
Three-dimensional theorems for schools

Introduction
Geometry is gradually coming back into the school syllabus [17], but so

far only 2-dimensional geometry.  I would like to make a case for including
some 3-dimensional geometry as well, because the latter is vital for
describing the world throughout science, engineering and architecture.
Higher-dimensional geometry also comprises a major part of modern
research within mathematics itself.  Also 3-dimensional geometry fosters
both our intuitive understanding and our geometric imagination. It teaches
us to see things in the round.  It also trains us to see all sides of an argument
simultaneously, as opposed to algebra and computing which emphasise
thinking sequentially.

I give here some examples of 3-dimensional theorems that are suitable
for teaching in schools. The statements of all the theorems are geometrical,
but the proofs are drawn from a variety of branches of mathematics. In
choosing the theorems I have used the following criteria:

• surprising (at first sight)
• intriguing (at second sight)
• essentially 3-dimensional
• noble (capturing the quintessence of some branch of geometry)
• admitting of an elegant short rigorous proof.

The theorems will be grouped under the following topics:

1. Spherical triangles
2. Angles in a tetrahedron
3. Concurrencies in a tetrahedron
4. Perspective
5. Desargues' theorem
6. Regular polyhedra
7. Rotation groups
8. Tessellations and sphere-

packings

9. Conics
10. Inversion
11. Cross-ratios
12. Rings of spheres
13. Areas of spheres and volumes

of balls
14. Map projections
15. Knotting
16. Linking.

Most of the topics are independent of one another, and can be read
separately.

In my Presidential Address I only had time to give theorems from
sections 1, 3 and 15, but in this paper I have taken the liberty of including
several more topics and theorems in order to illustrate how rich a subject 3-
dimensional geometry is, and how accessible it is to young persons at
school.  To help the reader, and in the spirit of the Association for the
Improvement of Geometrical Teaching (the original name of our own
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Mathematical Association), I have also included several exercises in
Appendix 1, together with their solutions in Appendix 2. At the end of each
proof I use the symbol � to indicate that the proof is complete.
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Notation
Let  and  denote the plane and 3-dimensional space.�2 �3

Assumptions (stated without proof):
Intersections in �3

(i) Two planes meet in a line (unless they are parallel).
(ii) A line meets a plane in a point (unless it is parallel to, or contained

in, the plane).
(iii) Three planes meet in a point (unless two are parallel, or the line of

intersection of two is parallel to, or contained in, the third).

Two lines in �3

(i) Two lines are contained in a plane if and only if they meet or are
parallel.

(ii) If two lines are not contained in a plane they are called skew, in
which case they neither meet nor are parallel.

Definitions of perpendicular (written ⊥) in �3

(i) Two lines which intersect are ⊥ if they are at right angles.
(ii) Two skew lines are ⊥ if a line parallel to one and meeting the other

is ⊥ to it.
(iii) A line is ⊥ to a plane if it is ⊥ to two non-parallel lines in the

plane, and consequently to every line in the plane.
(iv) Two planes are ⊥ if there is a line in one ⊥ to the other.
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THREE-DIMENSIONAL THEOREMS FOR SCHOOLS 3

1. Spherical Triangles

The theorem about the sum of the 3 angles of a triangle being equal to
 can be generalised to spherical triangles, and then used to give the sum

of the 4 solid angles of a tetrahedron.
180°

Definitions:  A great circle on a sphere is the intersection
of the sphere with a plane through its centre.
A spherical triangle consists of 3 arcs of 3 great circles.
Let  be the angles at the vertices (or more
precisely between the tangents to the arcs at each vertex).
Let  be the surface area of the sphere and  the area of
the triangle.

A°, B°, C°

S T

A

B

C

T

S

Theorem 1: (A. Girard, 1629)  .A + B + C = 180 (1 + 4 
T
S )

Example 1:  The triangle shown has 3 right-angles.
Meanwhile  occupies a quarter of the northern
hemisphere and so  . Therefore

T
T / S = 1 / 8

180 (1 + 4 
T
S ) = 180 ×

3
2

= 270 = A + B + C.

A

B
C

Example 2:  If  gets smaller and smaller compared with  (like a small
triangle on the surface of the Earth) then the sum of the angles tends to .

T S
180°

To prove the theorem we need the following lemma.
Definition:  Define the -lune to be the region between the 2 great circles
through , and let  denote its area.  Similarly let  denote the areas of
the -lune, -lune.

A
A α β, γ

B C

Lemma:  .α / S = A / 180
Proof:  Looking down on  from above S A

α
S

=
2A
360

=
A

180
. �

A A
A

Proof of Theorem 1:  The 3 lunes cover the whole sphere, but cover the
triangle 3 times, which is 2 times too many, and the same with the antipodal
triangle. Therefore

α + β + γ = S + 4T .
Therefore by the lemma

A + B + C
180

=
α + β + γ

S
= 1 + 4 

T
S

.

Multiplying by 180 gives the theorem. �

https://doi.org/10.1017/S0025557200590421 Published online by Cambridge University Press

https://doi.org/10.1017/S0025557200590421
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2. Angles of a tetrahedron

Definition:  Let  be a
tetrahedron.

� = ABCD

Define the solid angle at  to be the ratio
, where  is the area of a small

sphere, centre , and  is the area of the
spherical triangle cut off by .

A
T / S S

A T
�

Definition: Given an edge  define the
edge angle to be the ratio , where  is
the circumference of a small circle
centred on  in a  plane , and  is
the length of the arc cut off by . The
edge angle measures the angle between

AB
a / c c

AB ⊥ AB a
�

A

B

C

D

T

S

a

c

the faces  and  in units such that 1 edge angle unit .ABC ABD = 360°

Theorem 2:  In a tetrahedron
= − 1.(sum of the 4 solid angles) (sum of the 6 edge angles)

Proof:  Let  be the area of a small sphere centre , and let  be the area of
the triangle cut off by .  Let .  By Theorem 1

S A T
� k = T / S

 AB, AC, AD) = 1
2 (1 + 4k) .(sum of the 3 edge angles of

Summing over the 4 vertices counts each edge twice and so

= 1
2 (4 + 4 ( )) .2(sum of the 6 edge angles) sum of the 4 solid angles

Therefore

= 1 + . �(sum of the 6 edge angles) (sum of the 4 solid angles)

3. Concurrencies in a tetrahedron

We shall generalise to 3 dimensions the following familiar 2-
dimensional results about concurrencies in a triangle.

 (i) 3 medians meet at the centroid.

 (ii) 3 side bisectors meet at the circumcentre.
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(iii) 3 angle bisectors meet at the incentre.

(iv) 3 altitudes meet at the orthocentre.

Let  be a tetrahedron.� = ABCD
Definition:  A median of  is the join of a vertex to the centroid of the
opposite face.

�

Theorem 3.1:  The 4 medians meet at the centre of mass .G

Proof:  Let  be coordinate vectors of
. Then  is the centroid  of

.  Let  be the point .  Then
 lies on the median  because .

Similarly  lies on all 4 medians.

a, b, c, d

A, B, C, D e = 1
3 (b + c + d) E

BCD G g = 1
4 (a + b + c + d)

G AE g = 1
4a + 3

4e

G
To verify that  is the centre of mass of , note

that the line containing  divides triangle   into
two subtriangles of equal area.  Therefore the plane

G �
BE BCD

E
G

A

B

C

D

containing  divides  into two subtetrahedra of equal volume. Therefore
the centre of mass lies in this plane, and similarly in the plane containing

, and hence on . Similarly the centre of mass lies on all the medians,
and hence is .  �

ABE �

ACE AE
G

Definition:  The edge bisector of  is the plane
through the midpoint of, and  to, .  It is the
set of points equidistant from  and .

AB
⊥ AB
A B

A

B

Theorem 3.2:  The 6 edge bisectors all meet at
the circumcentre.
Proof:  Let  be the intersections of the edge
bisectors of .  Therefore

.  Therefore  lies on all 6 edge
bisectors, and the sphere, centre  and radius ,
goes through all the vertices.  �

S
AB, BC, CD SA = SB

= SC = SD S
S SA

A

B

C

DS
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6 THE MATHEMATICAL ASSOCIATION

Let  denote the 4 faces of .a, b, c, d � = ABCD
Definition:  The edge angle bisector of  is the
plane through  bisecting the angle between the
faces .  It is the set of points equidistant from
and .

ab
CD

a, b a
b

A

B

C

D
a

b

Theorem 3.3:  The 6 edge angle bisectors all meet at
the incentre.
Proof:  Let  be the intersection of the edge angle
bisectors .  Then  is equidistant from all 4
faces, and is the centre of the insphere touching all 4
faces.   �

I
ab, bc, cd I

Definition:  The altitude of  through  is the line
.

� A
⊥ BCD

A

B

C

D

Theorem 3.4:  In general the 4 altitudes do not meet.
Proof:  It suffices to give a counterexample.
Consider Dehn's tetrahedron  inscribed in a
cube as shown (Max Dehn, 1900).  See Question
2.3. The altitudes through  are ,  which do
not meet.

ABCD

A, D AB CD

A B

C

D

   
Theorem 3.5:  The altitudes of  meet  the opposite edges of  are .� ⇔ � ⊥
Proof:

Suppose the 4 altitudes of  meet at .⇒ � H
Then .AH ⊥ BCD

.∴ AH ⊥ CD
Also .BH ⊥ ACD

.∴ BH ⊥ CD

.∴ ABH ⊥ CD

.∴ AB ⊥ CD

A

B

C

DH

Similarly all pairs of opposite edges of  are .� ⊥
Conversely suppose the opposite edges of

 are .
⇐

� ⊥
Let  be the altitude of  through .AE � A
Let  meet  in .BE CD X
Let  be the altitude through  of the
triangle .

BF B
ABX

Now , since it is an altitude of .AE ⊥ BCD �
.∴ AE ⊥ CD

A

B

C

D

E

F

X
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But , given.AB ⊥ CD
.∴ ABE ⊥ CD
.∴ BF ⊥ CD

But , since it is an altitude of .BF ⊥ AX ABX
.∴ BF ⊥ ACD

 is the altitude of  through .∴ BF � B
 The 2 altitudes,  and  of  meet.∴ AE BF �
 All 4 altitudes of  meet pairwise.  But no 3 are coplanar.∴ �
 All 4 are concurrent.  �∴

   
4. Perspective

The rules of perspective  show how to paint a 2-dimensional picture of
3-dimensional space.  The underlying theorems explain why those rules
work.  The rules were evidently known in classical times [7], and then
forgotten.  They were rediscovered in about 1420 during the Renaissance by
the architect and artist Filippo Brunelleschi (1377-1446), and were
published [1] in 1435 by his friend and fellow architect Leon Battista
Alberti (1404-1472).  The first rule is that parallel lines in space should be
drawn as lines in the picture that converge towards a vanishing point.  The
rule is illustrated in the following sketch by Jean-Pierre Sharp of the
painting of the Annunciation by Domenico Veneziano in 1446, and now in
the Fitzwilliam Museum in Cambridge.

Brunelleschi did not know how to prove this rule mathematically, as in
Theorem 4.1 below, because the relevant mathematics was not discovered
until some 200 years later, so he proved it scientifically by a cunning
experiment, showing that it worked visually.  (See [19].)
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Definition:  Let  denote the picture, which it
is useful to think of as a pane of glass.  Let
be the eye, and  a point in space.  Define the
image  of  to be the point where the ray

 pierces .  If  is the image of  define
 to be the image of .

P
E

A
A′ A

EA P B′ B
A′B′ AB

E
A′

P

B′

A
B

Definition:  Given a set  of parallel lines in space, define the vanishing
point of  to be the point  where the ray through  parallel to  pierces .

S
S V E S P

The term ‘vanishing point’ was
introduced by Brook Taylor (1685-1731),
whereas Brunelleschi himself merely called it
the ‘centre point’. Taylor introduced the term
because, if the lines of  are extended toS

E
S

P
V

infinity, then  is where one would paint the point at infinity. The notion of
‘points at infinity’ was invented by Johann Kepler (1571-1630) and Girard
Desargues (1591-1661). However, I myself prefer the above definition of
vanishing point that does not involve infinity.

V

Theorem 4.1:  All the images of , when extended, go
through .

S
V

P

V

Proof:  It suffices to prove that one image goes through , for then, by the
same proof, they all do.

V

Let  be one of the lines of .  The vanishing
point  is where the parallel line through
pierces .  The two parallel lines
determine a sloping plane .  The two planes

 intersect in a line .  Now  lies in both
and  and hence on .

AB S
V E

P AB, EV
Q

P, Q L V P
Q L

Also  lies in both, and hence on , andA′ L

E

A′

Q

V
P

B′

A B

L

the same is true of .  Therefore  and so, when extended, goes
through .  �

B′ A′B′ ⊆ L
V

Drawing a cube:  A cube has 3 sets of 4 parallel edges.  Therefore the
drawing of a cube will have 3 vanishing points .X, Y , Z

X Y

Z

If  is the eye then, by the definition of vanishing point, the lines ,
,  are parallel to the edges of the cube, and hence  to each other.

E EX
EY EZ ⊥
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Definition:  Define a point  to be an observation point if  are
to each other.  For instance  is an observation point.

F FX, FY , FZ ⊥
E

Theorem 4.2:  There is exactly one observation point.
Proof:  Let  be the eye, and  another observation point.  We shall prove
that .  But first we need a lemma.

E F
F = E

Lemma:  If  then  lies on the circle with
diameter .

FX ⊥ FY F
XY

Proof:  Complete the rectangle. By symmetry the
diagonals bisect each other at .  The circle with
centre  and radius  is the required circle.  �

O
O OX

Corollary:   lies on the sphere with diameter .F XY
Proof:  Spin the circle about the diameter .  �XY

X YO

F

Proof of the Theorem:  By the Corollary,  lies on the 3
spheres diameters .  Meanwhile  also lies on
all the spheres, which guarantees that they meet. The first 2

F
XY , YZ, ZX E

spheres meet in a circle. This circle meets the third sphere in 2 points. By
symmetry (of reflection in the plane of the picture) one of these points lies
in front of the picture, and the other is its mirror image behind the picture.
But to see the picture one needs to be in front of it. Therefore there is only
one observation point and so .  �F = E

Ambiguous pictures
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 The above diagram has 4 different geometrical meanings.
(i) It is a tessellation of the plane by rhombi. (A rhombus is a

parallelogram with equal sides.)
(ii) It is the view of the top of a layer of the barrow boy's tessellation of

(see Theorem 8.3 below).
�3

(iii) It is a perspective drawing of a pile of cubes piled up to the right.
(iv) It is a perspective drawing of a pile of cubes piled up to the left.

We draw attention to the last two. The eye tends to get subconsciously
locked on one of these two perceptions, which then blocks the other. The
question arises how to overcome this block and switch to the other. The
solution lies in manipulating the focus of attention, as follows. Focus
attention locally on the neighbourhood of the dot in the middle, and blank
out everything else to the periphery. For the pile to the left, the dot looks
like the corner of a room, whereas for the pile to the right it looks like the
corner of a cube. Choose the local interpretation of the dot relevant to the
desired perception and then relax. Lo and behold, the chosen global
perception will flood into the mind. Focus attention on the other local
interpretation and then the other global perception will flood into the mind.
The same technique can be used for any ambiguous picture: focus attention
upon any detail that is important for the desired interpretation, relax, and the
global perception will flood into the mind. (See [20].)

  This dialogue between focus of attention and global perception is a
visual skill that evolved in animals quite early on, because it gave an
evolutionary advantage for the catching of prey and the avoidance of
predators. The human species inherited this facility, and we now exploit it
for thinking and conversation.  If we want to think about some topic we
focus attention upon some relevant detail, confident that the whole topic will
then flood into the mind. In conversation we draw the listener's attention to
some detail with the confident expectation that the whole topic will then
flood into his or her mind.

5. Desargues' Theorem

Girard Desargues was one of the founders of projective geometry,
which was originally inspired by the perspective of the renaissance painters
(see the last section).

Definition:  Two triangles are in point perspective if the joins of
corresponding vertices are concurrent.  Two triangles are in line perspective
if the intersections of corresponding edges are collinear.

Theorem 5:  Two triangles are in point perspective if and only if they are in
line perspective.
Remark:  Surprisingly it is easier to prove this theorem in three dimensions
than in two dimensions. Therefore we shall give the 3-dimensional proof
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here, and assign the 2-dimensional proof as exercises in Questions 5.1 and
5.2.
Proof:  Suppose the triangles  and  are in point
perspective from , and do not lie in a plane. Let  be the line of
intersection of the planes of .  Let  denote the planes ,

, , and let  denote their intersections with .

T = XYZ T′ = X′Y ′Z′
V L

T, T′ a, b, c VYY ′ZZ′
VZZ′XX′ VXX′YY ′ A, B, C L

 

X

L

V

Y
Z

A

B

CY ′
X ′

Z ′

Now  lie in  and so they meet. AlsoYZ, Y ′Z′ a

YZ ∩ Y ′Z′ ⊂ XYZ ∩ X′Y ′Z′ = L.
Therefore they meet in .  Similarly the other pairs of
corresponding sides meet in . Since  are collinear the triangles

 are in line perspective.

a ∩ L = A
B, C A, B, C

T, T′
Conversely suppose that  are in line perspective. Then  lie

in the plane , and so they meet. Similarly the 3 lines
meet pairwise, and are not coplanar, and hence are concurrent. Therefore

 are in point perspective.  �

T, T′ YY ′, ZZ′
AYZY ′Z′ XX′, YY ′, ZZ′

T, T′

6. Regular polyhedra

 Plato (427-347 BC) founded his Academy in Athens in about 387 BC,
and the platonic solids, or regular polyhedra, were one of the discoveries
made at the Academy. The proof that there were only 5 was probably due to
Theaetetus (c415-c369 BC). They are described by Euclid [8, Books XI-
XIII].
Definition:  A regular polyhedron is a convex polyhedron that has all its
faces congruent to the same regular polygon and has the same number of
faces at each vertex.
Theorem 6.1:  There are exactly 5 regular polyhedra: the tetrahedron, cube,
octahedron, icosahedron and dodecahedron.
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Proof:  Given a regular polyhedron, the pattern of faces around each vertex
contains at least 3 faces; if that pattern is cut open along an edge and
flattened out then, by convexity, it will occupy strictly less than .  If the
faces are equilateral triangles the vertex pattern can contain only 3, 4 or 5
triangles because 6 would occupy the full . Therefore there are 3 cases:

360°

360°

3 triangles giving a tetrahedron

4 triangles giving an octahedron

5 triangles giving an icosahedron.

