (A10) in (A9) we have
AXx
2 —-1/8 *
~R . All
B e Ou At ( )

According to the affine transformations in (2.20)

Axy ~ B34 At~ B71/2, (A12)
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By combining (A11l) with (A12) we can conclude that the transonic flow regime takes
place when

B~ o,/ Re V. (A13)

Consequently, we define the free-stream Mach number as

M3, =1+Re Pa3"M;. (Al4)

Appendix B. Affine transformation
The defined transformations in (3.26) and (3.27) change the interaction problem into

U dU 0P 93U

Ua_X+VW __3_X+W, (Bla)
8_U+8_V =0, (B1b)

X dY
U=V=0 atY =0, (Blc)
U=Y atX — —o0o, (B1d)
U=Y+A,T,X) asY — oc. (Ble)

The equation for the upper tier and the corresponding boundary condition are written as

P +M—82P _82P 0 (B2a)
_ =0, a
aXoT X2 9y2
oP 92A 92H.
- _ - (B2b)

ily_y 0X2 X2’

Finally, we need to consider the film flow. It is governed by lubrication equations

U 9P B30)
aYz ~ ax’ .
ou’ av’
=——, (B3b)
0X aY
with the boundary conditions being
, ,  dYy,
Uu=0 V= rva atY =Y, (T, X), (B3c¢)
Ulxs—co =Y +--- forY e (0,H,), (B3d)
U’ U
57 — a1 atY = H (T, X) — 0, (B3e)
Y=0
., 0H, ,0H,
Vi = 3T U X atY = H. (T, X) — 0, (B3f)
, _d*H,
P=P+p e at Y = H, (T, X). (B3g)
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Appendix C. Interaction problem
C.1. Perturbed interaction problem

The governing equations in the lower tier for airflow with its corresponding boundary
conditions turn to

Y8_ﬁ+5:_§+8)2_ﬁ (Cl(l)
X dx = ay?’
%+8—5 =0, (C1b)
X 9y
i=0=0 atY=H,, (Clc)
i=A atY = oo. (Cld)

The equation for the pressure in the upper-tier flow becomes

)
iw—+M— —— =0. (C2a)

It should be solved with the boundary condition

dp d’A  &H

—=——-— atY=0. C2b
v —axz a2 (€22)
The governing equations for film flow turn to
% dp
= = C3

Y2~ dX (C3a)

ou' v’
w9 (C3b)

0X Y

and the boundary conditions are
9%
i =5, V= % aty =0, (C3c)
ou'  ou
— = at Y = Hy, (C3d)
Y Y |y_o
v’ aﬁ+yaﬁ atY = H, (C3e)
VvV —= — e = , e
oT ' X 0
I o

p =p+Q@ atY = Hj. (C31)

C.2. Fourier transform

The Fourier transform changes the governing equations for the lower tier and its conditions
to
ikYu +v = —ikp + ﬂ (Cda)
dy?’
o v 4
ikt + = =0, (C4b)
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u=v=0 atY = Hy, (C4c)

u=A atY — oo. (C4d)

Similarly, the upper-tier equation for the pressure becomes

(wk + MK*)p + & 0 (C5a)
— =0. a
@ P ay2
It should be solved with the boundary condition
dp - -
Ll = KA+ RH. (C5b)
dYly—o
The film flow equations assume the form
a2
cr =/
772 = ikp’, (C6a)
dv’ -
The film flow equations should be solved with conditions
W= —5(k), ¥ =ioy.k) ay =0, (C6e)
du’  du
== at ¥ = H, (C6d)
v =i(w+kHo)H atY = Hy, (C6e)
p=p —KoH atY = H. (C6f)

C.3. Solution to the interaction problem

We found that the general solutions to viscous sublayer equations are described by the Airy
equations (C4) consists of the sum of two linearly independent solution Ai(z) and Bi(z).
From condition (C4b) we can see that the function u should stay finite at large values of z
which implies that du/dz approaches zero as z tends to infinity. The behaviour of functions
Ai(z) and Bi(z) depends on the direction of z. To determine the z direction we choose an
analytic branch on (ik)'/? by making a branch cut along the positive imaginary semi-axis
as

()13 = [k|\/3 lR/6+9/3) (C7)

We conclude that the Airy function Ai(z) decays exponentially whereas Bi(z) grows
exponentially as z tends to infinity. Thus, the longitudinal velocity in the viscous sublayer
is found from (C4) to be

din _
d—” =34AiQ), z= (kY. (C8)
Z

By setting ¥ = 0 in (C4a) and using boundary condition (C4d) we obtain an additional
condition which is written as

p = 3(ik) 34 AT (0). (C9)
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Turning our attention to the upper tier (C5) we find that the general solution of the pressure
in the upper tier is written as

p=C.e. (C10)
The solution (C10) depends on the sign of M. Combining (C5b) and (C10) yields

ik
PZ—(A H). (C11)

Using the condition (C9) we -eliminate A from the pressure solution (C10).

Consequently, we find
- _[ a3
H=p|——F———1, Ci2
P [SAi/(O) e (¢12)
which relates the pressure with film surface function.

Now we focus on the film (C6). First, we need to simplify the shear-stress condition
(C6d) such that

(k) i,
——— Ai(0)p. (C13)
y—o A0
By solving the (C6a) subject to conditions (C6c) and (C13) we find the longitudinal
velocity solution of the film flow is written as

du/’
dy

 di
Y=Hy dY

74 f 12/3 AI(O) - =
= 2p 'y? [(1k) A (0) — 1kHop 1|Y Yy (k). (C14)

We solve the continuity (C6b) subject to the boundary condition (C6c¢); consequently we
find the transverse velocity component of film takes the form

k2 Ai(0) Y2

v = —p'Y? — | (k)" p+ K2 Hop' | — + ki (DY + i@y, (k). C15
c? [( b (0)p+ op | 7 Fikyw(R)Y +iwyw (k) (C15)
Then we substitute the kinematic condition (C6e) and pressure condition (C6f) into
the transverse velocity solution of the film which leads to an additional expression that
describes the relationship between the pressure and film surface function:

k2H3 5 H2 AI(O)
. 5 _ N — /3
i(0 + kHo) p( 7 TS

H= (C16)

K*H30

+ i(w + kHo)
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