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Spectral Problems for Non-Linear
Sturm-Liouville Equations with
Eigenparameter Dependent Boundary
Conditions
Paul A. Binding, Patrick J. Browne and Bruce A. Watson

Abstract. The nonlinear Sturm-Liouville equation

−(py ′)′ + qy = λ(1− f )ry on [0, 1]

is considered subject to the boundary conditions

(a jλ + b j )y( j) = (c jλ + d j )(py ′)( j), j = 0, 1.

Here a0 = 0 = c0 and p, r > 0 and q are functions depending on the independent variable x alone, while
f depends on x, y and y ′. Results are given on existence and location of sets of (λ, y) bifurcating from the
linearized eigenvalues, and for which y has prescribed oscillation count, and on completeness of the y in an
appropriate sense.

1 Introduction

Linear eigenvalue problems with eigenparameter-dependent boundary conditions have a
long history, and we refer to [10], [12], [18] and their reference lists for some of this activ-
ity. Typical topics studied have been existence and location of the eigenvalues, oscillation,
comparison of the eigenfunctions, their completeness (and more general spectral decom-
positions), asymptotics, and applications to physics and engineering.

Much of this work concerns problems which may be put in the form

ly = λy, on [0, 1](1.1)

where

ly =
1

r

(
−(py ′) ′ + qy

)
and r > 0, p > 0, subject to boundary conditions

y ∈ BC0 = {u ∈ C1([0, 1]; R) : u(0) cosα = (pu ′)(0) sinα},(1.2)
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and

y ∈ BCλ1 = {u ∈ C1([0, 1]; R) : (aλ + b)u(1) = (cλ + d)(pu) ′(1)},(1.3)

where δ = ad − bc > 0, α ∈ [0, π) and c �= 0. The conditions r > 0 and δ > 0 are
sometimes referred to as ‘right definiteness’. Without loss of generality we can scale (1.3)
so that δ = 1.

The methods of [12] and [18] show that the problem may then be recast in the form

AY = λY(1.4)

where A is the linear operator defined in H = L2 ⊕ C by

AY =

(
ly

by(1)− dp(1)y ′(1)

)

on

D(A) =

{(
y

−ay(1) + cp(1)y ′(1)

)
: y, py ′ ∈ AC,

∫ 1

0
r|ly|2 <∞, y ∈ BC0

}
.

Here and below we write Y =
(y
γ

)
∈ L2 ⊕ C. A turns out to be self adjoint and bounded

below with compact resolvent, if we equip H with the Hilbert space norm given by

‖Y‖2 = |γ|2 +

∫ 1

0
r|y|2.

This provides a convenient setting for several of the topics mentioned above.
Appropriate analogues of Sturm’s oscillation and comparison theory have been dis-

cussed in [2] via modified Prüfer transformation techniques. Indeed (1.3) may be rewritten
in the form

cot θ =
aλ + b

cλ + d
(1.5)

where the Prüfer angle θ obeys cot θ = py ′/y. Noting that

aλ + b

cλ + d
=

a

c
−

1

c2(λ + d
c )

(1.6)

by virtue of δ = 1, we see that (1.5) is close, for large λ, to the λ-independent condition

cot θ =
a

c
(1.7)

(recall c �= 0). The corresponding Sturm-Liouville problem (1.1), (1.2), (1.7) is called the
(right hand) asymptotic problem and indeed it is shown in [2] that the eigenvalues λk of
(1.1), (1.2), (1.5) are asymptotically very close to those of (1.1), (1.2), (1.7) as k→∞.
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Problems which are nonlinear in λ have also been discussed (cf. [9], [17]) but we are
aware of no work in this area with nonlinearities in y. For the Sturm-Liouville case (with λ-
independent boundary conditions) the subject is well studied (cf. [5], [7], etc.) but there are
some interesting differences, and the standard methods require significant modification,
when (1.3) is imposed. A major difficulty is to identify the oscillation count (which turns
out not to be constant in general) along the ‘bifurcation curves’. We have used a blend
of the techniques mentioned earlier for the linear problem with standard (topological and
C1) fixed point methods of bifurcation theory. We remark that we assume (1.2) to be λ-
independent mainly to reduce technicalities (cf. [2] and [18] for the linear case).

Our aim, then, is to discuss the problem

−(py ′) ′ + qy = λ(1− f )ry on [0, 1](1.8)

subject to (1.2) and (1.3). Here f depends on y, y ′ and the independent variable x, while
all other functions depend on x alone. Moreover f is assumed to be continuous, and zero
when y = 0, so (1.1) is the linearization of (1.8) about y = 0. Evidently (1.4) may be
replaced by an equation of the form

AY = λ
(
I − F(Y )

)
Y(1.9)

where

F(Y )(x) =

[
f
(
x, y(x), y ′(x)

)
0

0 0

]
.

It is clear that (1.9) admits the trivial solution Y = 0 for all λ. By an eigenpair of (1.9) we
mean a pair (λ,Y ) with Y �= 0.

In Section 2 we shall combine the above operator approach (using different topologies)
with a revised version of the Prüfer approach to provide a setting appropriate for subse-
quent fixed point theory. Section 3 contains the first existence result, via Schauder’s theo-
rem, for eigenpairs of given ‖Y‖ and given oscillation count for y (Corollary 3.5). This is
an analogue of the ‘horizontal’ approach in [7] where each horizontal line in the (λ, ‖Y‖)
bifurcation diagram contains at least one point on each ‘bifurcation curve’. We also bound
these ‘curves’ in vertical strips under various conditions on f . We remark that some of our
conditions on f permit (1.8) to have ‘indefinite weight’, a topic of some interest recently in
the linear case, cf. [1], [9].