If the faces are squares, there is only one case, namely 3 squares,
because 4 squares would occupy :360°

3 squares giving a cube.

If the faces are pentagons there is similarly only one case:

3 pentagons giving a dodecahedron.

There are no more cases because 3 hexagons (or higher) would occupy
(or more).  �

360°

Definition:  The dual of a polyhedron is obtained by joining the midpoints of
the faces.  Equivalently one can bisect each edge with a dual edge. The
advantage of the second definition is that the dual of a dual is the same as
you started with.

Examples: (i) The dual of a tetrahedron is another tetrahedron.
(ii) The cube and octahedron are duals.

(iii) The dodecahedron and icosahedron are duals.

(i) (ii) (iii)
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Euler's formula   Leonhard Euler (1707-1783) discovered a formula relating
the numbers of faces, edges and vertices of a convex polyhedron:

faces − edges + vertices = 2.
See Question 6.1 for a verification that regular polyhedra satisfy this
formula.

Associated spheres:  Just as a regular polygon in  has 2 concentric circles
associated with it, the circumcircle through the vertices, and the incircle
touching the edges, so a regular polyhedron in  has 3 concentric spheres
associated with it, as follows.

�2

�3

Definitions:  Given a regular polyhedron  define the circumsphere to be the
sphere through the vertices of , the midsphere to be the sphere touching the
edges of , and the insphere to be the sphere touching the faces of .

A
A

A A
The corresponding diameters of the spheres are called the

circumdiameter, middiameter and indiameter.  Notice that the midsphere
meets each face in its incircle, and the circumsphere meets the plane of each
face in its circumcircle. The diagram shows the 3 spheres associated with a
cube.

Theorem 6.2: The diameters of the 3 spheres associated with each of the 5
regular polyhedra of edge 1 are as follows:

circumdiameter, c middiameter, m indiameter, i
tetrahedron 3

2
1
2

1
6

cube 3 2 1
octahedron 2 1 2

3

icosahedron 5 + 5
2

1 + 5
2

3 + 5
2 3

dodecahedron 3(1 + 5)
2

3 + 5
2

25 + 11 5
10

Proof:  We give here the proof for the cube, and leave the proofs for the
other 4 polyhedra to the reader as Questions 6.3-6.8.

In the cube, the indiameter is the distance between opposite faces,
which is the same as the edge of the cube, 1.  The middiameter is the
distance between opposite edges, which is the same as the diagonal of a
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face, .  The circumdiameter is the distance between opposite vertices,
which is the same as the diagonal of the cube, .  �

2
3

Remark about vertex patterns:  In the definition of regular polyhedra it is
necessary to require that all the vertices have the same vertex pattern
otherwise there would be many other examples.  For instance the triangular
dipyramid, which is the union of two tetrahedra glued along a face, is a
polyhedron with 6 triangular faces and 5 vertices, but with two
different vertex patterns. Each of the top and bottom vertices
lies on 3 faces whereas each of the other vertices lies on 4
faces.
Remark about convexity:  The condition of convexity is also a necessary
condition for the classification.  We give an example of a nonconvex
polyhedron, beginning with a familiar 2-dimensional example of a
nonconvex polygon, the boundary of the Star of David. The latter is the
union of dual triangles,  and , and has 12 edges and 12 vertices, of whichT T′
there are of two types.  The first type are the 6 outer
vertices, namely those of  and . The second type are the
6 inner vertices, namely the vertices of the hexagon

. The polygon is not convex because the join of
two adjacent outer vertices does not lie inside the polygon.

T T′

T ∩ T′

The analogous 3-dimensional polyhedron is the stella octangula, which
is the union of dual tetrahedra,  and . This has 24 triangular faces and 14
vertices, which are of two different types.  The first type are the 8 outer
vertices, namely those of  and , at each of which 3 faces meet.    The
second type are the 6 inner vertices, namely the vertices of the

T T′

T T′

octahedron , at each of which 8 faces meet.  The
reason why so many faces can meet at a vertex is due to
the nonconvexity, because as you go round the vertex
pattern, the faces go in and out. The polyhedron is not
convex because the join of two adjacent outer vertices
does not lie inside the polyhedron.

T ∩ T′

Going back to convex polyhedra we can extend the classification by
allowing the faces to be not all the same.
Definition:  A semi-regular polyhedron is a convex polyhedron that has
faces equal to two regular polygons and all the vertex patterns the same.

Theorem 6.3:  There are exactly 15 semi-regular polyhedra having faces
with at most  edges.6
Proof:  For the proof see Question 6.10. Meanwhile we list here these 15
semi-regular polyhedra in terms of 6 types. The symbol 3/4 denotes a
polyhedron comprised of triangles and squares, etc.

(i) Prisms  The -prism consists of two -gons joined by  squares.
Note that the 4-prism is a cube.

n n n
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3-prism 4/3 5-prism 4/5 6-prism 4/6

(ii) Anti-prisms:  The -antiprism consists of two -gons joined by
triangles. Note that the 3-antiprism is an octahedron.

n n 2n

4-antiprism 3/4 5-antiprism 3/5 6-antiprism 3/6

(iii) Mitred cube:  To form a mitred cube, replace each edge of the cube
by a square and each vertex of the cube by a triangle. A twisted
mitred cube is obtained by rotating the back half through .45°

mitred cube 3/4 twisted mitred cube 3/4

(iv) Midedge:  Given a polyhedron  define midedge  by joining the
midpoints of the edges of . Dual polyhedra share the same midedge.
Note that the midedge tetrahedron is an octahedron.

A A
A

midedge cube 3/4 midedge dodecahedron 3/5

(v) Truncated:  Given  define truncated  by replacing each vertex of
by a face and each face of  by another face with twice as many
edges.

A A A
A

Note that the truncated cube and dodecahedron are ruled out because
they have octagonal and decagonal faces. The truncated icosahedron
was named the buckminsterfullerene by Sir Harry Kroto in honour of
the polygonal roof designs by the architect Buckminster Fuller, and
because Sir Harry himself had discovered a new carbon molecule of
this shape. It is also the pattern on a football.
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truncated 
tetrahedron 3/6

truncated 
octahedron 4/6

truncated 
icosahedron 5/6

(vi) Snub:  Given  define snub  by replacing each vertex of  by a
triangle, each edge by two triangles and each face by a smaller
rotated face. Note that these, unlike the rest, are not the same as their
mirror images.

A A A

snub cube 3/4 snub dodecahedron 3/5

Rhombic dodecahedron:  We now introduce an important polyhedron that
has all its faces the same, but rhombi rather than regular polygons. Recall
that a rhombus is a parallelogram with equal sides. The polyhedron will
have the same symmetry as a cube and will be useful for tessellations (see
Section 8 below).
Definition:  A pyramid is the join of the centre of a cube to one of its faces.
Definition:  A rhombic dodecahedron  is a cube with 6 pyramids attached
to the outsides of its 6 faces.

R

Each edge of the cube is the edge of 2 pyramids, and hence of 2 of their
triangular faces; these two faces lie in the same plane, since each is at  to
its base, and so together they form a rhombus, which has that edge as its
shorter diagonal. The 12 edges of the cube determine the 12 rhombic faces
of . Meanwhile  has 14 vertices of two types. The first type are the 8
vertices of the cube, at each of which  3 rhombi meet at their larger angle.
The second type are the 6 vertices of the 6 pyramids, at each of which 4
rhombi meet at their smaller angle.

45°

R R
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Theorem 6.4:  The rhombic faces of  have ratio of diagonals , and
smaller angle  (approximately ).

R 2
sec−1 3 70.53°

Proof:  In a cube of side 1 the diagonal has length , and therefore the
sloping edge of a pyramid is . By Pythagoras, the altitude of a sloping
triangular face of the pyramid from the centre of the cube has length .
Therefore the longer diagonal of the rhombus is , while the shorter

3
3 / 2

1 / 2
2

diagonal is 1, and so their ratio is .  Apply the
cosine formula to the face of the pyramid:

2

1 = 3
4 + 3

4 − 2.3
4 cosθ.

∴ cosθ = 1
3. ∴θ = sec−13.  � θ

1

3
2 1

2

7. Rotation groups

Definitions:  A rotational symmetry of a polyhedron  is a rotation of  onto
itself.  The product  of two rotations is the composition of  followed by

. The identity map is denoted by 1. The order of  is the least positive
integer  such that .  For example a rotation of  has order 2, a
rotation of  has order 3, etc.

A A
αβ α

β α
n αn = 1 180°

120°
Definition:  The rotation group  of  is the set of rotational symmetries
together with multiplication given by composition (one rotation followed by
another). Then  is a group because it satisfies the three axioms for a group:

G A

G
(i) associative: .(αβ) γ = α (βγ)

(ii) unit:  .α1 = 1α = α
(iii) inverse: each  has an inverse  such that .α α−1 αα−1 = 1 = α−1α

A group is called abelian if it is commutative, i.e. for all elements ,
, but in general rotation groups are not abelian (see Theorem 7.1

below). The order of  is the number of elements.

α, β ∈ G
αβ = βα

G

Remark about reflections:  Some polyhedra such as the regular polyhedra
have reflective symmetries (reflection in a plane) as well as rotational
symmetries, and their symmetry group (including both rotations and
reflections) is then twice as big as . However reflections are less intuitive,
and so we shall ignore them and confine ourselves to rotations.

G

Theorem 7.1:  The rotation group of an equilateral
triangle has order 6 and is called  or .  For
simplicity, suppose the triangle is horizontal.  In the
case of , let  denote a rotation of  about the
vertical axis through the centroid.  Let  denote
both the altitudes of the triangle, and the 3-
dimensional rotations of  about these altitudes.

D3 S3

D3 ω 120°
α, β, γ

180°

α

βγ
ω

1
2

3

In the case of , the rotations are induced by permutations of the vertices 1,
2, 3.  The  multiplication tables are:

S3
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D3 =

1 ω ω2 α β γ

1 1 ω ω2 α β γ
ω ω ω2 1 β γ α
ω2 ω2 1 ω γ α β
α α γ β 1 ω ω2

β β α γ ω2 1 ω
γ γ β α ω ω2 1

S3 =

1 123 132 12 23 31

1 1 123 132 12 23 31
123 123 132 1 23 31 12
132 132 1 123 31 12 23
12 12 31 23 1 123 132
23 23 12 31 132 1 123
31 31 23 12 123 132 1

Proof:  There are two ways of approaching the problem, either in terms of
axes of rotation, , or in terms of permutations of the vertices, .  We give
both approaches because we shall generalise the first to the dihedral groups

, and the second to the permutation groups .

D3 S3

Dn Sn

 has 6 elementsD3

1 identity: 1
2 rotations of order 3 about the vertical axis: ω, ω2

3 rotations of order 2 about the altitudes: α, β, γ
To construct the multiplication table it suffices to check experimentally that

ω3 = α2 = β2 = γ2 = 1

αβ = ω, βα = ω2, ωα = β, αω = γ.
The rest of the table can then be completed using the fact that no element
appears twice in any row or column.

Meanwhile each rotational symmetry induces a permutation of the
vertices, and conversely. Therefore there are 6 permutations:

1 identity: 1
2 3-cycles: 123,132 (where 123 denotes )1 → 2 → 3 →  1
3 2-cycles: 12,23,31 (where 12 denotes , keeping 3 fixed)1 ↔ 2

Multiplication is given by the composition of permutations, for example

123.12 = 23  1 → 2 → 1,  2 → 3 → 3,  3 → 1 → 2.because
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Identify , , etc., and it can be seen that the two multiplication
tables are the same. Note that this is the smallest non-abelian group.  �

ω = 123 α = 12

Definition of the cyclic groups:  Let  be an element
of order .  Define the cyclic group  to be the
abelian group . It is the rotation
group of a pyramid on a regular -gon,  being the
rotation through  about the vertical axis.

ω
n Cn

{1, ω, ω2, … , ωn − 1}
n ω

2π / n

ω

Definition of the dihedral groups:  Define the dihedral group  to be the
rotation group of a regular -gon.  Then  has  elements:

Dn
n Dn 2n

 rotations  about the vertical axis, andn 1, ω, ω2, … , ωn − 1

 rotations  of order 2 about  horizontal axes.n α1, α2, … , αn n
If  is even, half of these axes join opposite vertices, and the other half join
the midpoints of opposite edges. If  is odd then each horizontal axis joins a
vertex to the midpoint of the opposite edge.

n
n

ω

α4

α3

α2

α1

ω

α4

α3

α2

α1

α5

Applications:  is the rotation group of the -prism , and the -
antiprism   (see Question 7.1).  is also the rotation group of the
twisted mitred cube (see Question 7.2).

Dn n (n ≠ 4) n
(n ≠ 3) D4

Definition of the permutation groups:  The permutation group  denotes the
set of permutations of  objects, which we label with the integers ,
together with multiplication given by composition (one permutation
followed by another). The order of  is , because there are  choices for
the image of 1,  for the image of 2, and so on. The identity
permutation is denoted by 1. We use the cyclic notation  for the -
cycle

Sn
n 1,2, … , n

Sn n! n
n − 1

n1n2… nq q

n1 → n2 →  … → nq → n1.
Every permutation is the product of 2-cycles, for example
because in the product ,  ,  .

123 = 12.13
1 → 2 → 2 2 → 1 → 3 3 → 3 → 1

Definition:  A permutation is called even or odd according as to whether it is
the product of an even or odd number of 2-cycles.  The even permutations
form a subgroup of order , which is called the alternating group .n! / 2 An

Technical note: The definition is well-defined, because if  are the
vertices of an -simplex  in  dimensions, then  has 2 sides, and a
permutation of the vertices induces a map of  onto itself that preserves or
reverses the sides according as to whether the permutation is even or odd.

1,  2,  … , n
(n − 1) Δ n Δ

Δ

https://doi.org/10.1017/S0025557200590421 Published online by Cambridge University Press

https://doi.org/10.1017/S0025557200590421


20 THE MATHEMATICAL ASSOCIATION

Examples
 has 1 element: the identity.S1 = A1 = A2

 has 2 elements: the identity, even, and the 2-cycle 12, odd.S2

 has 6 elements:S3

1 identity: even
3 2-cycles : odd12,  23,  31
2 3-cycles : even.123,  132
 has 3 elements: the identity and the two 3-cycles.∴ A3

 has 24 elements:S4

1 identity: even
6 2-cycles 12, 13, 14, 23, 24, 34: odd
8 3-cycles 123, 132, 124, 142, 134, 143, 234, 243: even
6 4-cycles 1234, 1243, 1324, 1342, 1423, 1432: odd
3 (2, 2)-cycles 12.34, 13.24, 14.23: even.
 has 12 elements:∴ A4

1 identity
8 3-cycles
3 (2, 2)-cycles.

 has 120 elements:S5

1 identity: even
10 2-cycles such as 12: odd
20 3-cycles such as 123: even
30 4-cycles such as 1234: odd
24 5-cycles such as 12345: even
20 (2, 3)-cycles such as 12.345: odd
15 (2, 2)-cycles such as 12.34: even.
 has 60 elements:∴ A5

1 identity
20 3-cycles
24 5-cycles
15 (2, 2)-cycles.

Theorem 7.2:  The group  is the rotation group of the regular tetrahedron,
and truncated tetrahedron.

A4

Proof:  It suffices to prove the theorem for the tetrahedron because the
truncated tetrahedron is constructed from it and therefore has the same
rotation group.

Each rotation of the tetrahedron induces an even permutation of the 4
vertices, and conversely. The 8 rotations about the 4 altitudes induce the 8 3-
cycles. Call the line joining the midpoints of a pair of opposite edges a
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middiameter of the tetrahedron. (It is in fact a diameter of the midsphere
touching all the edges.) The 3 rotations of order 2 about the 3 middiameters
induce the 3 (2, 2)-cycles. This completes the rotation group, inducing . �A4

Remark:  Note that there is no rotation inducing a 2-
cycle.
For if there were a rotation inducing the permutation
12, then it would have to be about the middiameter
through the midpoint of the edge 12, which also
induces the permutation 34, giving the (2, 2)-cycle
12.34. It is true that reflection in the plane  and
bisecting the edge 12 would induce the 2-cycle 12,
but we have chosen to ignore reflections.

⊥

1

2

3

4

1

2

3

4

Theorem 7.3:  The group  is the rotation group of the cube, octahedron,
mitred cube, midedge cube, snub cube, truncated octahedron, rhombic
dodecahedron, and stella octangula.

S4

Proof:  It suffices to prove the theorem for the cube, since all the others are
generated from it and therefore have the same group.

� ��

The cube has 4 diagonals joining opposite vertices. Each rotation of the
cube induces a permutation of these 4 diagonals, and conversely. The 8
rotations of order 3 about the 4 diagonals, such as , induce the 8 3-cycles.
The 6 rotations, such as , of order 4 about the 3 indiameters, joining the
midpoints of opposite faces, induce the 6 4-cycles, and the 3 rotations of
order 2 about the same axes induce the 3 (2,2)-cycles. The 6 rotations, such
as , of order 2 about the 6 middiameters, joining the midpoints of opposite
edges, induce the 6 2-cycles. Hence the 24 rotations of the cube induce the
24 permutations of the 4 diagonals. Therefore the rotation group is .  �

α
β

γ

S4

Theorem 7.4:  The group  is the rotation group of the dodecahedron,
icosahedron, midedge dodecahedron, snub dodecahedron, and truncated
icosahedron.

A5

Proof:  It suffices to prove the theorem for the dodecahedron since all the
others are generated from it and therefore have the same group.

The dodecahedron has 12 pentagonal faces, and each face has 5
diagonals. The 60 diagonals form the edges of 5 cubes (see Question 6.8).
Each cube has 12 edges, one in each of the faces of the dodecahedron. The
diagram shows one of the cubes.
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Each rotation of the dodecahedron induces an even permutation of the 5
cubes, and conversely. The diagram below sketches 3 adjacent pentagons,
with diagonals labelled by the cubes to which they belong.

