ON THE REGULARITY OF CHARACTER DEGREE GRAPHS

Z. [SAYANJALI,](https://orcid.org/0000-0003-1189-951X) Z. [AKHLAGHI](https://orcid.org/0000-0003-0351-4325)[⊠] and B. [KHOSRAVI](https://orcid.org/0000-0002-2091-1210)

(Received 23 January 2019; accepted 11 February 2019; first published online 8 March 2019)

Abstract

Let *G* be a finite group and let Irr(*G*) be the set of all irreducible complex characters of *G*. Let $\rho(G)$ be the set of all prime divisors of character degrees of *G*. The character degree graph ∆(*G*) associated to *G* is a graph whose vertex set is $\rho(G)$, and there is an edge between two distinct primes p and q if and only if *pq* divides χ (1) for some $\chi \in \text{Irr}(G)$. We prove that $\Delta(G)$ is *k*-regular for some natural number *k* if and only if $\overline{\Delta}(G)$ is a regular bipartite graph.

2010 *Mathematics subject classification*: primary 20C15; secondary 05C25. *Keywords and phrases*: finite groups, character degree graph.

1. Introduction

Let *G* be a finite group, Irr(*G*) the set of all irreducible complex characters of *G* and $cd(G) = \{ \chi(1) \mid \chi \in \text{Irr}(G) \}$ the set of character degrees of *G*. Denote by $\rho(G)$ the set of all prime divisors of character degrees of *G*. The character degree graph $\Delta(G)$ is a graph whose vertex set is $\rho(G)$, and there is an edge between two distinct primes p and *q* in $\rho(G)$ if and only if *pq* divides $\chi(1)$ for some $\chi \in \text{Irr}(G)$. Let Γ be a graph and *x* be a vertex of Γ. We call *x* a complete vertex if its degree is *n* − 1, where *n* is the order of Γ, and we call Γ a complete graph if all vertices of Γ are complete. A graph Γ is *k*-regular for some integer *k* if all vertices have the same degree *k*. We denote the complement of the graph $\Delta(G)$ by $\overline{\Delta}(G)$. This is the graph whose vertex set is the same as that of $\Delta(G)$, and two vertices are adjacent in $\overline{\Delta}(G)$ if and only if they are not adjacent in $\Delta(G)$. We denote the degrees of the vertex *x* in $\Delta(G)$ and $\overline{\Delta}(G)$ by $d_G(x)$ and $d_G(x)$, respectively.

The character degree graph $\Delta(G)$ is a helpful tool for studying the character degree set cd(*G*). In [\[1\]](#page-4-0), it is shown that $\overline{\Delta}(G)$ has an odd cycle if and only if $O^{\pi'}(G) \cong S \times A$, where *A* is abelian and $S \cong SL_2(u^{\alpha})$ or $S \cong PSL_2(u^{\alpha})$ for a prime $u \in \pi$. Zuccari [\[8,](#page-5-0)
Theorem Al proved that if *G* is a solvable group and $\Lambda(G)$ is regular, then $\Lambda(G)$ is a Theorem A] proved that if *G* is a solvable group and $\Delta(G)$ is regular, then $\Delta(G)$ is a complete graph or an $(n-2)$ -regular graph, where $n = |\rho(G)|$. Tong-Viet [\[5\]](#page-4-1) posed the following conjecture.

CONJECTURE 1.1. *If* $\Delta(G)$ *is k-regular for some integer* $k \geq 2$ *, then* $\Delta(G)$ *is a complete graph of order k* + 1 *or a k-regular graph of order k* + 2*.*

c 2019 Australian Mathematical Publishing Association Inc.

Tong-Viet showed that his conjecture is true for $k = 3$ (see [\[5\]](#page-4-1)). As the main result of this note we prove the following theorem.

Theorem 1.2. *Let G be a finite group and suppose the character degree graph* ∆(*G*) *of G has more than two vertices. Then* ∆(*G*) *is k-regular for some integer k if and only if one of the following conditions holds:*

- (a) $k = 0$ and $G \cong A_5 \times C$ or $PSL_2(8) \times C$ for an abelian group C; or
- (b) $\overline{\Delta}(G)$ *is a regular bipartite graph and in particular, if* $k \neq |p(G)| 1$ *, then* $|p(G)|$ *is even.*

By Theorem [1.2,](#page-1-0) if $\Delta(G)$ is a regular graph with odd order then $\Delta(G)$ is complete, providing some evidence for Tong-Viet's conjecture. If ∆(*G*) is a regular graph with even order, then either $\Delta(G)$ is complete (as predicted by Conjecture [1.1\)](#page-0-0), or $\rho(G) = X \cup Y$ for some disjoint nonempty sets X and Y, such that $|X| = |Y|$ and the subgraphs induced in $\Delta(G)$ by *X* and *Y* are complete.