In Section 4 we assume f to be C1 and we apply a standard result of [8] to give a C1

bifurcation curve through the point Pk = (λk, 0) (Theorem 4.1). This curve, which cannot
pass through any P j , j �= k, corresponds to fixed oscillation count near Pk, but that count
changes across the line λ = −d/c. We also adapt the techniques of [4] to give existence of
a Riesz basis of (normalized) eigenvectors Y (Theorem 4.4).

In the final section, we give various conditions for the bifurcation ‘curves’ (or more pre-
cisely connected sets of eigenpairs) to intersect given ‘vertical’ lines. For example, assuming
that f ∈ C1, | f (x, y, y ′)| > 1 for large |y| + |y ′| and that the asymptotic problem (see
above) is left semidefinite we show that the ‘curve’ through Pk intersects each line λ = h
for h ≥ λk, except for k = 0: the curve through P0 always lies to the left of λ = −d/c. If
the semidefiniteness condition is dropped, k = 1 can be execeptional also (Theorem 5.6).
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2 Preliminaries

We begin with smoothness conditions on the coefficients. We assume r, q ∈ C0([0, 1]; R)
and p ∈ C1([0, 1]; R). Let f ∈ C0([0, 1]× R2; R) with f (x, 0, 0) = 0 for all x ∈ [0, 1].

Define

|u|1 = max
x∈[0,1]

|u(x)| + max
x∈[0,1]

|u ′(x)|(2.1)

and
∥∥∥∥
(

u

γ

)∥∥∥∥
1

= |u|1 + |γ|(2.2)

for all u ∈ C1([0, 1]; R) and γ ∈ R. We denote by V j =
(v j

γ j

)
the eigenvector of A (1.4)

corresponding to the eigenvalue, λ j with v j(x) > 0 for small x > 0 and normalized by
‖V j‖1 = 1. All (real) eigenpairs of (1.4) are thus given by (λ j , sV j), s ∈ R \ {0}, j =
0, 1, 2, . . . .

We define D to be the Banach space

D =

{(
u

−au(1) + cp(1)u ′(1)

)
: u ∈ BC0

}

with norm given by (2.2). Let S be the subset of D given by

S =

{(
u

γ

)
∈ D : |u(x)| + |u ′(x)| > 0 ∀x ∈ [0, 1]

}
,

with metric inherited from D. The elements of S are precisely those
(u
γ

)
∈ D for which u

has only (finitely many) simple zeros in [0, 1]. Since p ∈ C1([0, 1]; R), it follows that if(u
γ

)
∈ D(A) then u ′ ∈ AC([0, 1]; R). Thus u ∈ C1([0, 1]; R) and D(A) ⊆ D.

In order to discuss our analogues of (1.5), let β be the continuous function defined by

cotβ(λ) =
aλ + b

cλ + d
, β

(
−

d

c

)
= 0.(2.3)

It follows from (1.6) that β is a strictly decreasing function on R. For each
(u
γ

)
∈ S we

define θ
((u
γ

)
, ·
)

to be the continuous function on [0, 1] satisfying

cot θ

((
u

γ

)
, x

)
=

p(x)u ′(x)

u(x)
, θ

((
u

γ

)
, 0

)
= α.(2.4)

It is apparent that θ : S × [0, 1] → R is continuous. From (2.3), (2.4) and [2] we obtain
that

θ(sV j , 1)− β(λ j) = jπ, s ∈ R \ {0}, j = 0, 1, 2, . . . .(2.5)
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Subsets of S with fixed oscillation count can now be defined by

Sσk,λ =

{(
u

γ

)
∈ S : θ

((
u

γ

)
, 1

)
− β(λ) = kπ, σu(x) > 0 for small x > 0

}
,

with Sk,λ = S+
k,λ ∪ S−k,λ, and

Eλ =

{(
u

γ

)
∈ D : u ∈ BCλ1

}
.

These subsets all inherit the topology of S, i.e., of D. We also use the notation Bρ = {U ∈
D : ‖U‖1 ≤ ρ}, Bo

ρ = {U ∈ D : ‖U‖1 < ρ}, ∂Bρ = {U ∈ D : ‖U‖1 = ρ}. Here
σ ∈ {+,−}, λ ∈ R, k = 0, 1, 2, . . . and ρ > 0.

Lemma 2.1

(a) Let U ∈ S. If θ(U , x) = nπ where n ∈ Z, then ∂θ
∂x (U , x) = 1

p(x) > 0. If θ(U , x) ≥ nπ
where n ∈ Z, then θ(U , y) > nπ for all y > x.

(b) The Sσk,λ are pairwise disjoint open subsets of Eλ.

(c) If α ∈ [0, π) and λ ≥ − d
c then Sσ0,λ is empty.

(d) Let
(u
γ

)
∈ Sσk,λ. If λ < − d

c , then u has precisely k zeros in (0, 1). If λ ≥ − d
c , then u has

precisely k− 1 zeros in (0, 1).