12

3
4

5
1

2

3 4

5

1

2

3

4

5

X

Y

Z
XY

Z

A rotation of order 5 about  induces the 5-cycle 12345.  The vertex  is a
vertex of two of the cubes, 1 and 3, and a rotation of order 3 about  maps
each of those two cubes into itself, while inducing the 3-cycle 254 of the
other three cubes. A rotation of order 2 about  induces the (2,2)-cycle
12.34.   Therefore globally the 24 rotations of order 5, 4 about each of the 6
indiameters, the joins of midpoints of opposite faces, induce the 24 5-cycles
of .  The 20 rotations of order 3, 2 about each of the 10 circumdiameters,
the joins of opposite vertices, induce the 20 3-cycles. The 15 rotations of
order 2 about the 15 middiameters, the joins of midpoints of opposite edges,
induce the 15 (2,2)-cycles. Therefore the 60 rotations of the dodecahedron
induce all the 60 even permutations of . Hence the rotation group of the
dodecahedron is .  �

X Y
Y

Z

A5

A5
A5

Remark:  We have given examples of the rotation groups , , , , .
Felix Klein (1849-1925) [13] showed that these are the only finite groups of
rotations in . See Coxeter [6, p. 275] for a proof.

Cn Dn A4 S4 A5

�3
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8. Tessellations and sphere packings

Definition:  A tessellation of  is a covering of  with congruent non-
overlapping polygons.

�2 �2

Examples

squares equilateral triangles hexagons.

There are also tessellations using parallelograms, and indeed using many
different shapes including animals; see for instance the well-known work [3]
of the artist Maurits Cornelis Escher (1898-1972).

Definition:  A tessellation of  is a covering of  with congruent non-
overlapping polyhedra.

�3 �3

Example:  The cubic tessellation has vertices at the integer lattice points
(points with integer coordinates).

Theorem 8.1:  There is no tessellation using only regular tetrahedra.
Proof:  If  regular tetrahedra met at a vertex their solid angles would be

. But in Question 2.1 we showed that the solid angle of a regular
tetrahedron is , which is irrational.  �

n
1 / n

3
2 sec−1 3 − 1

4

Sphere packings:  We give 3 examples of packing equal spheres in .�3

Example 1: Square packing:  The first layer of spheres is arranged in a
horizontal array of rows and columns. The second layer sits in all the
hollows of the first layer, and so on.

This is also called the face-centred cubic packing, because, rotating it
through , the centres of the spheres can be located at the vertices of the
cubic tessellation together with the centres of all the square faces of all the
cubes.

45°
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Example 2: Barrow boy's packing:  The first layer is arranged in a horizontal
hexagonal array.

The second layer sits in half the hollows of the first layer. The third layer
sits in half of the hollows of the second layer, but not those above the first
layer. And so on. The following diagram is looking down from above on a
tetrahedron of spheres built according to the barrow boy's packing.

Example 3: Hexagonal packing:  The first two layers are the same as the
barrow boy's packing. The third layer sits in the other half of the hollows of
the second layer, exactly above the first layer. And so on. In fact there are an
infinite number of different packings by choosing for the different layers
either the barrow boy's rule or the hexagonal rule in any order.

Theorem 8.2:  The square packing is the same as the barrow boy's packing.
Proof:  Consider a barrow boy's tetrahedron of spheres, with 4 spheres along
each edge, as shown in the diagram above. The vertical axis is one of the
altitudes of the tetrahedron. Now rotate the tetrahedron until one of the
middiameters is vertical. The bottom layer is now a row of 4 spheres. The
second layer is a  rectangle of spheres. The third layer is a
rectangle, and the fourth layer a row of 4 spheres. In other words we have
the square packing. The same argument holds for any size of tetrahedron.
Notice that the secret of the proof lies in the fact that the tetrahedron has two
types of axes of symmetry, altitudes and middiameters.  �

3 × 2 2 × 3

Remark:  At first sight it might seem that the barrow boy's packing of
spheres is denser than the square packing. In fact each barrow boy's layer is
indeed denser than each square layer, but this is compensated for in the
square packing by the layers being closer together, because in a regular
tetrahedron a middiameter is less than an altitude (the ratio being

). See Question 8.6.3 / 2 < 1
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Definition of the tessellation of a packing:  A sphere packing induces a
tessellation as follows. Each sphere determines a cell of the tessellation by
defining the interior of that cell to consist of all points closer to that sphere
than to any other sphere.

Theorem 8.3:  The cells of the barrow boy's tessellation are rhombic
dodecahedra.
Proof:  Consider the cubic tessellation of . Imagine the cubes to be
coloured alternately black and white like a chessboard. Divide each white
cube into 6 pyramids by joining the 6 faces to the centre. Glue onto each
black cube the 6 white pyramids on its faces to form a rhombic
dodecahedron (see Section 6). This tessellates  with rhombic
dodecahedra. For each black cube the midsphere touching its 12 edges at
their midpoints also touches the 12 faces of the rhombic dodecahedron at the
same points, and furthermore touches the midspheres of the 12 neighbouring
black cubes at the same points.

�3

�3

The circumcircles of the black squares on a chessboard in  form a
square packing of circles, at  to the edge of the chessboard.  Similarly the
midspheres of the black cubes in  form a square packing of spheres,
which is the same as the barrow boy's packing by Theorem 8.2. Let  be one
of the spheres, and  the surrounding rhombic dodecahedron. Then  is the
insphere of . Given a neighbouring sphere  let  be the common tangent
plane between  and , which contains a face of . Then points closer to
than  are those on the same side of  as . Similarly with the other 11
neighbouring spheres, and the other 11 faces of . Therefore points closer to
 than to any other sphere are points interior to . Therefore  is a cell of

the tessellation induced by the barrow boy's sphere packing.  Hence the
barrow boy's tessellation is the same as the tessellation of rhombic
dodecahedra described above.  �

�2

45°
�3

S
D S

D S′ P
S S′ D S

S′ P D
D

S D D

Definition:  Define the density of a sphere packing to be the proportion of
the volume occupied by the spheres.

Theorem 8.4:  The density of the barrow boy's packing is .
π

3 2
Proof:  There are two methods. The first is to count the number of spheres
inside a large box, which is inaccurate because of the boundary conditions,
and then let the size of the box tend to infinity, so that the inaccuracy tends
to zero.

The second method is more elegant because it uses the induced
tessellation, and compares the volumes of a sphere and its surrounding
rhombic dodecahedron, as follows. A black cube has volume 1, while the 6
white pyramids form a white cube of volume 1, and so the rhombic
dodecahedron has volume 2. Meanwhile the midsphere of the black cube
has diameter , by Theorem 6.2,  hence radius , and hence volume

.
2 1 / 2

4
3π (1 / 2)3
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∴ =
4
3π (1 / 2)3

2
=

π
3 2

.   �density

Remark:  In 1609 Johann Kepler conjectured that the barrow boy's packing
was the densest possible packing of spheres.  This conjecture was proved in
1998 by Thomas Hales [10].

9. Conics

Definition:  A circular cone is the surface obtained by joining a horizontal
circle to a vertex vertically above the centre of the circle.  The vertex is
called the centre of the cone.  A conic is the intersection of a circular cone
with a plane not through its centre.

Conics were discovered by Menaechmus at Plato's Academy in about
340 BC. Then Euclid (c330-c275 BC) wrote four books on conics, now lost,
and the great geometer Apollonius (c260-190 BC) absorbed these and
developed the whole theory in eight more books. The proof we give in
Theorem 9.1 below is due to G. P. Dandelin in 1822.

Let  be the semi-angle of the cone, and  the angle between the axis of
the cone and the plane. There are 3 cases according as to whether  is less
than, equal to, or greater than .

α β
α

β

�

�

α < β α = β α > β
ellipse parabola hyperbola

Definitions:  An ellipse is the locus of a point in the plane the sum of whose
distances from 2 points (called foci) is constant. A hyperbola is the locus of
a point in the plane the difference of whose distances from 2 foci is constant.
A parabola is the locus of a point in the plane equidistant from a point (the
focus) and a line (the directrix).

  We shall prove the elliptic case, and set the other two as Questions 9.2
- 9.5.
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Theorem 9.1:  If  the conic is an ellipse.α < β
V

S

C
G F

E

X

S ′

G ′
C ′

F ′

Proof:  Let  be the intersection between the cone and plane.   Let  be
the spheres above and below the plane touching both cone and plane.  Let

 be the horizontal circles where the spheres touch the cone, and let
 be the points where they touch the plane. Let  be the vertex of the

cone.  Given , let  be the points where  meets . Then

E S, S′

C, C′
F, F′ V

X ∈ E G, G′ VX C, C′
, being tangents from  to .XF = XG X S

, being tangents from  to .XF′ = XG′ X S′

∴ XF + XF′ = XG + XG′

= GG′

=  X.constant, independent of

Therefore , the locus of , is an ellipse, with foci .  �E X F, F′

Some readers may be more familiar with the description of an ellipse by
an equation, and so in the next theorem we deduce that equation from the
definition above.
Theorem 9.2:  If the ellipse has major, minor semi-axes  then, with
appropriate choice of axes, it has the equation

a, b

(x
a)2

+ ( y
b)2

= 1.

Proof:
With origin , take  and -axes along the major and minor semi-axes of the
ellipse.  Let  be the foci at .  Let  and  be
the ends of the major and minor axes.  Let  be a point on the ellipse.

O x y
F, F′ (±c,  0) A = (a,  0) B = (0, b)

X
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A

B

F

X

x

y

a

b cF ′
O

When  then .X = A AF + AF′ = (a − c) + (a + c) = 2a
When  then , by constancy.X = B BF + BF′ = 2BF = 2a

∴ BF = a. ∴ a2 − c2 = b2.

If  then by constancyX = (x, y)

(x − c)2 + y2 + (x + c)2 + y2 = 2a.
Squaring:

(x2 + y2 + c2 − 2cx) + (x2 + y2 + c2 + 2cx) +

2 (x2 + y2 + c2 − 2cx)(x2 + y2 + c2 + 2cx) = 4a2

∴ (x2 + y2 + c2)2 − 4c2x2 = 2a2 − (x2 + y2 + c2) .
Squaring:

(x2 + y2 + c2)2
− 4c2x2 = 4a4 − 4a2(x2 + y2 + c2) + (x2 + y2 + c2)2

∴ a2(x2 + y2 + c2) − c2x2 = a4

∴ (a2 − c2)x2 + a2y2 = a2(a2 − c2)
∴ b2x2 + a2y2 = a2b2

∴ (x
a)2

+ ( y
b)2

= 1.  �
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10. Inversion in a sphere

Inversion in a sphere is a generalisation to  of the more familiar inversion
in a circle in . It is basically a tool, useful for proving other theorems,
such as those in Sections 12 and 14.

�3

�2

Definition:  Define inversion in a sphere , with centre  and radius , (or,
more briefly, inversion in the point ) to be the map

 given by , where  is the point on the
ray  such that .  (A ray is a halfline beginning at .)

S O k
O

f : {�3 − O} → {�3 − O} X → X′ X′
OX OX.OX′ = k2 O
Note that  leaves points of  fixed, and interchanges the inside and

outside of .  Note also that  is an involution because , and so .
In terms of topology,  is a homeomorphism, in other words a continuous
one-to-one map with continuous inverse.

f S
S f f 2 = 1 f −1 = f

f

Theorem 10.1:  The inversion  maps:f
(i) planes through  to themselves;O

(ii) planes not through  to spheres through , and vice versa;O O
(iii) the tangent plane at  to the sphere diameter , and vice versa;N ON
(iv) spheres not through  to spheres not through .O O

Proof:  (i)  maps a ray through  to itself, and hence planes through  to
themselves.

f O O

(ii) Given a plane  not through , let  be the
 from  onto .  Given , let  map

, . Then

Π O ON
⊥ O Π X ∈ Π f
X → X′ N → N′

OX.OX′ = k2 = ON.ON′

∴ 
OX′
ON′

=
ON
OX

.

�

X

N O

X′

N′

Therefore triangles ,  are similar, having the angle at  in
common.

OX′N′ ONX O

∴ ∠OX′N′ = ∠ONX = 90°.
Therefore  lies on the sphere diameter .X′ ON′
Therefore  maps  to this sphere.  And vice versa since .f Π f −1 = f
(iii) If  is the tangent plane to  at  then .  Therefore  maps  to
the sphere diameter .

Π S N N′ = N f Π
ON

A

Y
X

O

T
t

X ′
A′

https://doi.org/10.1017/S0025557200590421 Published online by Cambridge University Press

https://doi.org/10.1017/S0025557200590421


30 THE MATHEMATICAL ASSOCIATION

(iv) Given a sphere  let  be a tangent to , of length  say.  Let  be the
sphere  shrunk towards (or expanded away from)  by a factor .  We
shall prove .  Given , let  be the other intersection of
with , and let  be the image of  under the shrinkage.  Then

 because the angle between chord and tangent of a circle
equals the angle subtended by the chord in the opposite segment (see
Question 10.1).  Therefore the triangles ,  are similar, having the
angle at  in common.

A OT A t A′
A O k2 / t2

f (A) = A′ X ∈ A Y OX
A X′ Y

∠OXT = ∠OTY

OXT OTY
O

∴ 
OX
OT

=
OT
OY

∴ OX.OY = OT2 = t2

But  
OX′
OY

=
k2

t2
,  .by the shrinkage

Multiply the last two lines together:  .OX.OX′ = k2

∴ f (X) = X′ and so  f (A) = A′.  �

Corollary 10.2:  The inversion  maps:f
(i) lines through  to themselves,O

(ii) lines not through  to circles through , and vice versa,O O
(iii) circles not through  to circles not through .O O

Proof:  (i)  maps rays through  to themselves, and hence lines also.f O
(ii) A line not through  is the intersection of 2 planes not through . Their
images are 2 spheres through , which intersect in a circle through .

O O
O O

(iii) A circle not through  is the intersection of 2 spheres not through .
Their images are two spheres not through , which intersect in a circle not
through .  �

O O
O

O

Corollary 10.3:  If the inversion maps a plane (or line) at distance  from
to the sphere (or circle) of radius  then .

d O
r 2rd = k2

Proof:  If  is the  from  to the plane (or
line) and  the diameter of the sphere (or
circle) then  is the image of , and so

OX ⊥ O
OX′
X′ X

2rd = d.2r = OX.OX′ = k2.  �

O X
X ′

Definition:  We say a map is conformal if it preserves angles.  Recall that
the angle between two curves meeting at  is defined to be the angle
between their tangents at .

P
P

Theorem 10.4:  Inversion is conformal.
Proof:  Suppose  are 2 lines not through , meeting at .  Under
inversion in  let  be their image circles through  and through , the
image of .

A, B O P
O A′, B′ O P′

P
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A B

P O
P ′

B ′
A ′

The tangents at  to  are parallel to . Therefore O A′, B′ A, B
angle between ,  at  = angle between tangents to ,  at A B P A′ B′ O

= angle between  at , by definitionA′, B′ O
= angle between  at , by symmetryA′, B′ P′

(the symmetry of reflection in the plane  and bisecting ).  Hence angles
are preserved.  �

⊥ OP′

Corollary 10.5:  Inversion preserves tangency.
Proof:  Touching is equivalent to the following condition: surfaces
touch at  if, given any curve  in  through , there exists a curve  in
through  at zero angle to . By Theorem 10.4 inversion preserves angles,
and hence the condition, and hence touching.  �

A, B
P α A P β B
P α

11. Cross-ratio

Just as distance is the main invariant of euclidean geometry so cross-ratio is
the main invariant of projective geometry. Like inversion in the last section,
we regard this primarily as a tool for proving other theorems, such as
Theorem 12.6. For a fuller treatment see Coxeter [6].

Definitions:  Given 4 points  on a line define the cross-ratioA, B, C, D

(ABCD) =
AB.CD
AD.CB

. A B C D

Given 4 lines through a point  define the cross-ratioO

O (ABCD) =
sin ∠AOB. sin ∠COD
sin ∠AOD. sin ∠COB

.

A
B
C
D

O

Theorem 11.1:  .(ABCD) = O (ABCD)
Proof:  Let  be the distance from  to the line .h O ABCD

1
2h.AB =  AOB = 1

2OA.OB sin ∠AOB.area of triangle

∴ AB =
OA.OB

h
sin∠AOB.

A

B

C

D

O

∴ (ABCD) =
(OA.OB sin ∠AOB) (OC.OD sin ∠COD)
(OA.OD sin ∠AOD) (OC.OB sin ∠COB)

= O (ABCD) .  �
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Definition:  Given two lines  and a point , the
projection  from  is defined by the rays from .

L, L′ O
L → L′ O O

Corollary 11.2:  Projection preserves cross-ratio.
Proof:  From  project 4 points  on a line to
4 points  on another line. Then

O A, B, C, D
A′, B′, C′, D′

(ABCD) = O(ABCD) = O(A′B′C′D′) = (A′B′C′D′).  �

A
B

C
D

O

D ′

C ′

B ′
A ′

Definition:  Given 4 points  on a circle define
the cross-ratio  to be  for any other
point  on the circle.

A, B, C, D
(ABCD) O (ABCD)

O
Note that the cross-ratio is independent of the choice of

 because if  is another point on the circle then either
, or , and so

O O′
∠AO′B = ∠AOB ∠AO′B = 180° − ∠AOB

A

B

C
D

O

.  Hence the cross-ratio is the same.sin∠AO′B = sin∠AOB

Theorem 11.3:  Inversion preserves cross-ratio.
Proof:  Given points  on a line , suppose they are inverted in  A, B, C, D L O
to points  on the circle . Then by
Theorem 11.1 and by definition

A′, B′, C′, D′ L′

(ABCD) = O (ABCD)

= O (A′B′C′D′)

= (A′B′C′D′) on L′.  �

A

B

C
D

O

A ′
B ′
C ′
D′

L

L′

Definition:  A set of points  on a line or circle is called harmonic
if . We sometimes say that  separate harmonically .

A, B, C, D
(ABCD) = −1 A, C B, D

Example:  Define a complete quadrilateral to consist of 4 lines meeting in 6
vertices (shown as dots).

The 3 diagonals (shown dashed) are the
joins of those quadrilateral vertices not
already joined, and they meet in 3 diagonal
vertices  (shown as little triangles). Then on
any diagonal the 2 diagonal vertices separate
harmonically the 2 quadrilateral vertices (see
Question 11.1).
Lemma:   is harmonic if and only if  is the midpoint of .A, B, C, ∞ B AC
Proof:  As , , and soD → ∞ CD / AD → 1

(ABCD) →
AB
CB

.
A B C ∞

If  then , and conversely.  �AB / CB = −1 AB = −CB = BC

Theorem 11.4:  If  is the midpoint of  on a line , and inversion in
maps  to  on the circle  through  then  are
harmonic on .