Throughout the paper, all groups are finite and all characters are complex characters. We denote by $\pi(n)$ the set of primes dividing *n* and by $\pi(G)$ the set of primes dividing the order of *G*. If $N \le G$ and $\theta \in \text{Irr}(N)$, the inertia group of θ in *G* is denoted by $I_G(\theta)$. We write Irr(*G*| θ) for the set of all irreducible constituents of θ ^{*G*}. We write **Z**(*K*) for the centre of *K* in *G*. The rest of our notation follows [4] the centre of K in G . The rest of our notation follows $[4]$.

2. Preliminaries

Lemma 2.1 [\[7,](#page-5-1) Zsigmondy's theorem]. *Let p be a prime and n a positive integer. Then one of the following holds:*

- (i) $n - 1$ *has a primitive prime divisor p', that is, p'* $|(p^n - 1)$ *but p'* $\{(p^m - 1)$ *for* $1 \leq m < n$;
- (ii) $p = 2$ *and n* = 1 *or* 6;
- (iii) *p is a Mersenne prime and n* = 2.

Lemma 2.2 [\[3,](#page-4-3) Itô–Michler theorem]. Let $\rho(G)$ be the set of all prime divisors of the *elements of* cd(*G*). Then $p \notin \rho(G)$ *if and only if G has a normal abelian Sylow psubgroup.*

LEMMA 2.3 [\[4,](#page-4-2) Theorems 6.2, 6.8 and 11.29]. *Let* $N \trianglelefteq G$ *and* $\chi \in \text{Irr}(G)$ *. Let* θ *be an irreducible constituent of* χ_N *and suppose* $\theta_1, \ldots, \theta_t$ *are the distinct conjugates of* θ *in G. Then* $\chi_N = e \sum_{i=1}^t \theta_i$, where $e = [\chi_N, \theta]$ and $t = |G : I_G(\theta)|$.
Moreover $\theta(1)$ divides $\nu(1)$ and $\nu(1)/\theta(1)$ is a divisor of l

θ*i Moreover,* $\theta(1)$ *divides* $\chi(1)$ *and* $\chi(1)/\theta(1)$ *is a divisor of* $|G/N|$ *.*

^Lemma 2.4 [\[1,](#page-4-0) Theorem A]. *Let G be a finite group and let* π *be a subset of the vertex set of* [∆](*G*) *such that* [|]π[|] *is an odd number larger than* ¹*. Then* π *is the set of vertices of a cycle in* $\overline{\Delta}(G)$ *if and only if* $O^{\pi'}(G) = S \times A$ *, where A is abelian*, $S \cong SL_2(u^{\alpha})$ *or* $S \cong \text{PSL}_2(u^{\alpha})$ *for a prime u* ∈ π *and a positive integer* α *, and the primes in* $\pi \setminus \{u\}$ *are* alternately odd divisors of $u^{\alpha} + 1$ and $u^{\alpha} - 1$ *alternately odd divisors of* $u^{\alpha} + 1$ *and* $u^{\alpha} - 1$ *.*

Lemma 2.5 [\[2,](#page-4-4) Proposition 2.4]. *Let G be a group.*

- (a) *Suppose that there exists* $\pi \subseteq \rho(G)$ *, with* $|\pi|$ *an odd number larger than* 1*, such that* π *is the set of vertices of a cycle in* $\Delta(G)$ *. Then there is a characteristic subgroup N* of *G* with $\pi \subseteq \pi(N)$ *such that N* is a two-dimensional special or *projective special linear group over a finite field* \mathbb{F} *with* $|\mathbb{F}| \geq 4$ *.*
- (b) Let $N \le G$ such that N is isomorphic to $PSL_2(u^{\alpha})$ or $SL_2(u^{\alpha})$, where $u^{\alpha} \ge 4$ is a *prime power. Then* $|C_G(N) \cap N| \leq 2$ *and the prime divisors of* $|G/NC_G(N)|$ *are adjacent in* $\Delta(G)$ *to all primes in* $\rho(N)\{u\}$ *.*
- (c) *Let* K *be any (nonempty) set of normal subgroups of G as in* (*b*) *(possibly with di*ff*erent values of u*α *) and define K as the product of all the subgroups in* K*. Set* $C = C_G(K)$ *. Then every prime t in* $\rho(C)$ *is adjacent in* $\Delta(G)$ *to all the primes q* (different from t) in $|G/C|$, with the possible exception of $(t, q) = (2, u)$ when $|\mathcal{K}| = 1$, $K \cong SL_2(u^{\alpha})$ *for some u* $\neq 2$ *and* $\mathbf{Z}(K) = P'$, $P \in \text{Syl}_2(C)$ *. In any case,* $\rho(G) = \rho(G/C) \cup \rho(C)$.