Proof (a) Let U ∈ S. Directly from the definition of θ we have that if θ(U , x) = nπ where
n ∈ Z, then ∂θ

∂x (U , x) = 1
p(x) > 0. The continuity of θ(U , x) with respect to x and the

assumption that p(x) > 0 yield θ(U , y) > nπ for all y > x.
(b) The sets Sσk,λ are pairwise disjoint by their definition. Let U =

(u
γ

)
∈ Sσk,λ. Then

θ(U , 1) − β(λ) = kπ, which implies that u ∈ BCλ1 . Hence Sσk,λ ⊂ Eλ. That Sσk,λ is open in
Eλ follows from

{u ∈ BC0 ∩ BCλ1 : σu(x) > 0 ∀x near 0, |u(x)| + |u ′(x)| > 0 ∀x, u has m zeros in (0, 1)}

being open in
{u ∈ BC0 ∩ BCλ1 : |u(x)| + |u ′(x)| > 0 ∀x},

which can be proved by straightforward classical analysis.
(c) Let α ∈ [0, π) and λ ≥ − d

c . Suppose that there exists U ∈ Sσ0,λ. Then, by (a),

θ(U , 1) > 0. Since β is a decreasing function and β(− d
c ) = 0, it follows that β(λ) ≤ 0.

Together with the definition of Sσ0,λ we have

0 < θ(U , 1) = β(λ) ≤ 0,

a contradiction.
(d) Let U =

(u
γ

)
∈ Sσk,λ. Then θ(U , 1) = β(λ) + kπ. For λ < − d

c we have π > β(λ) > 0
which gives

kπ < θ(U , 1) < (1 + k)π(2.6)
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and for λ ≥ − d
c we have−π < β(λ) ≤ 0 which gives

(k− 1)π < θ(U , 1) ≤ kπ.(2.7)

With the aid of part (a) of the Lemma, (2.6) and (2.7) complete the proof of (d).

In order to obtain our eigentuples, we shall need the following constructions based on
those above:

Tσk =
⋃
λ∈R

({λ} × Sσk,λ),

Tk = T+
k ∪ T−k ,

E =
⋃
λ∈R

({λ} × Eλ).

We give the above sets the metric induced by the norm

‖(λ,V )‖ = |λ| + ‖V‖1.

Lemma 2.2

(a) E is a complete metric space.
(b) The Tσk are disjoint open subsets of E.
(c) If (λ,U ) is an eigenpair of (1.9) then (λ,U ) ∈ ∪kTk.
(d) If (λ,U ) is a solution of (1.9) and (λ,U ) ∈ ∂Tk, then U = 0.
(e) For each ρ > 0, (λk, ρσVk) is the eigenpair of (1.4) from Tσk ∩ ∂Bρ.

Proof (a) That E is a complete metric space follows directly from E being a closed subset
of R ×

(
C1([0, 1])× C

)
.

(b) That the Tσk are disjoint subsets of E is obvious. To prove that Tσk is open in E, let
(λ,U ) ∈ Tσk where U =

(u
γ

)
. As σu(x) is positive for x > 0 small and as u has only simple

zeros in [0, 1], there exists ε1 > 0 such that if ‖v − u‖1 < ε1, v ∈ C1([0, 1]) ∩ BC0, then
σv(x) is positive for x > 0 small and v has only simple zeros in [0, 1]. Let ‖V −U‖1 < ε1,
V ∈ D, then θ(V, 1) exists and, by the continuity of θ, there exists ε2, ε1 > ε2 > 0, such
that if ‖V − U‖1 < ε2, V ∈ D, then |θ(V, 1) − θ(U , 1)| < π

4 . By the continuity of β,
there exists ε, ε2 > ε > 0, for which |µ − λ| < ε implies |β(µ) − β(λ)| < π

4 . Thus if
‖(µ,V )− (λ,U )‖ < ε, (µ,V ) ∈ E, then

|[θ(V, 1)− β(µ)]− [θ(U , 1)− β(λ)]| <
π

2
.(2.8)

But for ‖(µ,V )− (λ,U )‖ < ε, (µ,V ) ∈ E, we have

θ(V, 1) = β(µ) + nπ(2.9)

for some n ∈ Z (as (µ,V ) ∈ E and θ(V, 1) exists), and by definition of U

θ(U , 1) = β(λ) + kπ.(2.10)
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The combination of (2.8), (2.9) and (2.10) gives |n− k| < 1
2 . Since n and k are integers this

implies that n = k. Thus, by (2.9), (µ,V ) ∈ Tσk , and Tσk is and open set.
(c) Let (λ,U ),U =

(u
γ

)
, be an eigenpair of (1.9). Since D(A) ⊆ D we have (λ,U ) ∈ E.

To complete the proof of (c) we only need to prove that the zeros of u in [0, 1] are simple.
If u has a non-simple zero then, as u is a solution to the homogeneous linear second order
equation −(pu ′) ′ + hu = 0 where h = q − λr

(
1 − f (x, u, u ′)

)
, u is identically zero. This

contradicts (λ,U ) being an eigenpair.
(d) Let (λ,U ) ∈ ∂Tσk be a solution of (1.9). Then, by part (b), (λ,U ) /∈

⋃
k Tσk , and

hence, by (c), U = 0.
(e) That (λk, ρσVk) ∈ Tσk ∩ ∂Bρ is obvious. From [2], the definition of Tσk and the

eigenspaces of (1.4) being 1-dimensional it follows that (1.4) has precisely one eigenpair
(λ,V ) ∈ Tσk ∩ ∂Bρ.

3 Horizontal Theory

We start with the following result which bounds sets of eigentuples (λ,V ) with fixed oscil-
lation count inside certain vertical strips in the (λ, ‖V‖1) bifurcation diagram.