B AC L O
A, B, C A′, B′, C′ L′ O A′, B′, C′, O

L′
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Proof:  The tangent to  at  meets  at ∞.L′ O L
(A′B′C′O) = O (A′B′C′O) , by definition

= (ABC∞) ,  L,by projection on
= −1, .by the Lemma

(Here  denotes the tangent at .)  O (O) O �

LL′ A

B

C

O

∞ ∞

C ′
B ′

A′

12. Rings of spheres

Definition:  A ring of spheres is an ordered set of spheres
such that each touches the next, and the last touches the
first. If there are  spheres, where  is a positive integer,
then it is called a -ring.

q q
q

Note that the spheres may not be the same size, and their
centres may not be in the same plane.

Definition:  Two rings interlock if each sphere of  touches each sphere
of .

α, β α
β

Interlocking rings have been studied by Frederick Soddy [16], H S M
Coxeter [5] and Michael Fox [9].  I would like to thank the latter for
introducing me to the subject.

Theorem 12.1:  If a -ring interlocks a -ring then .p q 1 / p + 1 / q = 1 / 2
Proof:  Invert in the point of contact between the first two spheres of the -
ring.  Let ,  denote the images of the -
ring, -ring.  By Theorem 10.1(ii)  are parallel planes, which it is
convenient to think of as horizontal. Meanwhile by Theorem 10.1(iv) and
Corollary 10.5 the rest  are a chain of spheres, each touching the
next, with  touching the plane , and  touching the plane .

p
α = (A1, … , Ap) β = (B1, … , Bq) p

q A1, A2

A3, … , Ap
A3 A2 Ap A1

All the spheres  touch the planes  and are therefore all
the same size, of radius  say. Also they all touch , and therefore form a
circle of spheres around .  Let  denote the circle containing their points of
contact, of centre  and radius  say. If  then

.

B1, … , Bq A1, A2

r A3
A3 b

P R φ = 360 / 2q = 180 / q
tan φ° = r / R

P
r

b

R

B1

B2

B3
B4

B5

Bq

φ°
A3

P
B3B1

A2

A1

a

Let  be the vertical line through , which goes through the centres of
 and all their points of contact.

a P
A3, … Ap

Now invert in the sphere with centre , the point of contact of  and
, and radius  say. Let ,  be the

O B1
B2 k α′ = (A1′, … , Ap′) β′ = (B1′, … , Bq′)
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images of . Then  are parallel planes each at a distance  from ,
where  by Corollary 10.3.  Therefore  are spheres of
radius . Meanwhile their points of contact lie on a circle , of radius
say, which is the image of the line . Then  by Corollary 10.3.
Therefore

α, β B1′, B2′ r′ O
2rr′ = k2 A1′, … , Ap′
r′ a′ R′

a 2RR′ = k2

tan (180
p )°

=
r′
R′

=
k2 / 2r
k2 / 2R

=
R
r

= cot (180
q )°

∴ 
180

p
+

180
q

= 90.

∴ 
1
p

+
1
q

=
1
2

.  �

Corollary 12.2:  The only examples of  are 3, 6 (or 6, 3) and 4, 4.p, q
2p + 2q = pqProof:

∴ pq − 2p − 2q + 4 = 4

∴ (p − 2) (q − 2) = 4.
However, 4 can only factorise as , , ; hence the three
solutions.  �

1 × 4 2 × 2 4 × 1

Theorem 12.3:  The 3, 6 interlock: given 4 spheres  all
touching one another then there is a 6-ring  interlocking the 3-
ring .

A1, A2, A3, B1
B1, … , B6

A1, A2, A3

Proof:  Invert in the point of contact of .  We
obtain 2 parallel planes  touching 2 equal
touching spheres . There is a 6-ring

 of equal spheres touching the 2 planes and
surrounding and touching the sphere .  The inverse
image under the inversion gives the desired 6-ring.  �

A1, A2
A1′, A2′

A3′, B1′
B1′, … , B6′

A3′

B1′ A3′

A2′

A1′

Theorem 12.4:  There exists a 4, 4 interlock.
Proof:  Let  where  are horizontal planes a
distance  apart, and  are equal spheres of radius , one above the
other, touching the planes.

α = (A1, A2, A3, A4) A1, A2
2r A3, A4 r / 2

O

Q

r r
B1 B2

B3B4

2r
O Q

B1
B3

A1

A2

A3

A4

2r

3r
2 r

2
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Let  be a sphere of radius , centre  say, touching .  Let
be the point of contact of .  Then , by Pythagoras.  Therefore

 is half the diagonal of a square of side  and centre  in a horizontal
plane.  Therefore the 4-ring  of spheres of radius  and
centred at the vertices of the square, interlocks . Inverting in any point not
on any of the spheres gives interlocking 4-rings of spheres.  �

B1 r O A1, A2, A3, A4 Q
A3A4 OQ = 2r

OQ 2r Q
β = (B1, B2, B3, B4) r

α

We now investigate the conditions that a 4-ring has to satisfy to be
interlockable.  Let  be a 4-ring, with the spheres not necessarily the same
size, nor with their centres necessarily in a plane.

α

Theorem 12.5:  The 4 points of contact lie on a circle, which we call the
contact circle.
Proof:  Invert in the point of contact of the first 2 spheres of the 4-ring .
These 2 spheres invert into horizontal planes .

α
A1, A2

A1

A2
A3

A4

X

Y

Q

P

R

�

The other 2 spheres invert into spheres  touching the planes and each
other, but not necessarily of the same size, nor necessarily above one
another.  Let  denote their centres, and let  denote the points of
contact between  and ,  and ,  and .  The vertical plane
containing  also contains  and the line  joining the centres.
Let  be the angle that this line makes with the vertical. Then by isosceles
triangles

A3, A4

X, Y P, Q, R
A2 A3 A3 A4 A4 A1

X, Y P, Q, R XQY
θ

∠PQX = 1
2θ = ∠RQY .

Therefore  is a straight line in the plane. Inverting back, the line
inverts into a circle through  containing all 4 points of contact of .  �

PQR PQR
O α

Theorem 12.6:  A 4-ring is interlockable if and only if the contact circle is
orthogonal to the 4 spheres, and the 4 contact points are harmonic.
Proof:  Invert in the contact point of the first 2 spheres, giving 2 horizontal
planes  and 2 spheres . There exists an interlocking ring if and
only if these 2 spheres are the same size and one above the other. In other
words the vertical contact line is orthogonal to the planes and spheres, and
is the midpoint of . Inverting back preserves orthogonality by Theorem
10.4, and the harmonicity of the original points of contact by Theorem 11.4.
�

A1, A2 A3, A4

Q
PR
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13. Area of a sphere and volume of a ball

 Since it is necessary to distinguish between the boundary and interior of
a figure, we use the words circle, disc, sphere and ball as follows. The 1-
dimensional circle is the boundary of the 2-dimensional disc inside, and the
2-dimensional sphere is the boundary surface of the solid 3-dimensional ball
inside. We now give the original proofs of Archimedes (287-212 BC).

Theorem 13.1:  The area of a sphere equals that of the enclosing cylinder.

Remark:  This may well have been Archimedes' favourite theorem because
the above diagram was inscribed on his tombstone in Syracuse in Sicily.
Proof:  We show that corresponding thin slices of the sphere and cylinder
between  and  have equal areas.θ θ + dθ

dθ r
θ

r cos θ dθ
r sin θ

slice of radius length width ∴ area

sphere r cos θ 2πr cos θ r dθ 2πr2 cos θ dθ
cylinder r 2πr r cos θ dθ 2πr2 cos θ dθ

Adding the slices (or integrating) gives the result.  �
Corollary:  The area of a sphere of radius  is .r 4πr2

Proof:  Area of sphere = area of cylinder
= circle × height
 = 2πr × 2r
= .  �4πr2

Theorem 13.2:  The volume of a ball of radius  is .r 4
3πr3

Proof:  In the proof Archimedes used the concept of balancing, which arose
from his work in mechanics. Given a sphere of radius , consider a cylinder
of radius  and height , and a cone with the same base and height.

r
2r 2r
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A B X O C

r

x

2r

2r

2r

D3

D2

D1

The cone and cylinder have axis , which is a horizontal diameter of the
sphere.  Let  be the point on  extended, such that  is the midpoint of

.  Given a point  on , let , and let  be the radii, and
 the areas, of the discs of intersection of the plane  through

with the sphere, cone and cylinder. We claim that if  are hung from
then they will balance  at  with the fulcrum at . For

BC
A BC B

AC X BC x = BX r1, r2, r3
D1, D2, D3 ⊥BC X

D1, D2 A
D3 X B

r1 = r2 − (r − x)2,  by Pythagoras

= 2rx − x2.

∴ D1 = πr2
1 = π (2rx − x2) .

D2 = πr2
2 = πx2,  r2 = x.since

D3 = π (2r)2 = 4πr2,  r3 = 2r.since

∴ 2r (D1 + D2) = 4πr2x = xD3, giving the balance.

Let  denote the volumes of the sphere, cone and cylinder. Taking
the union of the discs for all positions of ,

V1, V2, V3
X

2r (V1 + V2) = rV3.
since the centre of mass of the cylinder is the centre  of the sphere.O

∴ V1 + V2 = 1
2V3.

But  by the Lemma below.V2 = 1
3V3

∴ V1 = (1
2 − 1

3) V3 = 1
6V3 = 1

6π (2r)2 .2r = 4
3πr3.   �

Lemma:  The volume of the cone is a third the volume of the cylinder.
Proof:  Let . Then the circular cone  has height  and radius of
base .  Let  be Dehn's pentahedron inscribed in a cube of edge  as

d = 2r V d
d W d
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shown below (see Question 2.8).  We can regard  as a square cone of
height  on a square base of side .

W
d d

V
x

x

d

Vx

W

x

x

d

d

Wx

For  let  be horizontal sections of  at a vertical
distance  below the vertices of the cones. Then  is a disc of radius  and
area , while  is a square of side  and area .  Therefore the area

. Therefore, combining all the sections, the volume .
But  because 3 copies of  form the cube (see Question 2.9).

0 < x ≤ d Vx, Wx V , W
x Vx x

πx2 Wx x x2

Vx = πWx V = πW
W = 1

3d3 W

∴ V = 1
3πd3 = 1

3 (πd2) d = 1
3 ( ) .   �volume of  the cylinder

14. Map projections

Definition:  A map projection is a map from part of the surface of the Earth
to a flat piece of paper.

However, it is impossible to map part of a sphere into a plane without
some distortion. The map maker's choice of projection depends upon what
the map is going to be used for. We shall consider 4 projections:

(i) Cylindrical projection
(ii) Mercator's projection

(iii) Central projection
(iv) Stereographic projection.

For coordinates on the Earth we use latitude  and longitude .θ φ

South pole

North pole
parallel of latitude

meridian of longitude

Definitions:  The circles of latitude, given by  constant,
, are horizontal circles running from  at the

south pole to  at the north pole. The meridians of longitude, given
by  constant, , are halves of great circles, each joining the
North pole to the South pole.

θ =
−π / 2 ≤ θ ≤ π / 2 θ = −π / 2

θ = π / 2
φ = 0 ≤ φ < 2π
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(i) Cylindrical projection
Definition:  Use Archimedes' tombstone diagram (see the
last section) to project the Earth horizontally onto the
enclosing cylinder, cut the cylinder open along a meridian,
unroll it flat, and scale down to the size of the paper.
This has the advantage of mapping latitude and longitude onto a rectangular
grid. Also by Archimedes' Theorem 13.1 it preserves areas, that is mapping
equal areas on the sphere to equal areas on the paper.  But it suffers from the
disadvantage of not being conformal, and hence distorts all shapes,
especially those far from the Equator.

Theorem 14.1:   In the cylindrical projection a small square at latitude  is
mapped to a rectangle, expanded horizontally by  and shrunk vertically
by .  Hence a small circle is mapped to an ellipse, whose ratio of major
axis to minor axis is .

θ
sec θ

cos θ
sec2 θ

N

Proof:  The point  on the sphere is mapped to  on the
cylinder. The small rectangle at  induced by the small increments

 has sides , and is mapped to the small rectangle

(φ, θ) (rφ, r sin θ)
(φ, θ)

(dφ, dθ) (r cos θ dφ, r dθ)

(r dφ, d (r sin θ)) = (r dφ, r cos θ dθ) .
Therefore the horizontal sides are expanded by , and the vertical sides
shrunk by .  Therefore the ratio of major axis to minor axis of the
ellipse is .  Consequently, the direction NW is crushed down towards
W, and so the angle of  between N and NW is expanded to nearly ,
illustrating its non-conformality.  �

sec θ
cos θ

sec2 θ
45° 90°

  
(ii) Mercator's projection
Gerhard Kremer (1512-1594), known as Mercator, invented a conformal
modification of the cylindrical projection as follows.
Definition:  Define Mercator's projection by suitably stretching the vertical
latitude axis of the cylindrical projection to make it conformal.

Theorem 14.2:  Mercator's projection maps .(φ, θ) → (φ, log(secθ + tanθ))
Proof:  Suppose .  The small square with sides

 is mapped to the square . The horizontal
expansion is , and by conformality the vertical expansion must be the
same.

(φ, θ) → (φ, f (θ))
(r cos θ dφ, r dθ) (r dφ, rf ′ (θ) dθ)

sec θ

∴ f (θ) = ∫ sec θ dθ = log (sec θ + tan θ) + c.

But  by choice and so .  f (0) = 0 c = 0 �

https://doi.org/10.1017/S0025557200590421 Published online by Cambridge University Press

https://doi.org/10.1017/S0025557200590421


40 THE MATHEMATICAL ASSOCIATION

I used to be a navigator in the air force during World War II, and navigators
like Mercator's projection because, being conformal, it preserves angles.
Therefore straight lines on the map represent paths on the globe resulting
from steering a fixed course, with a fixed compass setting. Also small
islands are shown with the correct shape, which aids map reading. A
disadvantage of Mercator's projection is that it tends to infinity at the poles.
Hence equal areas at different latitudes on the earth do not get mapped to
equal areas on the map.

(iii) Central projection
Definition:  Let  be the tangent plane at the south pole .  Define central
projection by projecting the southern hemisphere radially from the centre
onto .

T S
O

T

P

O

S
T

P′

It maps the southern circles of latitude to concentric circles, centre , and
meridians of longitude to rays emanating from . Central projection has the
advantage of mapping great circles on the sphere to straight lines on the
map, because a great circle is the intersection of the sphere with a plane
through . Hence the shortest path between two points on the sphere is
accurately represented by the straight line between their images on the map.

S
S

O

  The disadvantages are that it is not conformal, and as points approach
the equator their images tend to infinity. However, the projection is
relatively accurate near the south pole. Similarly central projection onto the
tangent plane at any other point on the sphere is relatively accurate near that
point.

(iv) Stereographic projection
Definition:  Again let  be the tangent plane at the south pole . Define
stereographic projection by projecting the sphere  minus the north pole
radially from  onto .

T S
Σ N

N T
Like central projection, it maps circles of latitude to concentric circles,

centre , and meridians of longitude to rays emanating from .S S

P

N

S

�

TP′

https://doi.org/10.1017/S0025557200590421 Published online by Cambridge University Press

https://doi.org/10.1017/S0025557200590421


THREE-DIMENSIONAL THEOREMS FOR SCHOOLS 41

Theorem 14.3:  Stereographic projection is conformal. It maps circles in
through  to lines in , and circles in  not through  to circles in .

Σ
N T Σ N T

Proof:  Let  be inversion in the sphere centre  and radius . By Theorem
10.1(iii)  maps  radially from  to , and therefore  is the
same as stereographic projection. By Theorem 10.4  is conformal. By
Corollary 10.2  maps circles through  to lines, and circles not through
to circles.  �

f N NS
f Σ − N N T f | Σ − N

f
f N N

The conformality, implying preservation of angles, makes stereographic
projection navigationally desirable. It also maps the whole sphere except for
the north pole, but as points approach the north pole their images tend to
infinity. It is relatively accurate near the south pole.  Similarly the sphere
can be stereographically projected onto any tangent plane. For further
reading see George Jennings [12, pp. 63-82].

15. Knotting

Topology is sometimes called ‘rubber-sheet’ geometry because it
studies properties like knotting and linking, which are much deeper than
those in previous sections because they persist under much more general
rubber-like transformations (homeomorphisms).  Consequently the style of
proof will be quite different.

knotting linking

Definitions:  A knot is a closed curve in .  Two knots are equal if one can
be moved into the other.

�3

Example 1:

= trefoil

Proof:

→ → → →

�
Definition:  Two knots are unequal if one cannot be moved into the other.
Example 2:

trefoil ≠ square knot
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Definition:  A curve is knotted if it is unequal to a circle.

≠

To prove equality between 2 knots (or unknottedness) we have to
demonstrate it geometrically, as in the example above, whereas to prove
inequality between 2 knots (or knottedness) we have to do it algebraically
by introducing an invariant, in other words a property that does not vary if
the knot is moved, proving that it is invariant, and verifying that the two
knots have different values of the invariant.

Let  be a picture of a knot, with a finite number of crossings. At each
crossing the underpass is indicated by a break in the curve, and so the curve
is broken into a finite number of arcs.

K

Definition:  We say  can be 3-coloured if the following holds. Each arc is
one colour, and

K

(1) at least 2 of the 3 colours are used;
(2) at each crossing 1 or 3 colours are used
(for the overpass and the 2 sides of the underpass).
In our drawings we shall use for the three colours continuous curves, dashed
curves and dotted curves.
Lemma 1:  The trefoil can be 3-coloured.
Proof:

�
Lemma 2:  The circle cannot be 3-coloured.
Proof:  Being all one colour it would violate condition (1). �
Theorem 15.1:  3-colourability is an invariant.
Proof:  We have to show that if  can be 3-coloured, and  is moved to ,
then  can be 3-coloured. Consider the following 5 types of elementary
move:

K K L
L

Type I (and its inverse)

Type II (and its inverse)
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Type III (which can be seen to equal its own inverse by turning the
paper upside down).

If  is a long complicated move imagine taking a film of it and
examining the film frame by frame. At each frame there is either no change
in the configuration of arcs from the previous frame, or else there has been
one of the 5 types of elementary move shown above. Therefore we can
interpret the complicated move  as a finite sequence of elementary
moves. For instance, in the proof of the Example 1 above, the first and last
steps represent no change in the configuration, while the second and third
steps are elementary moves of types III and I.

K → L

K → L

If we prove the theorem for elementary moves then it follows for any
sequence of such, and hence for any move. In each case we are given a 3-
colouring before the elementary move, and have to show there is a 3-
colouring after the elementary move, without changing the colouring of the
rest of the knot, or of the ends of the arcs in the elementary move that are
attached to the rest of the knot.