Theorem 3.1 Let (λ,V ) ∈ Tk be an eigenpair of (1.9) with ‖V‖1 = ρ > 0.

(a) Let
Mρ = max{1− f (x, ξ, η) : x ∈ [0, 1], |ξ| + |η| ≤ ρ}.

If λ ≥ 0 then λ ≥ λk
Mρ

, while if λ ≤ 0 then λ ≤ λk
Mρ

.

(b) Suppose that f (x, ξ, η) < 1 for all x ∈ [0, 1], |ξ| + |η| ≤ ρ and let

ερ = min{1− f (x, ξ, η) : x ∈ [0, 1], |ξ| + |η| ≤ ρ}.

If λ ≥ 0 then λ ≤ λk
ερ

, while if λ ≤ 0 then λ ≥ λk
ερ

.

Proof (a) Let λ ≥ 0 and suppose that λ < λk
Mρ

. Then

λMρ < λk.(3.1)

From the definition of Mρ and the assumption that λ ≥ 0 we obtain λ(1 − f ) < λk, from
which the Comparison Theorem, [6, Theorem 8.1.2], enables us to conclude that

θ(V, 1) ≤ θ(Vk, 1).(3.2)

From the overall assumption that f (x, 0, 0) = 0 we are ensured that Mρ ≥ 1, which com-
bined with (3.1) and the assumption that λ ≥ 0 gives λ < λk. As β(·) is a strictly decreasing
function we may thus conclude that

β(λ) > β(λk).(3.3)

Combining (3.2) and (3.3) we obtain the contradiction

kπ = θ(V, 1)− β(λ) < θ(Vk, 1)− β(λk) = kπ.
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Hence λ ≥ λk
Mρ

.

The proof for the case of λ ≤ 0 is analogous.
(b) From the overall assumption that f (x, 0, 0) = 0 and from the additional assumption

that f (x, ξ, η) < 1 for all x ∈ [0, 1], |ξ| + |η| ≤ ρ, we have that 0 < ερ ≤ 1.
Let λ ≥ 0 and suppose that

λ >
λk

ερ
.(3.4)

From the definition of ερ and the assumption that λ ≥ 0 we obtain λ(1 − f ) > λk, from
which the comparison theorem enables us to conclude that

θ(V, 1) ≥ θ(Vk, 1).(3.5)

Since ερ ≤ 1, (3.4) and the assumption that λ ≥ 0 yield λ > λk. As β is a strictly decreasing
function we may thus conclude that

β(λ) < β(λk).(3.6)

Combining (3.5) and (3.6) we obtain the contradiction

kπ = θ(V, 1)− β(λ) > θ(Vk, 1)− β(λk) = kπ.

Hence λ ≤ λk
ερ

.

The proof for the case λ ≤ 0 is analogous.
As a direct consequence of the above theorem we have

Corollary 3.2 Let (λ,V ) ∈ Tk be an eigenpair of (1.9).

(a) Suppose that there exists M such that M ≥ 1− f on [0, 1]× R2. If λ ≥ 0 then λ ≥ λk
M ,

while if λ ≤ 0 then λ ≤ λk
M .

(b) Suppose that there exists ε > 0 such that ε ≤ 1− f on [0, 1]×R2. If λ ≥ 0 then λ ≤ λk
ε

,

while if λ ≤ 0 then λ ≥ λk
ε

.

In particular, if f ≥ 0 then we can choose M = 1 and the k-th bifurcation ‘curve’ is
bounded on the left by the line λ = λk. While considering such bounds it should also be
noted that Lemma 2.1(c) shows that the 0-th bifurcation ‘curve’ lies strictly to the left of
the line λ = −d/c.

In order to apply Schauder’s theorem, we shall need certain continuity and compactness
properties, and the following is a basic ingredient.

Lemma 3.3 Let λ be in the resolvent of A. Then (A − λ)−1 : C0([0, 1]) ⊕ C → D(A) is a
continuous and compact map, where C0([0, 1])⊕ C has norm given by

∥∥∥∥
(

u

γ

)∥∥∥∥
0

= |γ| + max
x∈[0,1]

|u(x)|.(3.7)
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Proof From [3],

(A− λ)−1

(
w

γ

)
=

(
g

τ

)
,

where

g(x) = f+(x)

∫ 1

x
f−wr dy + f−(x)

∫ x

0
f+wr dy − γ f+(x),

τ = −ag(1) + cp(1)g ′(1),

in which f+, f− ∈ C2([0, 1]; R) are suitably chosen solutions of (l − λ)u = 0.
By Kantorovich’s compactness theorem, [11, Theorem 9.5.8], the following maps on

C0([0, 1]) are compact:

M0 : w→ f+(x)

∫ 1

x
f−wr dy + f−(x)

∫ x

0
f+wr dy,

M1 : w→ f ′+(x)

∫ 1

x
f−wr dy + f ′−(x)

∫ x

0
f+wr dy.

Hence the map

M :

(
w

γ

)
→

(
f+(x)

∫ 1
x f−wr dy + f−(x)

∫ x
0 f+wr dy

γ

)

from C0([0, 1]) × C to C1([0, 1]) × C is compact. Since the composition of a continuous
and a compact map is compact, the Lemma follows.