Type I (and its inverse):

Type II (and its inverse): there are 2 cases depending on whether the
ends are coloured the same or different.

Type III: there are 5 cases, and in each case we have to show that it is
possible to achieve a colouring satisfying condition (2) by recolouring  the
little arc in the middle without changing the colours of the other arcs, since
they are all attached to the rest of the knot.

This completes the proof of Theorem 15.1.  �
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Corollary:  The trefoil is knotted. 
Proof:  Otherwise the unknotting would move the trefoil into a circle,
violating the invariance of 3-colourability.  �
Lemma:  The square knot cannot be 3-coloured.
Proof:  The square knot contains 4 arcs, and therefore in
any attempted 3-colouring 2 of them must be the same
colour. But any 2 arcs meet at some crossing.  Therefore
the overpass at this crossing must be the same colour by
condition (2).  Similarly the fourth arc must also be the
same colour, violating condition (1).  �
Corollary:  Trefoil  square knot.≠
Proof: One can be 3-coloured and the other cannot be.  �

However, this invariant is no good for proving that the square knot is
knotted, because neither the square knot nor the circle can be 3-coloured.
Therefore we need to generalise the invariant, and for this we shall use
arithmetic modulo , as follows.p
Definition of mod arithmetic:  Let  be an odd prime.  The integers modulo
 consist of the set .  Given two integers  we write

  if they differ by a multiple of .

p p
p 0,  1,  2, … , p − 1 a, b
a = b (mod p) p
Definition:  We say a knot  has code  if the arcs can be labelled with
integers modulo  such that

K p
p

(1) at least 2 arcs are labelled differently, and
(2) at each crossing the average of the two
underpasses equals the overpass :(mod p)

a + b = 2c (mod p) . a

b

c
We leave it to the reader to verify that a knot has code 3 if and only if it can
be 3-coloured (see Question 15.1).  Hence the codes are indeed a
generalisation of 3-colouring.

Lemma:  The square knot has code 5.
Proof:  Check each crossing going round the knot:

1 + 0 = 6 (mod 5)A
3 + 1 = 4B
0 + 2 = 2C
2 + 3 = 0 (mod 5) .   �D

0

1

2

3

A

B
C

D

Theorem 15.2:  Codes are invariant.
Proof:  It suffices to check the elementary moves.

Type I (and its inverse)

a a a
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Type II (and its inverse)

b b
a aa

2b − a

Type III

a

b

c

a

b

c

− +c2a 2b − +c2a 2b

−c2a

Check:   .(2b − c) + (2a − 2b + c) = 2a

2a− b

2a− b
−c2b

This completes the proof of Theorem 15.2.  �

Corollary:  The square knot is knotted.
Proof: The circle has no codes, otherwise condition (1) would be violated. �

Definition:  The reflection of a knot is given by changing each crossing.

Some knots, like the trefoil, are unequal to their reflection.  Others, like the
square knot, are equal to their reflection (see Question 15.5).

Definition:  The product of 2 knots is given by cutting and joining them
together.

T S

cut and join

product T × S

In Question 15.2 we show that the codes of  are those of  and .T × S T S

Definition:  A knot is called prime if it is not the product of two (simpler)
knots.

The list of all 14 prime knots with fewer than 8 crossings is shown
below, together with their codes. More precisely, if a prime knot has less
than 8 crossings then it, or its reflection, equals one of those on the list.
Since the circle has no codes this proves that they are all knotted.  It does
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not prove, however, that those with the same code are unequal, and that
requires a more sophisticated invariant (see Raymond Lickorish [14]).
Notice that two of the knots in the list have more than one code.

List of all prime knots with fewer than 8 crossings

3 5 5 7

3 11 13 7

11 13 3,5 17

19 3,7

16. Linking

Linking is one of the most characteristic features of 3 dimensions. It is
intuitively and experimentally obvious that linked curves cannot be
separated, but we shall prove this mathematically by constructing an
invariant called the linking number  that measures how many times one
curve links the other.

L

L = 0 L = 1 L = 2 L = 0 L = 1

Incidentally the same proof can be used to show that two spheres can be
linked in 5-dimensions, where intuition is less obvious and experiment is
impossible.

Definitions:  To orient a curve means to choose one
or other of the two directions going round the curve;
the orientation is indicated by an arrow. To span a
curve means to choose a disc whose boundary is the
curve. The disc itself may be curved, and may
intersect itself if the curve happens to be knotted.

https://doi.org/10.1017/S0025557200590421 Published online by Cambridge University Press

https://doi.org/10.1017/S0025557200590421


THREE-DIMENSIONAL THEOREMS FOR SCHOOLS 47

Definition of linking number :  Given two curves  choose:L A, B
(i) orientations of  and ;A B

(ii) either  or  to span, say ; andA B B
(iii) a disc  spanning .b B

+ −

A

A

B B

Then  will pierce  in a finite number of points.A b
We call a particular piercing positive if  pierces  in the direction that a
right-handed corkscrew would move if it were screwed in the direction of
the orientation of ; otherwise call it negative.  Let  be the number of
positive piercings and  the number of negative piercings.  Define the
linking number  to be the absolute difference between  and .

A b

B P
N

L P N

Example

A
B

b + − +

P = 2
N = 1
L = 1

Theorem 16:   is invariant.L
Proof:  We have to prove firstly that  is independent of the 3 choices, and
secondly that it does not vary when the curves are moved. The second part is
easy because if the disc is moved along with the curves then the number of
piercings will be conserved. Hence the burden of proof lies in showing that

 is independent of the 3 choices.

L

L
(i) If one of the orientations is reversed then the sign of each piercing

is reversed. Therefore  and  are interchanged, and their
difference  is the same.

P N
L

(ii) Suppose we chose to span  rather than , and chose a disc
spanning . Let  and  be the numbers of positive and negative
piercings of  by , and let  be their difference.  We have to show
that . 

A B a
A P′ N′

a B L′
L = L′

B

A −+ + +

a
b

p
q

r
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By moving  into general position relative to  if necessary then the
intersection of  and  will consist of a finite number of arcs and
closed curves.  (If  is not in general position relative to , then
their intersection might include some 2-dimensional regions, but an
arbitrarily small perturbation of  will bring it into general position
and cure that defect, making the intersection 1-dimensional.)
Forget the closed curves and concentrate on the arcs because their
ends will be the piercings of  by  and  by . Orient the arcs so
that at each point, if  is a vector giving the orientation of the arc,
and  are vectors giving positive piercing of , then  is
a right-handed set of axes. Then the front ends of the arcs will be
the positive piercings of  by  and the negative piercings of  by ,
while the back ends will be the complementary piercings. But the
number of front ends is the same as the number of back ends.
Therefore .  Therefore .
Therefore , as required.

a b
a b

a b

a

b A a B
p

q, r a, b (p, q, r)

a B b A

P′ + N = N′ + P P − N = P′ − N′
L = L′

(iii) Finally suppose we chose a different disc  spanning , giving rise
to a linking number .  Then  by (ii) above, and so

, as required.  �

b″ B
L″ L″ = L′ = L

L″ = L

Codes of links:  One can define codes for links exactly as for knots.  The
definition is the same, and the invariance theorem 15.1 is the same.

Examples:

all codes no codes

On the whole, in linking theory, codes are less useful than linking numbers.
However, when given curves for which , then codes may be useful in
showing that they are, nevertheless, linked.  (See Questions 16.3 and 16.4.)

L = 0

Remark:  At first sight knotting and linking seem somewhat similar, but in
fact they are quite different phenomena, as can be seen in higher
dimensions. Knotting is a codimension 2 problem, while linking is a

-dimensional problem. For instance a sphere can be knotted in 4
dimensions [2] but unknotted in 5 dimensions [18], whereas two spheres can
be linked in 5 dimensions. Similarly a 50-dimensional sphere can be knotted
in 52 dimensions but unknotted in 53 dimensions, whereas two 50-
dimensional spheres can be linked in 101 dimensions.

(2n + 1)

Further reading:  I have found the following books very accessible and
helpful on many of the topics: Coxeter [6], Courant and Robbins [4], Hilbert
and Cohn-Vossen [11], and Jennings [12].
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APPENDIX 1: Exercises

1. Spherical triangles
Question 1.1
Find the angles and area of a face of a spherical
equilateral tetrahedron.
Verify that they satisfy Theorem 1.

2. Angles in a tetrahedron
Question 2.1
Show that in an equilateral tetrahedron each edge angle is , and each
solid angle is .

sec−1 3
3
2 sec−1 3 − 1

4

Remark: In this and the following question, the inverse trigonometrical
functions are to be evaluated in edge-angle units.

Question 2.2
A unit right-angled tetrahedron is defined by taking a
unit distance along three perpendicular axes. Show that

⎧

⎩
⎨
⎪
⎪

edge-angles at 
AB, AC, AD = 1

4

BC, CD, DB = tan−1 2

⎧

⎩
⎨
⎪
⎪

solid-angles at 
A = 1

8

B, C, D = tan−1 2 − 1
8.

A

B

C

D

Question 2.3
Dehn's tetrahedron is defined in a cube as shown.
Prove that

⎧

⎩

⎨
⎪

⎪

⎪

⎪

edge-angles at

AB, CD = 1
8

AC, BC, BD = 1
4

AD = 1
6

⎧

⎩
⎨
⎪
⎪

solid-angles at
A, D = 1

48

B, C = 1
16.

A B

C

D
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Question 2.4
Make Dehn's tetrahedron by drawing the net below on thin cardboard,
cutting out, scoring along the internal edges, folding them down, and taping
together the other edges.

A B

B

C

C D1

1 1

1

3
2

2

2

2

Question 2.5
Make a mirror image of Dehn's tetrahedron by
using the same net, but folding the internal edges
up (instead of down) before taping them together.

A B

C

D

Question 2.6
Show that the plane bisecting and perpendicular the diagonal  of a cube
meets the 6 faces in a regular hexagon.

AD

A

D

Question 2.7
Make 3 copies of Dehn's tetrahedron and 3 copies of its mirror image; fit
them together to form a cube, holding them together with an elastic band
round the hexagon of Question 2.6.

Question 2.8
Make Dehn's pentahedron, the union of his tetrahedron and its mirror image,
from the following net.

1

1

1 1

1

1

1 1

2 2

3 3

Question 2.9
Make 3 copies of Dehn's pentahedron, and show they fit together to form a
cube, held together by an elastic band as in Question 2.7.
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Question 2.10
Show that 4 unit right-angled tetrahedra and
an equilateral tetrahedron of edge  fit
together to form a cube. Verify that the edge
and solid angles add correctly.

2

1
2

3. Concurrencies in a tetrahedron
Question 3.1
Show that the centre of mass  of a tetrahedron  is the midpoint of
each of the joins of midpoints of opposite edges.

G ABCD

Question 3.2
In a tetrahedron  define the face-trisector of  to be the line
through the circumcentre of, and  to, ; it is the line of points
equidistant from . Show that the 4 face-trisectors meet at the
circumcentre  of .

� = ABCD ABC
⊥ ABC

A, B, C
S �

Question 3.3
In a tetrahedron  define the vertex-trisector of  to be the line of
points equidistant from the faces . Show that the 4 vertex-trisectors
meet at the incentre  of .

� = ABCD A
b, c, d

I �

Question 3.4
Show that if 2 pairs of opposite edges of a tetrahedron are  then the third
pair is also.

⊥

Question 3.5
Show that if the opposite edges of a tetrahedron are  then the foot of each
altitude of the tetrahedron is the orthocentre of the opposite face.

⊥

Question 3.6
Show that in a tetrahedron  if the altitude through  is the orthocentre
of  then the opposite edges of  are .

ABCD A
BCD ABCD ⊥

Question 3.7
Given , show that  has opposite edges  if and only if  lies on
the line through the orthocentre of, and  to, .  Deduce that, given ,
there are  positions of  for which the altitudes meet, but  positions of
for which they do meet.

BCD ABCD ⊥ A
⊥ BCD BCD

∞ A ∞3 A
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4. Perspective
Question 4.1
Let  be the eye, and  the 3 vanishing
points for a cube. Let  be the foot of the  from
onto . Show that  is the orthocentre of .

E X, Y , Z
H ⊥ E

XYZ H XYZ E

X

Y

Z

H

Question 4.2
Show that if  are the vanishing points for a cube then  is an
acute-angled triangle.

X, Y , Z XYZ

Question 4.3
With the notation of Question 4.1, show that if  is an equilateral triangle
of side 1 then .

XYZ
EH = 1 / 6

Question 4.4
The diagram shows a perspective drawing of a cube with vanishing points

 and  the orthocentre of .X, Y , Z H XYZ

X

H

Y

Z

Cut out a cardboard shape as shown below, punch a hole, and bend along
the lines to form a peephole. Place the peephole over  and with the eye at
the peephole confirm that the cube looks cubical.

H
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Question 4.5
Using the same peephole as in the last question, placed over , confirm that
all the cubes look cubical, of the same size, and with parallel faces.

H

H

Question 4.6
The following perspective drawing of a cube uses two vanishing points
for 8 of the edges, where  is horizontal, and has the other 4 edges drawn
vertical (in effect  has descended to minus infinity). Prove that the drawing
will look like a cuboid whenever the eye is placed on the horizontal
semicircle with diameter . Confirm this experimentally by placing the
eye near  and rotating the paper so as to slide the eye round the semicircle
to . Watch the box changing from a matchbox shape when the eye begins
near  to a cube when the eye is in front of .

X, Y
XY

Z

XY
X

Y
X C

CX Y

5. Desargues' theorem
Question 5.1
Suppose triangles  are coplanar. Use the 3-dimensional Theorem 5 to
show that they are in point perspective if and only if they are in line
perspective.

T, T′
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Question 5.2
Suppose triangles  are coplanar. Without appealing to the 3-
dimensional Theorem 5  use projective coordinates to show that if they are
in point perspective then they are in line perspective.

T, T′

6. Regular polyhedra
Question 6.1
List the numbers of faces, edges and vertices of each of the 5 regular
polyhedra, and verify that each satisfies Euler's formula.

Question 6.2
Make the 5 regular polyhedra.

Question 6.3
Let  denote the diameters of the circumsphere, midsphere and
insphere of a regular polyhedron of edge 1. Prove that , and
that if the polyhedron has triangular faces then .

c, m, i
c2 = m2 + 1

i2 = m2 − 1
3

Question 6.4
Prove that the diameters of the 3 spheres associated with each of the regular
tetrahedron and octahedron are as in Theorem 6.2.

Question 6.5
Show that in a regular pentagon of edge 1 the
diagonal  is the positive solution of

, namely .
g

g2 − g − 1 = 0 g = (1 + 5) / 2

1

1
1

1

1

g

Remark:  Kepler called  the golden ratio. He called it a ratio because it is
the ratio of diagonal to edge in any regular pentagon. It was originally
introduced by Euclid in [8, Book VI, Definition 3].  He defined a line to
have been cut in extreme and mean ratio when, as the whole line is to the
greater segment, so is the greater to the less. In other words if  are the
lengths of the two segments into which the line has been cut then

g

a > b

  
(a + b) / a = a / b

∴ (a / b)2 − a / b − 1 = 0
∴ ab + b2 = a2

∴ a / b = g.

Question 6.6
Show that the diameters of the incircle and circumcircle of a regular
pentagon of edge 1 are  and .1 + 2 / 5 2 + 2 / 5
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Question 6.7
Show that a regular icosahedron of edge 1 can be embedded in a cube of
edge  (the golden ratio), so that each face of the cube contains an edge of
the icosahedron.  Deduce the diameters of the 3 spheres associated with the
icosahedron, as in Theorem 6.2.

g

Question 6.8
Prove that a cube of edge  (the golden ratio) can be embedded in a regular
dodecahedron of edge 1, so that each vertex of the cube is a vertex of the
dodecahedron. Show that there are 5 such cubes. Deduce the diameters of
the 3 spheres associated with the dodecahedron, as in Theorem 6.2.

g

Question 6.9
Make a stella octangula, which is the non-convex union of dual tetrahedra.
List the numbers of faces, edges and vertices, and verify that they satisfy
Euler's formula.

Question 6.10
Restricting the faces to triangles, squares, pentagons and hexagons, prove
there are exactly 15 semi-regular polyhedra. List the vertex patterns and the
numbers of faces, edges and vertices, and verify that they satisfy Euler's
formula.

Question 6.11
Make the 15 semi-regular polyhedra. Note that the midedge dodecahedron,
buckminsterfullerene, and the snub cube and snub dodecahedron are
particularly beautiful.

Question 6.12
Make a rhombic dodecahedron from the following net.

1 1

1
1

1
1

70 .5°

Question 6.13
Verify that the rhombic dodecahedron satisfies Euler's formula.
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7. Rotation groups
Question 7.1
Show that  is the rotation group of the -prism ( ) and the -
antiprism ( ). Explain why there are the 2 exceptions.

Dn n n ≠ 4 n
n ≠ 3

Question 7.2
Show that  is the rotation group of the twisted mitred cube.D4

Question 7.3
Write out the  multiplication table for . Hint: put the identity first,
then the (2,2)-cycles and finally the 3-cycles.

12 × 12 A4

Question 7.4
Show that the mitred tetrahedron, defined by replacing each vertex of the
tetrahedron by a triangle, each edge by a square and each face by a smaller
triangle, is the same as the midedge cube. Explain why its rotation group is

 rather than  inherited from the tetrahedron.S4 A4

Question 7.5
Show that the rotation group of a rhombus is . Write out the
multiplication table and verify that it is abelian.

D2

8. Tessellations and sphere packings
Question 8.1
Show there is a tessellation of  using Dehn's tetrahedron and its mirror
image in equal numbers.

�3

Question 8.2
Show there is a tessellation of  using Dehn's pentahedron (see Question
2.8).

�3

Question 8.3
Show there is a tessellation of  using right-angled tetrahedra and regular
tetrahedra of edge , in the ratio of 4:1.

�3

2

Question 8.4
Show there is a tessellation of  using regular tetrahedra and octagons in
the ratio of 2:1.

�3
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Question 8.5
How many spheres are there in a tetrahedron of spheres, of edge length 4
spheres, built according to the barrow boy's packing? Make such a
tetrahedron with marbles and glass-to-glass superglue.

Question 8.6
Let  denote the square packing of spheres and  the barrow boy's packing.
Show that (in a large region) the ratio of the number of spheres in a layer of

 to that of  is , and that the ratio of the number of layers of  to that
of  is . Hence the number of spheres in both packings is the same,
confirming Theorem 8.2.

A B

A B 3 / 2 A
B 2 / 3

Question 8.7
Make a rhombic-trapezoid dodecahedron from the following net.

70.5°

70.5°
2

3

3

3
3

3

4

Question 8.8
Verify that the rhombic-trapezoid dodecahedron has the same numbers of
faces, edges and vertices as the rhombic dodecahedron. Describe the vertex
patterns, and identify its rotation group.

Question 8.9
Show that the cells of the tessellation of  induced by the hexagonal sphere
packing are rhombic-trapezoid dodecahedra.

�3
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9. Conics
Question 9.1
Draw an ellipse by moving a pencil  inside a loop of cotton held taut
around two drawing pins . By changing the length of the loop draw a
family of ellipses, the larger the more circular, and the smaller the flatter
with greater eccentricity.

X
F, F′

F

X

F′

Question 9.2
Show that if  the conic is a hyperbola.  (Here, and in Question 9.4,
and  are defined on page 26.)

α > β α
β

Question 9.3
Show that, in a suitable coordinate system, the equation of a hyperbola is

.(x
a)2

− ( y
b)2

= 1

Question 9.4
Show that if  the conic is a parabola.α = β

Question 9.5
Show that, in a suitable coordinate system, the equation of a parabola is

.y2 = 4ax

Question 9.6
Explain why a circle looks elliptical when viewed from a point off its axis.

Question 9.7
Describe the shape of a crescent moon.
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10. Inversion
Question 10.1
Show that the angle between a chord and a
tangent of a circle equals the angle subtended by
the chord in the opposite segment of the circle.

Question 10.2
Show that inversion does not preserve the centres of spheres or circles.

11. Cross ratios
Question 11.1
Show that in a complete quadrilateral the diagonal vertices separate
harmonically the quadrilateral vertices: .(APBQ) = −1

A P
B Q

12. Rings of spheres
Question 12.1
Show that in general a tetrahedron has no midsphere touching all the edges

Question 12.2
Prove that the following 3 conditions on a tetrahedron are equivalent:

(i) The 3 sums of opposite edges are equal.
(ii) There exists a midsphere touching all the edges.

(iii) There are 4 spheres centred at the 4 vertices all touching one
another.

Show that the 6 points of contact of the 4 spheres are the points where the
midsphere touches the 6 edges.

Question 12.3
Show that if a 4-ring of spheres is interlockable then the centres of the

spheres lie in a plane.  Show, further, that if two 4-rings interlock then their
planes are .⊥
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13. Areas of spheres and volumes of balls
Question 13.1
Prove, using calculus, that the volume of a cone on any shaped base equals
1
3 base × height .

Question 13.2
Prove, using calculus, that the volume of a sphere of radius  equals .r 4

3πr3

14. Map projections
Question 14.1
Show that central projection has ratio of vertical expansion to horizontal
expansion equal to  at latitude , and is therefore not conformal.cosec θ −θ

Question 14.2
Show that stereographic projection has equal horizontal and vertical
expansions at latitude , confirming that it is conformal.θ

15. Knotting
Question 15.1
Show that codes are a generalisation of 3-colouring.

Question 15.2
Show that the product of the trefoil and the square knot has codes 3 and 5.

 
Question 15.3
Prove that the codes of all the prime knots with fewer than 8 crossings are as
shown in the diagram at the end of Section 15.

Question 15.4
Prove that any knot has only a finite number of codes.

Question 15.5
Show that the square knot is equal to its reflection.
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16. Linking
Question 16.1

Show that  has .  Is it equal to   ?L = 2

Question 16.2
Calculate the linking numbers of

Question 16.3
Show that Whitehead's link below has . This does not imply,
however, that the 2 curves are unlinked. Prove that they are in fact linked by
showing that Whitehead's link does not have code 3, but a pair of unlinked
curves does.

L = 0

Question 16.4
Draw an example of 3 linked curves that are pairwise unlinked, and prove
that they are linked.
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APPENDIX 2: Solutions

1. Spherical triangles
Solution 1.1
Angle .    Area .= 1

3 (360°) = 120° = 1
4S

A + B + C = 360 = 180 (1 + 4 ( 1
4S
S )) .   �

2. Angles in a tetrahedron
Solution 2.1
Suppose the edges of the tetrahedron are
of length 1.
By symmetry all the edge-angles are
equal, and all the solid-angles are equal.
Let  be the midpoint of .E AB
By Pythagoras .CE = DE = 3 / 2
Let  edge-angle of .θ = AB = ∠CED
From the cosine formula for triangle

,CDE

1 = 3
4 + 3

4 − 2.3
4. cos θ

A B

C

E

1 3
2

1
2

1

θ3
2

3
2

A

B

C

D

E
θ

∴ 3
2 cos θ = 1

2  ∴ cos θ = 1
3  ∴ θ = cos−1 1

3 = sec−1 3 = 70.53…°
∴  θ = sec−1 3 = 70.53

360 = 0.1959… .in edge-angle units
By Theorem 2, solid-angle  .  �= 1

4 (6 sec−13 − 1) = 3
2 sec−13 − 1

4 = 0.0439…

Solution 2.2
The faces meeting along the edges  are
and so their edge-angles are each . Let  be the
midpoint of . By Pythagoras .

AB, AC, AD ⊥
1
4 E

BC AE = 1/ 2
Let  edge-angles at .θ = ∠AED = BC, CD, DB
Then .  .tan θ = 2 ∴ θ = tan−1 2 = 54.74…°

 in edge-angle units ∴ θ = tan−1 2 = 54.74
360 = 0.1520… .

Solid-angle at , since there are 8 quadrants.A = 1
8

Let  solid-angle at . Then by Theorem 2,ψ = B, C, D
1
8 + 3ψ = 3

4 + 3 tan−1 2 − 1

∴ 3ψ = 3 tan−1 2 − 3
8

∴ ψ = tan−1 2 − 1
8 = 0.0270… .   �

A

B

C

D

E

1

1

1

θ1
2

A

B

C

E
1

1
1

2
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Solution 2.3
In Dehn's tetrahedron the faces containing  meet
at , and so the edge-angle . Similarly for .
The faces containing  meet at , and so the
edge-angle .  Similarly for .  One can fill
the cube with 6 Dehn's tetrahedra (3 of which are
mirror images) , , , , ,

. (See also Question 2.7.)  Each of these has

AB
45° = 1

8 CD
BC 90°

= 1
4 AC, BD

ABCD ABED AFED AFGD AHGD
AHCD

A B

C

D

EF

G

H

the same edge-angle at , and they sum to 1.  Therefore the edge-angle at
 is . The solid-angles of the 6 tetrahedra at  sum to the solid-angle of a

cube which is .  Therefore the solid-angle at  is .  Similarly at . The
solid-angles at  of the 2 tetrahedra with a vertex at  sum to , and hence
each is . Similarly at .

AD
AD 1

6 A
1
8 A 1

48 D
B B 1

8
1

16 C
Check Theorem 2:

2
48

+
2
16

=
2
8

+
3
4

+
1
6

− 1.   �

Solution 2.6
The midpoints of the 6 edges of the cube not containing  are equidistant
from . Therefore so are their 6 joins on the 6 faces of the cube, which
together form a hexagon in the plane bisecting .  By symmetry, it is
regular.  �

A, D
A, D

AD

Solution 2.10
Let , .θ = sec−1 3 ψ = tan−1 2
Lemma:   (in edge-angle units).θ + 2ψ = 1

2

Proof:

2 cos2 1
2θ − 1 = 1

3

∴ cos2 1
2θ = 2

3 ∴ cos 1
2θ = 2

3

ψ = tan−1 2 = sin−1 2
3

A

B

C

D

∴ 1
2θ + ψ = 90° ∴ θ + 2ψ = 1

2 .   �(in edge-angle units)

Solid-angle at A = (3
2 sec−13 − 1

4) + 3(tan−1 2 − 1
8)

= 3
2θ − 1

4 + 3ψ − 3
8

= 3
2 (θ + 2ψ) − 5

8

, by the Lemma= 3
4 − 5

8

 solid-angle of the cube= 1
8 =

3
2

1
ψ

θ
2

Edge-angle at AB = sec−1 3 + 2 tan−1 2
, by the Lemma= 1

2

  edge-angle at a face of the cube.  �=
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3. Concurrencies in a tetrahedron
Solution 3.1

g =
1
2 (a + b

2
+

c + d

2 ) .   �

Solution 3.2
 lies on the face-trisector of  because . Similarly,

lies on the other face-trisectors.  �
S ABC SA = SB = SC S

Solution 3.3
 lies on the vertex-trisector of  because it is equidistant from .

Similarly for the other vertex-trisectors.  �
I A b, c, d

Solution 3.4
Let  denote the coordinates of the vertices .a, b, c, d A, B, C, D

AB ⊥ CD ⇒ (a − b) . (c − d) = 0

AC ⊥ BD ⇒ (a − c) . (b − d) = 0

Multiply out, subtract and factorise.

∴ (a − d) . (c − b) = 0 ∴  AD ⊥ BC.   �
 

Solution 3.5
Let  be the altitude of  through .AE ABCD A
Then .AE ⊥ BCD
∴ .AE ⊥ CD
But , by hypothesis.AB ⊥ CD
∴    .ABE⊥ CD
∴      .BE ⊥ CD

A

E

B

C

D

 is an altitude of . Similarly  are altitudes of , and so
 is the orthocentre of .  �

∴  BE BCD CE, DE BCD
E BCD

Solution 3.6
Let  be the orthocentre of .E BCD
Then , since by hypothesis  is an altitude of .AE ⊥ BCD AE ABCD

.∴ AE ⊥ CD
Also  , since  is the orthocentre of .BE ⊥ CD E BCD

     .∴ ABE⊥ CD
∴       .AB ⊥ CD
Similarly for the other 2 pairs of opposite edges.  �

A

E

B

C

D
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Solution 3.7
Let  be the line through the orthocentre of, and  to, .  If  lies on
then opposite edges are  by Question 3.6. Conversely if opposite edges are

 then  lies on  by Question 3.5. In most cases  does not lie on , but
there are  positions for  on , and  positions for  not on .  �

L ⊥ BCD A L
⊥

⊥ A L A L
∞ A L ∞3 A L

4. Perspective
Solution 4.1
EX ⊥ EY , EZ
∴ EX ⊥ EYZ
∴ EX ⊥ YZ
Similarly  and .  Therefore pairs
of opposite edges of the tetrahedron  are .
Therefore the altitude through  goes through the
orthocentre of  by Question 3.5.  �

EY  ⊥ ZX EZ ⊥ XY
EXYZ ⊥

E
XYZ

E

X

Y

Z

H

Solution 4.2
 are perpendicular axes. The  to  lies in the positive

quadrant relative to those axes. Therefore the orthocentre of  lies in the
interior of .  Therefore  is an acute-angled triangle.  �

EX, EY , EZ ⊥ XYZ
XYZ

XYZ XYZ

Solution 4.3
. Therefore with respect

to axes  the orthocentre  has
coordinates

EX = EY = EZ = 1
2

EX, EY , EZ H

1
3 2

(1,  1,  1) . ∴ EH =
3

18
=

1
6

.   �

E

X

Y

Z

1

1

11
2

1
2

Solution 4.6
As  descends to minus infinity the spheres with diameters  both
become the same horizontal plane through .  The sphere with diameter

 cuts this plane in a horizontal circle through , of which the
semicircle in front of the picture consists of observation points. From any of
these points the picture will look like a cuboid.  �

Z XZ, YZ
XY

XY X, Y

https://doi.org/10.1017/S0025557200590421 Published online by Cambridge University Press

https://doi.org/10.1017/S0025557200590421


66 THE MATHEMATICAL ASSOCIATION

5. Desargues' Theorem
Solution 5.1
Let  be the plane containing the triangles .
Suppose they are in point perspective from .

Π T = XYZ, T ′ = X′Y ′Z′
V

V
X

Y

X′

Y ′
Z

Z′

Π

U

U ′

X″Y″
Z″

Choose a line through  not in , and choose 2 points  on this line.
In the plane  let  be the intersection of . Similarly let

 and  be the intersections of  and , and let
.  Let  be the line of intersection of  with the plane of .

Let  be the intersections of  with .

V Π U ′, U
VUU ′XX′ X″ UX, U ′X′

Y″ Z″ UY , U ′Y ′ UZ, U ′Z′
T″ = X″Y″Z″ L Π T″

A, B, C L Y″Z″, Z″X″, X″Y″
Now  are in point perspective from , and so are in line

perspective by Theorem 5. Therefore  goes through . Similarly
goes through , since  are in point perspective from . Therefore

 meet at .  Similarly the other two pairs of corresponding sides
meet at . Therefore  are in line perspective as required.

T, T″ U
YZ A Y ′Z′

A T′, T″ U ′
YZ, Y ′Z′ A

B, C T, T′

A

B

C

L
V

X
Y

X′

Y′
Z

Z′
Z1

Conversely suppose  are in line perspective on , where ,
 meet at , ,  meet at , and ,  meet at .  Let  be the

T, T′ L = ABC YZ
Y ′Z′ A ZX Z′X B XY X′Y ′ C V
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intersection of  and .  Let  be the intersection of  with , and
let . Then  are in point perspective from , and hence in
line perspective on  by the above. Therefore  goes through

.

XX′ YY ′ Z1 VZ Y ′Z′
T1 = X′Y ′Z1 T, T1 V

L = AC Z1X′
L ∩ ZX = B

∴ Z1X′ = Z′X′ ∴ Z1 = Z′ ∴ T1 = T′
Therefore  are in point perspective.  �T, T′

Solution 5.2
The projective coordinates  for a point  in the plane are not
all zero, and are unique up to multiplication by non-zero scalars.

x = (x1, x2, x3) X

v

x

y
z

x′

y′

z′
Since  are collinear we can writeV , X, X′

x′ = λv + μx,   with  λ, μ ≠ 0.
Keeping  fixed we can rechoose the coordinates  of  by

multiplying them by scalars .
v x, x′ X, X′

λ / μ, λ

∴ λx′ = λv + μ ( λ
μ

 x)
∴ x′ = v + x

Similarly  and . Lety′ = v + y z′ = v + z
a = y′ − z′ = y − z
b = z′ − x′ = z − x
c = x′ − y′ = x − y.

Then  lies on  since  is a linear combination of . Similarly  lies on
, and so  is the meet of . Similarly  and  are the meets of

 and . Finally  are collinear because .
Hence  are in line perspective.  �

A YZ a y, z A
Y ′Z′ A YZ, Y ′Z′ B C
ZX, Z′X′ XY , X′Y ′ A, B, C a + b + c = 0

T, T′
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6. Regular polyhedra
Solution 6.1

Polyhedron Numbers of Euler formula
faces edges vertices

tetrahedron 4 6 4  4 − 6 + 4 = 2
cube 6 12 8  6 − 12 + 8 = 2
octahedron 8 12 6  8 − 12 + 6 = 2
icosahedron 20 30 12  20 − 30 + 12 = 2
dodecahedron 12 30 20 12 − 30 + 20 = 2.

Solution 6.2
I suggest two possible ways of making the 5 regular polyhedra.
(i) A cheap way is to use drinking straws and cotton. Thread a piece of
cotton through the straws representing the edges of each face, pull tight and
knot. One can stop the cotton from cutting through the straws by winding
sticky tape twice round each end of each straw. These make large models
that are surprisingly rigid, but not very robust.
(ii) A more elegant, quick and easy way (but more expensive) is to use
Polydron Frameworks, invented by Edward Harvey, and sold by Polydron
International Ltd [15].  The pieces are plastic boundaries of triangles,
squares, pentagons and hexagons, all of edge length 7cm, which cleverly
clip together to form beautiful robust models. You can get different colours,
but all my own models are green.

Solution 6.3
Join an edge  to the centre  of the polyhedron
and use Pythagoras: .

AB O
c2 = m2 + 1

Suppose now that the faces are equilateral triangles.
Let  be an altitude of a face , and  the
centroid (= orthocentre) of the face. Then

.

AX ABC E

AX = 1
2 3

.∴  EX = 1
3AX = 1

2 3

By Pythagoras in , , .�OEX OE = i
2 OX = m

2

.  �∴  m2 = i2 + 1
3

O

A

B

C
E X1

m
2

1
2 3

O

A B

m
2

c
2

1
2

i
2

Solution 6.4
A regular tetrahedron of edge 1 is contained in a cube of
edge . Therefore the circumdiameter of the tetrahedron
is the diagonal of the cube, .  The middiameter of
the tetrahedron is the distance between opposite edges,
which is the same as the edge of the cube, . The
indiameter of the tetrahedron is given by Question 6.3:

1/ 2
3 (1/ 2)

1/ 2
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i = m2 −
1
3

=
1
2

−
1
3

=
1
6

.

In a regular octahedron of edge 1 the midsection is a square
of edge 1. The circumdiameter of the octahedron is the
distance between opposite vertices, which is the same as the
diagonal of the square, . The middiameter of the octagon
is the distance between opposite edges, which is the

2

same as the edge of the square, 1. The indiameter is given by Question 6.3:

i = m2 −
1
3

= 1 −
1
3

=
2
3

.   �

Solution 6.5
Let  be a regular pentagon of edge 1. ABCDE
The diagonals . Now  is a rhombus, since opposite
edges are parallel and equal.

AC = BE = g CDEF

∴ FC = FE = 1.

∴ FA = FB = g − 1.
The isosceles triangles  are similar.FAB, ABE

∴ 
FA
AB

=
AB
BE

.

A

B

C D

EF

∴ 
g − 1

1
=

1
g

.

∴ g2 − g − 1 = 0.