Theorem 3.4 Let ε > 0, K > 0, and f (x, ξ, η) ≤ 1− ε for all x ∈ [0, 1] and |ξ| + |η| ≤ K.
For each U ∈ (C1 ⊕ C) ∩ BK let Rk(U ) =

(
µk(U ),Uk(U )

)
denote the eigenpair of

AV = λ
(
I − F(U )

)
V, V ∈ D(A)(3.8)

from T+
k and having ‖Uk(U )‖1 = 1. Then the mappings

µk : (C1 ⊕ C) ∩ BK → R(3.9)

Uk : (C1 ⊕ C) ∩ BK → ∂B1 ∩ S+
k,λ(3.10)

Rk : (C1 ⊕ C) ∩ BK → R × ∂B1 ∩ T+
k(3.11)

are continuous and compact for each k = 0, 1, 2, . . . .

Proof By Theorem 3.1, µk(U ) ∈ [− |λk|
ε
,
|λk|
ε

] for all (C1 ⊕ C) ∩ BK . Hence the map µk(·)
is compact.

Let µ be in the resolvent of A, then

Uk(U ) = (A− µ)−1
[
µk(U )

(
I − F(U )

)
− µ
]
Uk(U ).
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The map U →
[
µk(U )

(
I − F(U )

)
− µ
]
Uk(U ) taking (C1 ⊕ C) ∩ BK → (C0 ⊕ C) is a

bounded map. By Lemma 3.3, (A−µ)−1 is a compact mapping. Thus Uk is a compact map
and consequently Rk is a compact mapping.

It remains to prove that Rk is continuous. Let W j → W in C1 ⊕ C. We show that
Rk(W j) → Rk(W ). As {W j} is convergent, it is bounded, and, by the compactness of Rk,
we may move to a subsequence of {W j} for which {Rk(W j)} is convergent, say to (µ ′,U ).
Then, by the continuity of (A− µ)−1 we have U = (A− µ)−1

[
µ ′
(
I − F(W )

)
− µ
]
U . But

‖U‖1 = 1 and, by Lemma 2.2, U ∈ T+
k . Thus (µ ′,U ) = Rk(W ). So every subsequence

of {Rk(W j)} contains a subsequence convergent to Rk(W ), and consequently {Rk(W j)}
converges to Rk(W ).

Our first existence result is a consequence of the above.

Corollary 3.5 Suppose ρ > 0 and there exists ερ > 0 such that f (x, ξ, η) ≤ 1 − ερ for
all x ∈ [0, 1] and |ξ| + |η| ≤ ρ. Then, for each k = 0, 1, 2, . . . , there exists an eigenpair
(λσk,ρ,V

σ
k,ρ) ∈ Tσk with ‖V σk,ρ‖1 = ρ.

Proof Let µk and Uk be as defined in Theorem 3.4. Let Pσk,ρ(λ,V ) =
(
µk(V ), σρUk(V )

)
.

Then, from Theorem 3.4, Pσk,ρ : R × [(C1 ⊕ C) ∩ Bρ] → (R × ∂Bρ) ∩ Tσk , is compact and
continuous. Applying Schauder’s Fixed Point Theorem to Pσk,ρ, we see that there exists a
pair (λσk,ρ,V

σ
k,ρ) ∈ (R × ∂Bρ) ∩ Tσk such that Pσk,ρ(λ

σ
k,ρ,V

σ
k,ρ) = (λσk,ρ,V

σ
k,ρ). Thus AU σk,ρ =

µσk,ρ
(
I − F(U σk,ρ)

)
U σk,ρ.

Remark In Corollary 3.5, if we assume in addition f to be C1, then, using Theorem 4.3,
for each k = 0, 1, 2, . . . , there exists a connected set of eigenpairs (λk,ρ,Vk,ρ) ∈ Tk with

‖Vk,ρ‖1 = ρ and limρ→0(λk,ρ,
Vk,ρ

ρ
) = (λk,Vk).

4 Local Theory

In this section we dispense with the bounds on f , but we shall impose the extra smoothness
condition f ∈ C1([0, 1]× R2; R). Let µ ′ be in the resolvent of A and

Φ(λ,U ) = U − (A− µ ′)−1
[
λ
(
I − F(U )

)
− µ ′
]
U ,(4.1)

for λ ∈ R and U ∈ C1 ⊕C. Then (1.9) is equivalent to Φ(λ,U ) = 0. Our second existence
theorem is for C1 local bifurcation curves.

Theorem 4.1 Let Zk denote a complement of span(Vk) in C1 ⊕ C. Then, for each k =
0, 1, 2, . . . , there exists a neighbourhoodΩk = (λk−δ, λk +δ)×Wk of (λk, 0) in R×(C1⊕C),
an interval (−δk, δk), δk > 0, and functions Uk ∈ C

(
(−δk, δk); Zk

)
andµk ∈ C

(
(−δk, δk); R

)
such that:

(a)
(
µk(t), t

(
Vk + Uk(t)

))
is an eigenpair of (1.9) from Tsgn(t)

k for all t ∈ (−δk, δk) \ {0};

(b) µk(0) = λk and Uk(0) = 0;
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(c) If (µ,U ) ∈ Ω \ (R × {0}) is an eigenpair of (1.9), then

(µ,U ) =
(
µk(t), t[Vk + Uk(t)]

)
,(4.2)

for some unique t ∈ (−δk, δk).