∴ g =
1 ± 5

2
,

and, since , the positive root is chosen.  �g > 0

Solution 6.6
Let  be the diameters of the incircle, circumcircle of a regular pentagon
of edge 1.  Let  be the altitude: . By Pythagoras

d, e
a a = 1

2d + 1
2e

a2 = g2 − 1
4

= (1 + 5
2 )2

− 1
4

= 1
4 (1 + 2 5 + 5 − 1)

∴ a = 1
2 5 + 2 5.

g
e
2

e
2

d
2

1
2

Now , by Pythagoras.  .e2 = d2 + 1 ∴e = d2 + 1
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∴ d + d2 + 1 = d + e = 2a = 5 + 2 5

∴ d2 + 1 = 5 + 2 5 − d

∴ d2 + 1 = 5 + 2 5 − 2d 5 + 2 5 + d2

∴ 2d 5 + 2 5 = 4 + 2 5 = 2 (2 + 5)

∴ d =
2 + 5

5 + 2 5
=

2 + 5

(2 + 5) 5
=

2 + 5
5

= 1 +
2
5

∴ e = d2 + 1 = 1 +
2
5

+ 1 = 2 +
2
5

.   �

Solution 6.7
Consider a cube of edge , with rectangular axes . Put an edge of
length 1 in the middle of each face of the cube, parallel to the -axis
according as to whether the face of the cube is parallel to the , ,

-planes.

g x, y, z
x, y, z

(x, y) (y, z)
(z, x)

A

B

x
y

z

Join the closest ends of the edges in neighbouring faces. Writing the join
in the diagram as a vector:

AB

AB
→

= (1
2, g

2, g − 1
2 )

∴ | AB
→

 |2 = 1
4 (1 + g2 + (g − 1)2) = 1

4 (2g2 − 2g + 2) = 1,   g2 − g = 1.since

Hence all the joins have length 1, and so we have an icosahedron of edge 1.
The middiameter  is the distance between opposite edges, which is the

same as an edge of the cube,
m

m = g = 1 + 5
2 .

By Question 6.3 the circumdiameter  is given byc

c = m2 + 1 =
1 + 2 5 + 5

4
+ 1 =

5 + 5
2

.

Again by Question 6.3 the indiameter  is given byi

i = m2 − 1
3 =

3 + 5
2

−
1
3

=
14 + 6 5

12
=

3 + 5
2 3

.  �
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Solution 6.8
Let  be the centre of the dodecahedron and  an edge (of length 1).  By
symmetry of reflection in the plane  the diagonal .

O XY
OXY AB ⊥ OXY

A B

CD

E
F

G
O

X

Y

. , since the latter are parallel to .  Similarly
.  Therefore  is a square of edge , since it consists of

diagonals of the pentagonal faces (see Question 6.5). Similarly ,
 are squares. The 3 squares determine a cube of edge .

∴ AB ⊥ XY ∴ AB ⊥ AD, BC XY
CD ⊥ AD, BC ABCD g

ABEF
BCGE g

Similarly each diagonal of a face of the dodecahedron determines a
cube, and the 5 diagonals of a face determine 5 different cubes. The
edges of the cubes are determined by the  diagonals of the faces of
the dodecahedron.

5 × 12
12 × 5

The circumsphere of the dodecahedron is the same as that of the cube,
and therefore has diameter

c = 3g =
3 (1 + 5)

2
.

By Question 6.3 the middiameter  of the dodecahedron is given bym

m = c2 − 1 =
3 (6 + 2 5)

4
− 1 =

14 + 6 5
4

=
3 + 5

2
.

To calculate the indiameter  we join  to an altitude of a face and apply
Pythagoras.

i O

i = m2 − d2,  d = 1 + 2 / 5 where by Question 6.6

=
7 + 3 5

2
−

5 + 2 5
5

=
35 + 15 5 − 10 − 4 5

10

=
25 + 11 5

10
.   �

Solution 6.9
The stella octangula has 24 triangular faces, 36 edges and 14 vertices.  We
verify that .  �24 − 36 + 14 = 2
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Solution 6.10
The classification of semi-regular polyhedra having faces with  edges is
proved by listing all possible vertex patterns. Let  denote triangles,
squares, pentagons and hexagons, which have internal angles 60, 90, 108
and 120 degrees.  The symbol , for example, indicates a vertex
pattern of 1 triangle and 2 squares, which has angle sum 240, and generates
the  3-prism, with global pattern .  Each vertex pattern must have at
least 3 faces and must have an angle sum of less than 360, which limits the
choice to 19 possibilities as follows.

≤ 6
t, s, p, h

t + 2s

2t + 3s

2t + s 210 × 2t + h 240 ×
3t + s 270 � 3t + h 300 �
4t + s 330 � t + 2h 300 �
t + 2s 240 �
2t + 2s 300 �× 2s + p 288 �
t + 3s 330 �� s + 2p 306 ×

2t + p 228 × 2s + h 300 �
3t + p 288 � s + 2h 330 �
4t + p 348 �
t + 2p 276 × 2p + h 336 �
2t + 2p 336 �×

In the above list, the first column denotes the vertex pattern, the second its
angle sum, and the third indicates whether or not it generates a semi-regular
polyhedron. The symbol  indicates that it does, and a × indicates that it
does not. For instance , ,  generate 4, 5, 6-pyramids,
which are ruled out because the vertex at the top of a pyramid does not have
the same pattern as the other vertices.  Meanwhile ,  fail
because if one tries to generate a polyhedron from either of these patterns
then it does not close up. The patterns ,  are indicated with
both  and  because, in the vertex pattern, if the triangles alternate with the
other 2 faces then it does indeed generate a semi-regular polyhedron, but if
they do not alternate then either it does not close up, or else generates a
polyhedron with different types of vertex pattern, and hence is not semi-
regular.  Finally  has a double symbol  because it generates two
different polyhedra, whereas all the others generate a unique polyhedron.
The list of 15 marked  is shown below in detail, and agrees with the list of
15 semi-regular polyhedra described in Section 6. The list of rotation groups
in the last column refers to the results of Section 7.

�
2t + s 2t + p 2t + h

t + 2p s + 2p

2t + 2s 2t + 2p
� ×

t + 3s � �

�
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Vertex 
pattern

Global 
pattern

Name of semi-
regular polyhedron

Euler formula
F − E + V

Rotation 
group

t + 2s 2t + 3s 3-prism 5 − 9 + 6 = 2 S3

t + 3s 8t + 18s mitred cube 26 − 48 + 24 = 2 S4

t + 3s 8t + 18s twisted mitred cube 26 − 48 + 24 = 2 D4

2t + 2s 8t + 6s midedge cube 14 − 24 + 12 = 2 S4

3t + s 8t + 2s 4-antiprism 10 − 16 + 8 = 2 D4

4t + s 32t + 6s snub cube 38 − 60 + 24 = 2 S4

2t + 2p 20t + 12p midedge dodecahedron 32 − 60 + 30 = 2 A5

3t + p 10t + 2p 5-antiprism 12 − 20 + 10 = 2 D5

4t + p 80t + 12p snub dodecahedron 92 − 150 + 60 = 2 A5

t + 2h 4t + 4h truncated tetrahedron 8 − 18 + 12 = 2 A4

3t + h 12t + 2h 6-antiprism 14 − 24 + 12 = 2 D6

2s + p 5s + 2p 5-prism 7 − 15 + 10 = 2 D5

s + 2h 6s + 8h truncated octahedron 14 − 36 + 24 = 2 S4

2s + h 6s + 2h 6-prism 8 − 18 + 12 = 2 D6

p + 2h 12p + 20h buckminsterfullerene 32 − 90 + 60 = 2 .A5

This completes the classification of semi-regular polyhedra having faces
with at most 6 edges.

Solution 6.13
The rhombic dodecahedron has 12 faces, 24 edges and 14 vertices. We
verify that

12 − 24 + 14 = 2.   �

7. Rotation Groups
Solution 7.1
Given an -prism , , the plane halfway between
top and bottom meets the sides in an -gon .  Any
rotation of  induces a rotation of , and vice versa.
Therefore the rotation group of  is the same as that of

, namely .

n P n ≠ 4
n Q

P Q
P

Q Dn

P

Q

The case  is exceptional because the 4-prism is a cube, and so there
are extra symmetries, which are not in , that rotate the top and bottom of
the cube onto the sides. Therefore the rotation group is  rather than its
subgroup .

n = 4
D4

S4
D4

https://doi.org/10.1017/S0025557200590421 Published online by Cambridge University Press

https://doi.org/10.1017/S0025557200590421


74 THE MATHEMATICAL ASSOCIATION

Given an -antiprism , , the halfway
plane meets the sides in a -gon . Let  be an -
gon joining every other vertex of . Then any
rotation of  induces a rotation of , and vice versa.
Therefore the rotation group of  is the same as that

n A n ≠ 3
2n B C n

B
A C

A

A

C

of , namely . The case  is exceptional because the 3-antiprism is
an octahedron, and so there are extra symmetries, which are not in , that
rotate the top and bottom onto the sides. Therefore the rotation group is
again  rather than its subgroup .   

C Dn n = 3
D3

S4 D3 �

Solution 7.2
In the twisted mitred cube  there is a unique octagonal
ring of 8 squares (as opposed to the mitred cube in
which there are 3 such rings). Therefore any rotation
must send this ring to itself. Regarding this ring as
horizontal, let  be a horizontal square joining the

T

S

T
S

midpoints of every other vertical edge of the ring. Then every rotation of
induces a rotation of , and vice versa. Hence the rotation group of  is the
same as that of , namely .  

T
S T

S D4 �

Solution 7.3
The multiplication table for  is:A4

1 12.34 13.24 14.23 123 132 124 142 134 143 234 243

1 1 12.34 13.24 14.23 123 132 124 142 134 143 234 243
12.34 12.34 1 14.23 13.24 134 234 143 243 123 124 132 142
13.24 13.24 14.23 1 12.34 243 124 132 134 142 234 143 123
14.23 14.23 13.24 12.34 1 142 143 234 123 243 132 124 134

123 123 243 142 134 132 1 14.23 234 124 12.34 13.24 143
132 132 143 234 124 1 123 134 13.24 14.23 243 142 12.34
124 124 234 143 132 13.24 243 142 1 12.34 123 134 14.23
142 142 134 123 243 143 14.23 1 124 234 13.24 12.34 132
134 134 142 243 123 234 12.34 13.24 132 143 1 14.23 124
143 143 132 124 234 14.23 142 243 12.34 1 134 123 13.24
234 234 124 132 143 12.34 134 123 14.23 13.24 142 243 1
243 243 123 134 142 124 13.24 12.34 143 132 14.23 1 234

Writing the (2,2)-cycles first reveals that they, together with the identity,
form an abelian subgroup of order 4 (isomorphic to ).  D2 �
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Solution 7.4
Each vertex of the mitred tetrahedron lies on 2
triangles, one coming from a vertex of the
tetrahedron and the other from a face, separated by 2
squares coming from edges of the tetrahedron.
Therefore the mitred tetrahedron has vertex pattern

, global pattern , with 14 faces,2t + 2s 8t + 6s
24 edges and 12 vertices, the same as the midedge cube (see Question 6.10).
The identification can be visualised from the standard embedding of a
tetrahedron in a cube. The rotation of order 2 about the join of opposite
vertices is induced by the rotation of the cube about the join of midpoints of
opposite edges, but is not induced by any rotation of the tetrahedron because
it interchanges 2 triangles, one derived from a vertex and the other from a
face. Therefore the rotation group is  induced from the cube, rather than
the subgroup  from the tetrahedron.  

S4
A4 �

Solution 7.5
The rhombus has 3 rotations  of order 2 about the axes shown.  The
multiplication table is the same as that of , which is abelian because the
table is symmetric about the leading diagonal.

ω, a, β
D2

D2 =
1 ω α β
ω 1 β α
α β 1 ω
β α ω 1

α

β

ω

�

1 ω α β
1
ω
α
β

 
8. Tessellations and sphere packings
Solution 8.1
Use the cubic tessellation, and fill each cube, as in Question 2.7, with 3
Dehn's tetrahedra and 3 mirror images.  �

Solution 8.2
Use Question 2.9.  �

Solution 8.3
Use Question 2.10.  �

Solution 8.4
In the cubic lattice place a tetrahedron inside each cube so that its vertices
are at odd points of the lattice (points whose integer coordinates have an odd
sum). Then at each even point there will be 8 right-angled tetrahedra, whose
union is a regular octahedron of edge . Thus 1 octahedron corresponds to
8 right-angled tetrahedra, and hence to 2 of the regular tetrahedra.  

2
�
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Solution 8.5
A barrow boy's tetrahedron, of edge 4, contains  spheres.1 + 3 + 6 + 10 = 20

�

Solution 8.6
Suppose the spheres have radius 1. The distance
between two rows in a layer of  is 2, while that in
is .  Therefore in a large region the ratio of
numbers of spheres in a layer of  to that in  is

.

A B
3

A B
3 / 2

1

1

1 3

In the second layer of  each sphere sits on 4
spheres, and their centres form a square pyramid of
edge 2. An altitude of a sloping face  of the pyramid
is , and hence the height of the pyramid is .
Therefore the height between two layers is .
Meanwhile in  we use a triangular pyramid because

A

3 2
2

B

2

2 1

1
1

32

each sphere sits on 3 spheres. The height of a triangular pyramid is ,2 2 / 3
and so that is the height between two layers of .
Hence the ratio between heights of layers in  and
is .  Therefore the ratio
between the number of layers in  and  is .
Therefore the number of spheres in  and  is the
same, confirming Theorem 8.2.  

B
A B

2 / (2 2 / 3) = 3 / 2
A B 2 / 3

A B
�

3

1
3

2 2
3

1
1

2
3

Solution 8.8
The rhombic-trapezoid dodecahedron has 12 faces, 24 edges and 14
vertices, the same as the rhombic dodecahedron. 2 vertices each have 3
rhombi meeting at their larger angles; 6 vertices each have 1 rhombus and 2
trapezia meeting at their larger angles; and 6 vertices each have 2 rhombi
and 2 trapezia meeting at their smaller angles. The rotation group is ,
induced by rotations of the triangle joining the midpoints of the 3 longest
edges.  

D3

�
 

Solution 8.9
  The tessellation induced by the hexagonal packing is a modification of

the barrow boy's tessellation. In the latter each rhombic dodecahedron is
stacked so that the line joining two vertices where 3 rhombi meet is vertical.
There are 3 rhombi at the top, 3 at the bottom, and 6 round the sides. The
horizontal midplane cuts the 6 side faces in a hexagon.

The main differing feature of the hexagonal packing is that there is a
reflectional symmetry in the midplane. Hence a cell of the induced
tessellation is the same below the midplane as the rhombic dodecahedron,
and above the midplane is its reflection. Therefore each side rhombus is
replaced by a trapezium.
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1

1

2

2
3

3 1

1

2

2
2

3

3

4

Thus the cell has 3 rhombi at the top, 3 at the bottom, and 6 trapezia round
the sides, forming the rhombic-trapezoid dodecahedron.  �

9. Conics
Solution 9.1

�
Solution 9.2
Let  be the conic, the intersection between the plane and cone. The
condition  implies that the plane meets both parts of the cone as
shown.

H
α > β

C

G

H

F

S

V

C ′

X
G′

F′

S ′

H
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Let  be the two spheres touching both the cone in circles  and the
plane in points . Let  be the vertex of the cone. Given , let
cut  in . Then

S, S′ C, C′
F, F′ V X ∈ H VX

C, C′ G, G′

XF = XG,   X to  Sbeing tangents from

and  XF′ = XG′,  X to  S′.being tangents from

 constant, the distance between .
Therefore  is a hyperbola with foci .  
∴ XF − XF′ = XG − XG′ = GG′ = C, C′

H F, F′ �

Solution 9.3
Let  be the hyperbola, with foci  at .H F, F′ (±c,  0)

a c
x

y

O A F

X H

F′
−c

Let  be the positive vertex. Let  be a point on .  When
then .

A = (a,  0) X H X = A
AF′ − AF = (a + c) − (c − a) = 2a

When  then , by constancy.
Square:

X = (x, y) | (x + c)2 + y2 − (x − c)2 + y2 | = 2a

(x2 + y2 + c2 + 2cx) + (x2 + y2 + c2 − 2cx)
 − 2 (x2 + y2 + c2 + 2cx) (x2 + y2 + c2 − 2cx) = 4a2

∴ (x2 + y2 + c2)2 − 4c2x2 = (x2 + y2 + c2) − 2a2

Square:

(x2 + y2 + c2)2
− 4c2x2 = (x2 + y2 + c2)2

− 4a2 (x2 + y2 + c2) + 4a4

∴ c2x2 − a2 (x2 + y2 + c2) = −a4

∴ (c2 − a2) x2 − a2y2 = a2 (c2 − a2)
Let , where , and so .  Then .b2 = c2 − a2 c > a b > 0 b2x2 − a2y2 = a2b2

∴ (x
a)2

− ( y
b)2

= 1.  �
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Solution 9.4
Let  be the plane, and  the conic of intersection of  with the cone.  The
condition  implies that  is parallel to a generator of the cone, and
therefore meets only one part of the cone.

Π P Π
α = β Π

V

L
Π

Y
C G

S F

X

P

G′

C′
X′

Let  be the sphere touching the cone in a circle  and  in a point .  Let
the horizontal plane containing  meet  in the line .  Given , let the
horizontal plane through  meet the cone in a circle .  Let  be the vertex
of the cone, and let  meet  in . Let the generator of the cone parallel to

 meet  in . Let  be the  from  onto . Then

S C Π F
C Π L X ∈ P

X C′ V
VX C G

Π C, C′ G′, X′ XY ⊥ X L

XY = X′G′, being parallel segments between horizontal planes

= XG,  C, C′being the distance between the horizontal circles

= XF,  X to  S.being tangents from

Therefore  is equidistant from  and .  Therefore the locus of  is a
parabola.  

X F L X
�

Solution 9.5
Suppose the parabola  has focus  and directrix .P F = (a, 0) x = −a

x

y

a

L

F

X P

−a

Let  be a point on . ThenX = (x, y) P

x + a = (x − a)2 + y2.
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Square:

x2 + 2ax + a2 = x2 − 2ax + a2 + y2

∴ y2 = 4ax.   �

Solution 9.6
Let  be the eye, and  the circle. Let  be the centre, and  the radius, of

, and  the plane containing . Let  be the  from  onto . Let
meet  in the diameter , and let  be the  diameter. Let  be the
angle bisector of .

E C O a
C Π C EX ⊥ E Π XO

C YZ AB ⊥ EM
∠YEZ

E

X
Y

AC

Z K O
M

B

ΠA′
B′

Let  be the circular cone with vertex  and axis  through  and .
Then  meets  in an ellipse , by Theorem 9.1, with major axis  and
touching  at . Let  meet  in . Then  is the minor axis of

. Let . The whole picture is symmetrical about the plane
. Let  be the linear expansion of  that keeps the plane  pointwise

fixed, and expands the axis  by a factor .

Q E EM Y Z
Q Π K YZ

C Y , Z Q AB A′, B′ A′B′
K b = OA′ = OB′
EXY f �3 EXY

AB a / b
We claim . For, with respect to axes , the ellipse

has equation
f (K) = C OY , OA K

(x
a)2

+ ( y
b)2

= 1, by Theorem 9.2.