Proof The theorem is a direct consequence of [8] applied to Φ, with the exception of the

statement that
(
µk(t), t

(
Vk + Uk(t)

))
∈ Tsgn(t)

k for all t ∈ (−δk, δk) \ {0} in part (a). As

(λk,Vk) ∈ T+
k , Uk(0) = 0, λk = µk(0) and since Uk and µk are continuous it follows from

T+
k being an open set that for |t| small

(
λk,Vk + Uk(t)

)
∈ T+

k . Thus by the connectedness
and openness of T+

k along with the fact that t
(
Vk + Uk(t)

)
�= 0 if t �= 0, Lemma 2.2 enables

us to conclude that
(
µk(t), t

(
Vk + Uk(t)

))
∈ Tsgn(t)

k for all t ∈ (−δk, δk) \ {0}.

Extension of the above curves may be carried out subject to certain conditions at sec-
ondary bifurcation points. We omit details, but we shall give a nonexistence result, to the
effect that no extended curve can join two distinct points of the form (λ j , 0).

Theorem 4.2 Under the hypotheses of Theorem 4.1, let K denote the closure in R× (C1⊕C)
of {(λ,V ) ∈ E : Φ(λ,V ) = 0,V �= 0} and Kk denote the connected component of K
containing (λk, 0). Then every element of Kk is a solution of (1.9), (µ, 0) /∈ Kk for all µ �= λk

and Kk ⊆ Tk ∪ {(λk, 0)}.

Proof Suppose that there exists µ �= λk such that (µ, 0) ∈ Kk. Then there is some com-
ponent J of Kk \ (R × {0}) having limit points (λk, 0) and (µ, 0). We also note that, as
Φ is continuous, {(λ,V ) ∈ E : Φ(λ,V ) = 0} is a closed set and so if (λ,V ) ∈ Kk then
Φ(λ,U ) = 0. Thus all (λ,V ) ∈ J are eigenpairs of (1.9). By the connectedness of J,
Lemma 2.2 and Theorem 4.1 it follows that J ⊂ Tσk for either σ = + or σ = −. Since
(µ, 0) ∈ J̄, there exists a sequence {(µ j ,U j)} j ⊂ J such that (µ j ,U j) → (µ, 0). From
Φ(µ j ,U j) = 0 it follows that

0 =
U j

‖U j‖1
− µ jA

−1[I − F(U j)]
U j

‖U j‖1
.(4.3)

But the sequence

[I − F(U j)]
U j

‖U j‖1
(4.4)

is bounded and A−1 is a compact operator and so (4.4) has a convergent subsequence.
Passing to this subsequence we have

A−1[I − F(U j)]
U j

‖U j‖1
→ U

for some U . Thus U j

‖U j‖1
→ µU and ‖µU‖1 = 1. From this, along with (4.3), we may

conclude that µ �= 0, U ∈ D(A), U �= 0 and 0 = U − µA−1U . Thus µ = λn for some
n �= k and by Theorem 4.1 and openness of Tn, (µ j ,U j) ∈ Tn ∩ Tk = φ for large j.
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Corollary 4.3 Under the hypotheses of Theorem 4.1, let Kk denote the connected set of eigen-
pairs of (1.9) containing (λk, 0) as a limit point. Then Kk is an unbounded subset of E,
Kk ⊆ Tk ∪ {(λk, 0)} and the only limit point of Kk not in Kk is the point (λk, 0).

Proof From [5] we see that Kk is either unbounded or (µ, 0) ∈ Kk for some µ �= λk.
Theorem 4.1 and Lemma 2.2 show that if (µ, 0) /∈ Kk for all µ �= λk, then Kk ⊂ Tk ∪
{(λk, 0)}. But Theorem 4.2 allows us to conclude (µ, 0) /∈ Kk for all µ �= λk. The remaining
contentions come directly from Theorem 4.2.

We conclude this section with a completeness result of a similar nature to [4].

Theorem 4.4 For σ = +,−, there is a sequence of eigenpairs of (1.9), (lσj ,U
σ
j ) ∈ Tσj , j =

0, 1, 2, . . . , such that the normalized eigenvectors {
U σj
‖U σj ‖
} j=0,1,2,... form a Riesz basis for L2⊕C.

Proof We prove the result for σ = +. The proof for σ = − is similar, differing only in the
detail that one chooses tk ∈ (−δk, 0).

Let Σ(t, k) =
(
µk(t), t[Vk + Uk(t)]

)
, t ∈ (−δk, δk), where µk(t), Uk(t) and δk are as in

Theorem 4.1. Then, for each k = 0, 1, 2, . . . , Σ(t, k) ∈ Tsgnt
k ∪ {(λk, 0)}, for t ∈ (−δk, δk),

is a continuous curve of solutions to (1.9) and Σ(t, k) = (λk, 0) if and only if t = 0.
Let ak = ‖Vk‖, then, by [14], {Vk

ak
}k=0,1,2,... is an orthonormal basis for L2 ⊕ C. Let

tk ∈ (0, δk) be such that ‖Uk(tk)‖1

ak
≤ 2−k−2. Let l+

j = µ(tk) and

U +
k = tk[Uk(tk) + Vk].

Then ∥∥∥∥U +
k

aktk
−

Vk

ak

∥∥∥∥ = ‖Uk(tk)‖

ak
≤
‖Uk(tk)‖1

ak
≤ 2−k−2,

and
|‖U +

k ‖ − tkak| ≤ tkak2−k−2,

giving ∑∥∥∥∥ U +
k

‖U +
k ‖
−

Vk

ak

∥∥∥∥ < 1.

Hence, by [14, Theorem 2.20 and Corollary 2.22], { U +
k

‖U +
k ‖
} is a Riesz basis of L2 ⊕ C under

the norm ‖ · ‖.

5 Vertical Theory

In place of the vertical strips used in Section 3, we aim in this section to bound the bifurca-
tion curves between the λ axis and the graph of a function m which we construct next.

Theorem 5.1 Suppose q ≥ 0 on [0, 1], α ∈ [0, π2 ], f is bounded on [0, 1] × R2 and that
there exists K > 0 such that if |ξ|+ |η| ≥ K then f (x, ξ, η) > 1 for all x ∈ [0, 1]. There exists
a continuous, positive increasing function, m(λ), λ ≥ 0, such that if (λ,V ) ∈ Tk, λ ≥ 0, is an
eigenpair of (1.9) and ‖V‖1 ≥ m(λ) then k = 0 if λ < − d

c and k = 1 if λ > − d
c . If λ = − d

c

or a
c ≤ 0 and λ > − d

c there are no eigenpairs (λ,V ) of (1.9) with ‖V‖1 ≥ m(λ).
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Proof Let k1 ≥ |r(x)(1− f )(x, ξ, η)| for all (x, ξ, η) ∈ [0, 1]× R2. Let V =
(v
γ

)
and

k(v) = min
x∈[0,1]

[|v(x)| + |v ′(x)|].

As (λ,V ) is an eigenpair, k(v) �= 0. Let x0 ∈ [0, 1] be such that k(v) = |v(x0)| + |v ′(x0)|.
Finally, let Q = maxx∈[0,1] q(x), P1 = maxx∈[0,1] p(x) and P2 = maxx∈[0,1]

1
p(x) .

Since (λ,V ) is an eigenpair of (1.9), we have

−(pv ′) ′ = [rλ(1− f )− q]v.

Integrating the above we obtain

v ′(x)−
p(x0)v ′(x0)

p(x)
= −

1

p(x)

∫ x

x0

[rλ(1− f )− q]v dτ ,(5.1)

and thus

|v ′(x)| ≤ P1P2|v
′(x0)| + P2[λk1 + Q] sgn(x − x0)

∫ x

x0

|v| dτ .(5.2)

Integration again from x0 to x gives

|v(x)| ≤ |v(x0)| + |x − x0|P1P2|v
′(x0)| + P2[λk1 + Q]

∫ x

x0

(x − τ )|v| dτ .(5.3)

Considering separately the two cases of x ≥ x0 and x ≤ x0, we apply Gronwall’s Lemma,
[13], to (5.3) to give

|v(x)| ≤ [|v(x0)| + P1P2|v
′(x0)|]eP2[λk1+Q],

and thus

|v(x)| ≤ k(v)[1 + P1P2]eP2[λk1+Q].(5.4)

Using (5.4) in conjunction with (5.2) we obtain

|v ′(x)| ≤ k(v)
[
P1P2 + P2[λk1 + Q][1 + P1P2]eP2[λk1+Q]

]
.(5.5)

The definition of the domain of A together with (5.4) and (5.5) allows us to conclude that

‖V‖1 ≤ 2k(v)(1 + |b| + |d|)
[
P1P2 + P2[λk1 + Q][1 + P1P2]eP2[λk1+Q]

]
.(5.6)

Let
m(λ) = 2K(1 + |b| + |d|)

[
P1P2 + P2[λk1 + Q][1 + P1P2]eP2[λk1+Q]

]
.

Suppose that ‖V‖1 ≥ m(λ). Then from (5.6)

K ≤ k(v) = min
x∈[0,1]

[|v(x)| + |v ′(x)|],
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and consequently

f
(
x, v(x), v ′(x)

)
> 1 ∀x ∈ [0, 1].

Let

s(x) = r(x)
[
1− f

(
x, v(x), v ′(x)

)]
.

Then s(x) < 0 for all x ∈ [0, 1], and u is a solution of the linear boundary value problem

−(pv ′) ′ = [λs(x)− q(x)]v, v ∈ BC0 ∩ BCλ1 ,

where λs(x)− q(x) ≤ 0. But θ(V, x) obeys the differential equation

dθ(V, x)

dx
=

1

p(x)
cos2 θ(V, x) + [λs(x)− q(x)] sin2 θ(V, x),

where θ(V, 0) = α ∈ [0, π2 ]. Thus θ(V, 1) ∈ (0, π2 ]. For λ ≤ − d
c this implies θ(V, 1) −

β(λ) = 0 and (λ,V ) ∈ T0. But Lemma 2.1 shows that Sσλ is empty for all λ ≥ − d
c . If

λ > − d
c this implies θ(V, 1)− β(λ) = π, which is possible only if cot−1 a

c − π < −π/2. In
the case cot−1 a

c ≥ π/2 no such eigenpair is possible.

The following gives some variants of the above theorem proved using similar techniques.

Proposition 5.2 Suppose q ≥ 0 on [0, 1], α ∈ [0, π), f is bounded on [0, 1]× R2 and that
there exists K > 0 such that if |ξ| + |η| ≥ K then f (x, ξ, η) > 1 for all x ∈ [0, 1]. Then
there exists a continuous, positive increasing function, m(λ), λ > 0, such that if (λ,V ) ∈ Tk

is an eigenpair of (1.9) and ‖V‖1 ≥ m(λ) then k ∈ {0, 1} if 0 < λ < − d
c and k ∈ {1, 2} if

λ ≥ − d
c . If in addition we assume that a

c ≤ 0 then for λ ≥ − d
c we have k = 1.