Now  maps  to  where . . Therefore
 because

f (x, y) (x, y′) y′ = a
b y ∴ y

b = y′
a

f (K) = C

(x
a)2

+ (y′
a )2

= 1,  x2 + y′2 = a2.and so

Similarly  maps circles to ellipses, and hence  maps the circular cone
onto an elliptical cone . More precisely  is the axis of the cone ,
and if  is a plane , then  meets  in a circle , and  is the cone on

. Therefore  is the cone on the ellipse , and is therefore an
elliptical cone. But  and so . Therefore  looks
elliptical to the eye .  

f f Q
f (Q) EM Q

Σ ⊥ EM Q Σ C′ Q
C′ f (Q) f (C′)

Q ⊃ K f (Q) ⊃ f (K) = C C
E �
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Solution 9.7
The outside of a crescent moon is a semicircle from  to ,
which is half the circular boundary  of the moon seen
from the Earth. The inside of the crescent moon is the
visible half of that circle bounding the half of the moon lit
by the sun. By Question 9.6 that circle looks to the eye as
an ellipse  touching  at  and . Therefore the crescent

A B
C

E C A B

A

B C
E

moon is half the region between the circle  and the inscribed ellipse .
When the complementary region inside  is lit it is called a gibbous moon.

C E
C

Today most artists are not aware of these facts, and so if they have to
paint a crescent moon they tend to paint the inside as an arc of another
(larger) circle, thereby creating nonzero angles at  and , which look
coarse to the eye compared with the delicacy of the points of the real
crescent moon.  

A B

�

10. Inversion
Solution 10.1
The left diagram shows by isosceles triangles that the angle subtended by a
chord in a circle is half that subtended at the centre . The right diagram
shows that the latter equals the angle between the chord and tangent.

O

θ

2θ

φ

2φ
O

θ
θθ

90 − θ
O �

Solution 10.2
Let  be inversion with respect to the sphere centre  and radius .
Suppose  maps sphere  to sphere .

f O k > 0
f A A′

O

A

Qa − r a + r

k2

a + r k2

a − r

Q′

A′

Let  be the centre of ,  be the radius of , and  be the centre of .  Let
 and . Then  meets  in points at distances ,

 from .  Therefore  meets  in points at distances ,
 from .

Q A r A Q′ A′
a = OQ a′ = OQ′ OQ A a + r
a − r O OQ A′ k2 / (a + r)
k2/ (a − r) O
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∴ a′ =
1
2 ( k2

a + r
+

k2

a − r )
=

k2a
a2 − r2

≠
k2

a
,  O  f (Q) of Q,the distance from to the image

because , since . Therefore .  a2 ≠ a2 − r2 r > 0 f (Q) ≠ Q′ �

11. Cross-ratios
Solution 11.1
In a complete quadrilateral the 4 lines  meet in 6 vertices , , ,

, , , and the 3 diagonals , ,  meet in the 3
diagonal vertices .

a, b, c, d A B C
D E F p = EF q = CD r = AB

P, Q, R

A

B

C

D

E

F

Q

R

a
b

c

d pq

P r

Let  x = (APBQ)

= (CPDR) ,  Eby projection from

= (BPAQ) ,  Fby projection from

=
BP.AQ
BQ.AP

= (AP.BQ
AQ.BP)−1

=
1
x

.

∴ x2 = 1.
But  because the 4 points are distinct.x ≠ 1

∴ x = −1.   �
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12. Rings of spheres
Solution 12.1
It suffices to produce a counterexample.
Consider Dehn's tetrahedron , inscribed
in the unit cube. If there were a midsphere
then it would meet each face in its incircle.
Therefore the incircles of the 4 faces would
meet pairwise at the points where the
midsphere touches the edges.  The incircle of

 meets  at .

ABCD

ABC BC X
Let the radius of the incircle be .
Then the lengths of the tangents are as
shown.  Hence  and so

.  Similarly, the incircle of
meets  at , where . ,
giving a contradiction.  Therefore  has
no midsphere.  

x = BX

2(1 − x) = AC = 2
x = 1 − 1

2
BCD

BC Y CY = x ∴ X ≠ Y
ABCD

�

A
B

C

D

X

Y

AB

C

X

1 − x
1 − x

1 − x

1 − x

x

x

Solution 12.2
  Suppose the sums of opposite edges are equal. For each face,

define the inline of that face to be the line  to the face through the incentre
(the intersections of the angle bisectors). Given a face , let  be the
incentre and let  be the perpendiculars onto the edges
and let

(i) ⇒ (ii)
⊥

XYZ I
IA, IB, IC YZ, ZX, XY

A
B

CX

Z

Y

a

a

b

b

c c
a = XB = XC
b = YC = YA
c = ZA = ZB.

The incircle of  goes through , with
centre  and radius .  Moreover

XYZ A, B, C
I IA = IB = IC

a − b = (a + c) − (b + c) = y − x.
We claim that the incircle of  also goes
through  because, if , ,
then  by hypothesis (i).

XYT
C ξ = XT η = YT ζ = ZT

x + ξ = y + η
∴ ξ − η = y − x = a − b.

X Z

Y
C

T

Therefore  is where the incircle of  touches . Let  be the plane
 through . Then  because . . Also

contains the inline of  because the latter is , and therefore .
Similarly  contains the inline of . Hence the inlines of
meet. Similarly the 4 inlines meet pairwise. But no 2 are coplanar. Therefore
all 4 are concurrent, at  say. Since  lies on the inline of  it is

C XYT XY Π
⊥ XY C Π ⊃ CI CI ⊥ XY ∴ I ∈ Π Π

XYZ ⊥ XYZ ⊥ XY
Π XYT XYZ, XYT

M M XYZ
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equidistant from the edges . Similarly  is equidistant from all
6 edges. Therefore the sphere centre  and radius  is the midsphere of

 touching all 6 edges.

XY , YZ, ZX M
M MA

XYZT
  Assume there exists a midsphere.

Let the midsphere touch  in
.  Then  since they

are all tangents from  to the midsphere.
Therefore the sphere centre , radius , cuts
the edges   orthogonally at

. Similarly the sphere centre , radius
, cuts the edges  orthogonally

at . Therefore the 2 spheres touch at .

(ii) ⇒ (iii)
XT , YT, ZT

D, E, F XB = XC = XD
X

X XC
XZ, XY , XT

B, C, D Y
YC YX, YZ, YT

C, A, E C

A

B

C

D

E
F

T

Y

Z
X

Similarly there exist spheres centred at  such that the 4 spheres all touch
each other at the 6 points where the midsphere touches the 6 edges.

Z, T

  Assume there are 4 spheres centred at  all touching
one another. Let , , ,  be their radii. Then
(iii) ⇒ (i) X, Y , Z, T

rX rY rZ rT

XY = rX + rY and  ZT = rZ + rT

∴ XY + ZT = rX + rY + rZ + rT

= XZ + YT = XT + YZ, .similarly

Therefore the 3 sums of opposite edges are equal.  �

Solution 12.3
If a 4-ring of spheres is interlockable then the

contact circle is orthogonal to the spheres by Theorem
12.6, and so the centres of the spheres lie on the
tangents to the contact circle at the contact points, and
hence lie in the plane of the contact circle.

Given interlocking 4-rings,  let  denote their
contact circles and  the planes containing them.  We
have to show .  Invert in a contact point  on .

α, β a, b
A, B

A ⊥ B O a

O

a′A′

b′

B′

Then the two spheres touching at  become two parallel planes, and
becomes a line  perpendicular to those planes.  Since  contains , it
inverts into itself, .  Therefore  is the plane containing  and .
Meanwhile  inverts into a 4-ring  consisting of 4 equal spheres touching
the 2 planes, with contact circle  lying midway between the planes.
inverts into the sphere  containing  and , and  is a diameter of
because it is  and goes through the centre of .  Therefore  is
orthogonal to .  Therefore , since inversion is conformal by Theorem
10.4.  

O a
a′ A O

A = A′ A′ O a′
β β′

b′ B
B′ b′ O a′ B′

⊥ b′ b′ A′
B′ A ⊥ B

�
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13. Areas of spheres and volumes of balls
Solution 13.1
Let  be a cone of height  on a base  of
any shape.  Let  be the section at height
 below the vertex.  Then  equals

scaled down by a factor .

C h B
Cx

x Cx B
x
h

∴ C = ∫
 h

0
B (x

h)2

dx

=
B
h2 ∫

 h

0
x2dx

=
B
h2 (h3

3 ) = 1
3 × base× height .  �

B

C

Cx

x

h

Solution 13.2
Volume of slice =

π (r cos θ)2 d (r sin θ) = π (r cos θ)2 r cos θ dθ = πr3 cos3 θdθ.

∴ volume of sphere = ∫
 π/2

−π/2
πr3 cos3θ dθ

= 2πr3 ∫
 π/2

0
cosθ (1 − sin2 θ)dθ

= 2πr3[sinθ − 1
3 sin3θ] π/2

 0

= 2πr3[1 − 1
3]

= 4
3πr3.  �

dθ
r

θ

14. Map projections
Solution 14.1
Central projection maps

,
in polar coordinates.
(φ, −θ) → (r cot θ, φ)

S

Pr
θ

θ
r cot θ

P′

Therefore the small rectangle at  induced by the small increments
 has sides

(φ, −θ)
(dφ, dθ)

(r cos θ dφ, −r dθ) ,
and is mapped to the small rectangle

(r cot θ dφ, d (r cot θ)) = (r cot θ dφ, −r cosec2 θ dθ) .
Therefore the horizontal sides are expanded by , and the vertical
sides by , giving a ratio of .  

cosec θ
cosec2 θ cosec θ �
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Solution 14.2
Stereographic projection maps , in polar
coordinates.

(φ, θ) → (2r tan (π
4 + θ

2) , φ)

Pr

r

θ

2r tan (π
4 + θ

2)
P′

+(π
4

θ
2)

Therefore the small rectangle at  induced by the small increments
 has sides

(φ, θ)
(dφ, dθ)

(r cos θ dφ, r dθ)
and is mapped to the small rectangle

(2r tan(π
4 + θ

2)dφ, d (2r tan(π
4 + θ

2))) = (2r tan(π
4 + θ

2)dφ, r sec2(π
4 + θ

2)dθ).
Now

sin (π
4 + θ

2) = sin π
4 cos θ

2 + cos π
4 sin θ

2 = 1
2

(cos θ
2 + sin θ

2)

cos (π
4 + θ

2) = cos π
4 cos θ

2 − sin π
4 sin θ

2 = 1
2

(cos θ
2 − sin θ

2) .

Therefore the horizontal multiplier is

2 tan (π
4 + θ

2)
cos θ

=
2 cos θ

2 + sin θ
2

cos θ
2 − sin θ

2

cos2 θ
2 − sin2 θ

2

=
2

(cos θ
2 − sin θ

2)2

= sec2 (π
4

+
θ
2 ) ,

which the same as the vertical multiplier.  �

15. Knotting
Solution 15.1
We have to show that a knot  has code 3 if and only if it can be 3-coloured.
Suppose  can be 3-coloured with colours 0,1,2. If only one colour is used
at a crossing then trivially the overpass is the average of the underpasses. If
3 colours are used at a crossing then one of 3 cases holds: ,

 or . In each case the overpass is the
average of the 2 underpasses modulo 3. Therefore  has code 3. Conversely
if  has code 3 then the labelling is a 3-colouring.  

K
K

0 + 1 = 4 (mod 3)
1 + 2 = 0 (mod 3) 2 + 0 = 2 (mod 3)

K
K �
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Solution 15.2

We show the product of the trefoil and the square knot has code 3 by
labelling the trefoil appropriately with the integers mod 3 and labelling the
square knot all the same.  Similarly show it has code 5 by labelling the
square knot appropriately with the integers mod 5 and labelling the trefoil
all the same.  �

Solution 15.3
The first two cases of the trefoil and the square knot have already been done.
In each of the other dozen cases we start by labelling one crossing with
0,1,2, then the next crossing with 1,2,3, and so on preserving the averages
until the penultimate crossing (indicated by an arrow) which gives an
equation for the code , which of course is prime.  The last crossing is
satisfied automatically (as can be deduced from the solution to 15.4), and
thus provides a convenient check on the computation.

p

0 2

1

34

3 + 0 = 8 (mod p)

∴ 5 = 0 (mod p)

∴ p = 5

01

2 3

4

0 + 1 = 8 (mod p)

∴ p = 7

0
2

1

3

4
5

0 + 1 = 10 (mod p)

∴ 9 = 0 (mod p)

∴ p = 3

0
1

2 3

4

8 4 + 1 = 16 (mod p)

∴ p = 11

0
2

−2
1

3

8

3 + 0 = 16 (modp)

∴ p = 13

0
1

2
3 4

6

5

5 + 0 = 12 (mod p)

∴ p = 7

0
2

1

3 4
5

6
0 + 1 = 12 (mod p)

∴ p = 11 0

1

2
3

4

5
9 0 + 5 = 18 (mod p)

∴ p = 13
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0

2

1
3

4

−3
8

8 + 1 = −6 (modp)

∴ 15 = 0 (modp)

∴ p = 3 or  5

01

2 3

4
−3

−6 1 + 4 = −12 (modp)

∴ p = 17

0

2

1

3
5

7

12 7 + 12 = 0 (mod p)

∴ p = 19
0

1

2
3

5
8

13

8 + 13 = 0 (mod p)

∴ 21 = 0 (modp)

∴ p = 3 or  7.  �

Solution 15.4
Given any knot , let  be the arcs going round the knot, and
let  be the crossings such that, for each ,  is the front end of

. Define an  matrix  with rows corresponding to the crossings
and columns corresponding to the arcs , such that

K a1, a2, … , an
c1, c2, … , cn i ci

ai n × n M ci
aj

Mij =

⎧

⎩

⎨
⎪

⎪

⎪

⎪

1, if  ci has underpass aj

−2, if  ci has overpass aj

0, .otherwise

Define  by omitting the last row and column of .  Let , the
determinant of . We claim that the codes of  are the prime factors of .

D M d = | D |
D K d

Example: the square knot

c1

c2

c3

c4

a1

a2

a4
a3

M = ( )  ∴ D = ( )1 1 0 −2
−2 1 1 0

0 −2 1 1
1 0 −2 1

1 1 0
−2 1 1

0 −2 1

Expanding by the first row,

d = | | − | | = 3 − (−2) = 5.1 1
−2 1

−2 1
0 1

And 5 is indeed the code of the square knot, as we showed in Section 15.
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Proof of the claim
First notice that  is odd because mod 2d

D = ( )1 1 0 0 … 0 0
0 1 1 0 … 0 0

… …

0 0 0 0 … 1 1
0 0 0 0 … 0 1

Therefore . Suppose  is a code of . Choose a labelling of
 with integers . Let  be the label on , and let

d = 1 (mod 2) p K
K mod  p xi ai

x = ( ) .

x1

x2

…

xn

Then condition (2) of the labelling implies , because each
row  of  corresponds to a crossing, and multiplied into  adds the labels on
the 2 underpasses of that crossing, minus twice the label on the overpass. By
subtracting  from each label we can relabel so that , while still
preserving condition (2). Let  be the -column obtained by leaving
off the last term of :

Mx = 0 (mod p)
M x

xn xn = 0
y (n − 1)

x

y = ( ) , and  x = ( ) .
x1…

xn − 1

y

0

Let  be the -column consisting of the last column of  without its
bottom term. Let  be the last row of .

c (n − 1) M
r M

∴ M = ( )  ∴ Mx = ( ) ( ) = ( ) .
D c

r

D c

r

y

0

Dy

rx

∴ Dy = 0 (mod p) , since  Mx = 0 (mod p) .
But , by condition (1) of the labelling, so  is singular .y ≠ 0 (mod p) D (mod p)

∴ d = | D | = 0 (mod p) .
 is a multiple of . In other words  is a prime factor of . Therefore the

codes of  are prime factors of .
∴ d p p d

K d
Conversely let  be a prime factor of . Then . Therefore

the columns of  are linearly dependent . In other words there exists
a non-zero -column  of integers  such that .

p d d = 0 (mod p)
D (mod p)

(n − 1) y mod p Dy = 0 (mod p)

 x = ( ) .   ( ) x = ( ) ( ) = Dy = 0 (mod p) .Let
y

0
Then D c D c

y

0
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Now  because the columns of  add to zero, since each row
contains 1,1,-2 and the rest of the terms zero. Therefore the rows of  are
linearly dependent. But the first  rows are independent because

, since  is odd. Therefore the last row  of  is dependent on the
rows of .  Therefore , since .

| M | = 0 M
M

n − 1
| D | ≠ 0 d r M

( )D c rx = 0 (mod p) ( ) x = 0 (mod p)D c

∴ Mx = ( ) x = 0 (mod p) .
D c

r

Therefore  gives a labelling of  satisfying conditions (1) and (2). Hence
is a code of . We have shown that the codes of  are precisely the prime
factors of , and so  has only a finite number of codes.  

x K p
K K

d K �

Solution 15.5

expand contractrotate
90°like a smoke ring

roll round 180°

16. Linking
Solution 16.1

.L = 2 A

B
+ +

Yes, equal.
Proof:

III I

�

   
Solution 16.2

�

L = 3

+

+ + +

+++

A A

B B

L = 6

+ +
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Solution 16.3
The left hand diagram shows that the Whitehead link has .L = 0

− +

02

3
B

A
x

1

Suppose that it had code . Then .
Therefore , contradicting that  is odd. Therefore it has no
codes.  Unlinked curves, on the other hand, have all codes. Therefore the
Whitehead link is linked.  

p 0 + 1 = 2x = 2 + 3 (mod p)
4 = 0 (mod p) p

�

Solution 16.4
Borromean rings

A B

C

a b

c

a′
c′

b′

The diagram shows 3 curves of which any pair are unlinked. To show that
together they are linked we prove that they have no codes. Suppose that the
Borromean rings had code , and was labelled as shown. Then

 by condition (2), and similarly .
Therefore , and hence  since  is odd.
Similarly . Therefore , and so

.  Similarly , violating condition (1), and giving a
contradiction. Therefore the Borromean rings have no codes. On the other
hand unlinked curves can be moved apart and so have all codes. Therefore
the Borromean rings are linked, although pairwise unlinked.  

p
a + a′ = 2b (mod p) a + a′ = 2b′ (mod p)

2b = 2b′ (mod p) b = b′ (mod p) p
a = a′ (mod p) 2a = 2b (mod p) a = b

(mod p) b = c (mod p)

�
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