Lemma 5.3 Suppose q ≥ 0 on [0, 1], α ∈ [0, π2 ] and λk < 0. Then k = 0 if λk < −
d
c while

k = 1 if λk > −
d
c . If λ < 0 and λ = − d

c then λ is not an eigenvalue of (1.4). If in addition

we assume that a
c ≤ 0 then there is no eigenvalue, 0 > λ > − d

c , of (1.4).

Proof Suppose λk < 0, then

−(pv ′k) ′ = [rλk − q]vk.

But θ(Vk, x) obeys the differential equation

dθ(Vk, x)

dx
=

1

p(x)
cos2 θ(Vk, x) + [λkr(x)− q(x)] sin2 θ(Vk, x),(5.7)

where θ(Vk, 0) = α ∈ [0, π2 ]. From (5.7) and the assumption that λk < 0 we have
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θ(Vk, 1) ∈
(

0,
π

2

)
.(5.8)

For λk ≤ −
d
c (5.8) implies θ(Vk, 1)− β(λk) = 0 and hence that k = 0, but by Lemma 2.1

λ0 �= −
d
c . For λk > −

d
c (5.8) implies that

θ(Vk, 1)− β(λk) = π,(5.9)

and consequently k = 1. But (5.9) is only possible if cot−1 a
c − π < −π/2. In the case of

cot−1 a
c ≥ π/2 (5.9) is not possible.

We are now in a position to prove the following structure theorem for the bifurcation
curve though (λk, 0).

Theorem 5.4 Let f ∈ C1([0, 1] × R2; R) be bounded, M = sup{1 − f (x, ξ, η) : x ∈
[0, 1], ξ, η ∈ R}, and assume that there exists K > 0 such that if |ξ| + |η| ≥ K then
f (x, ξ, η) > 1 for all x ∈ [0, 1]. Suppose q ≥ 0 on [0, 1], a

c ≤ 0 and α ∈ [0, π2 ]. Then:

(a) for each k = 0, 1, 2, . . . there is an unbounded connected set of eigenpairs of (1.9) from
Tk having (λk, 0) in its closure, denoted by say Kk;

(b) λk ≥ 0 for all k ≥ 1;
(c) there exists a positive, increasing function m(λ) such that if (λ,V ) ∈ Kk, k ≥ 1, then
‖V‖1 < m(λ) and λ ≥ λk

M ;
(d) for each k ≥ 1 and λ > λk there exists V such that (λ,V ) ∈ Kk;
(e) λ0 < −

d
c ;

(f) if λ0 ≥ 0 then for each ρ > 0 there exist λ and V such that (λ,V ) ∈ K0 and ‖V‖1 = ρ.

Proof (a) and (b) follow from Corollary 4.3 and Lemma 5.3 respectively.

(c) From Theorem 3.1 (a), we observe that if λk ≥ 0 then λ ≥ 0 for all (λ,V ) ∈ Kk.
Thus, by (b), if (λ,V ) ∈ Kk, k ≥ 1, then λ ≥ 0. By Theorem 5.1 we can then assert
the existence of the function m such that if (λ,V ) ∈ Kk, k ≥ 1, then ‖V‖1 < m(λ).
Corollary 3.2 gives that λ ≥ λk/M.

(d) From Corollary 4.3 Kk, k ≥ 1, is an unbounded connected set. By part (c) Kk is
bounded above by the continuous function m(λ) and to the left by the line λ = λk/M.
Hence the result follows.

(e) This follows from Lemma 2.1 (c) and the existence of λ0.

(f) If λ0 ≥ 0 and (λ,V ) ∈ K0 then by (e) and Corollary 4.3, K0 is an unbounded
connected set bounded on the left by λ = 0 and on the right by λ = −d/c.

An analogous but somewhat weaker result can be formulated for a
c > 0.
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Theorem 5.5 Let f , M and K be as in Theorem 5.4. Suppose q ≥ 0 on [0, 1], a
c > 0 and

α ∈ [0, π2 ]. Then

(i) (a) and (e) of Theorem 5.4 hold.
(ii) (b), (c) and (d) of Theorem 5.4 are true for k ≥ 2.
(iii) if − d

c ≥ 0 then λ0 is the only possibly negative eigenvalue and K1 is an unbounded set
lying in the λ ≥ 0 half of the bifurcation plane. If λ0 < 0 then K0 is unbounded and is
in the λ < 0 half of the bifurcation plane. If λ0 ≥ 0 then K0 lies between the lines λ = 0
and λ = − d

c , and for each ρ > 0 there exists (λ,V ) ∈ K0 having ‖V‖1 = ρ.

(iv) if − d
c < 0 then λ0 < 0 and λ1 is the only other possibly negative eigenvalue. K0 is an

unbounded set lying in the λ < 0 half of the bifurcation plane. If 0 > λ1 then λ1 > −
d
c

and K1 is an unbounded set lying in the λ < 0 half of the bifurcation plane. If 0 ≥ λ1

then K1 is an unbounded set lying in the λ ≥ 0 half of the bifurcation plane.

Proof The proof of (i) is as in Theorem 5.4 while the proof of (ii) follows the same rea-
soning as presented in the proof of Theorem 5.4(b), (c) and (d) but with k ≥ 1 replaced
by k ≥ 2. Finally, (iii) and (iv) are a consequence of Corollary 3.2, Corollary 4.3 and
Lemma 5.3.

Results can be obtained for the cases of α ∈ (π2 , π) and q taking on negative values, but
these results are weaker than those obtained in Theorems 5.4 and 5.5 and require substan-
tial reworking of the Lemmas and Theorems on which Theorems 5.4 and 5.5 are based.
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