LEMMA 2.6 [\[6,](#page-4-5) Theorem 5.2]. *Let* $G \cong \text{PSL}_2(q)$ *, where* $q \geq 4$ *is a power of a prime p.*

- (1) *If q is even then* $\Delta(G)$ *has three connected components*, $\{2\}$ *,* $\pi(q-1)$ *and* $\pi(q+1)$ *, and each component is a complete graph.*
- (2) *If q* > ⁵ *is odd then* [∆](*G*) *has two connected components, and these are* ${p}$ *and* $\pi((q-1)(q+1))$ *.*
	- (a) *The connected component* $\pi((q-1)(q+1))$ *is a complete graph if and only if q* − 1 *or q* + 1 *is a power of* 2*.*
	- (b) *If neither of q* [−] ¹ *or q* ⁺ ¹ *is a power of* ²*, then* π((*^q* [−] 1)(*^q* ⁺ 1)) *can be partitioned as* $\{2\} \cup M \cup P$ *, where* $M = \pi(q-1)\{2\}$ *and* $P = \pi(q+1)\{2\}$ *are both nonempty sets. The subgraph of* ∆(*G*) *corresponding to each of the subsets M*, *P is complete, all primes are adjacent to* ² *and no prime in M is adjacent to any prime in P.*

Lemma 2.7 [\[2,](#page-4-4) Lemma 2.2]. *Let G be an almost simple group with socle S isomorphic to* $PSL_2(u^{\alpha})$ *, where u is a prime. Let s* \neq *u be a prime divisor of* $|G/S|$ *. Then the* following conclusions hold: *following conclusions hold:*

- (a) *the prime s is adjacent in* $\Delta(G)$ *to every prime in* $\pi(u^{2\alpha} 1)$;
(b) *the prime s is adjacent in* $\Delta(G)$ *to gram prime in* $\pi(G) \setminus \pi(S)$
- (b) *the prime s is adjacent in* $\Delta(G)$ *to every prime in* $\pi(G)\setminus \pi(S)$;
(c) *the set of vertices* $\rho(G)\setminus \{u\}$ *is covered by two complete subgright*
- the set of vertices $\rho(G)\$ {*u*} *is covered by two complete subgraphs of* $\Delta(G)$ *.*

REMARK 2.8. Let *p* be a prime number and $(x, p) = 1$. Let $k \ge 1$ be the smallest positive integer such that $x^k \equiv 1 \pmod{p}$. Then *k* is called the order of *x* with respect to *p* and we denote it by ord_{*p*}(*x*). By Fermat's little theorem, ord_{*p*}(*x*) | (*p* – 1). Also if $x^n \equiv 1 \pmod{p}$, then ord_{*p*}(*x*) | *n*.

3. Proof of Theorem [1.2](#page-1-0)

Since the 'if' part of the theorem is straightforward, we concentrate on the 'only if' part. If $\Delta(G)$ is bipartite, then the rest of the statement of part (b) of the theorem follows. So we assume that $\Delta(G)$ is not a bipartite graph and we show that *G* is isomorphic to $A_5 \times C$ or $PSL_2(8) \times C$ for some abelian group *C*.

Since $\Delta(G)$ is not a bipartite graph, there is an odd cycle in $\Delta(G)$ and we denote the vertices of this cycle by π . Obviously, $|\pi| > 1$ and $|\pi|$ is odd. By Lemma [2.4,](#page-1-1) $O^{\pi'}(G) \cong S \times A$, where *A* is abelian and $S \cong SL_2(q)$ or $S \cong PSL_2(q)$ for a prime power $q \geq 4$. Let K be the set of all normal subgroups of G isomorphic to $SL_2(q)$ or $PSL_2(q)$ for some prime power $q \ge 4$. Note that K is nonempty and we can define *K* as the product of all subgroups in *K*. We fix a subset $\{N_1, \ldots, N_\ell\}$ of *K* such that $K/\mathbb{Z}(K) \cong N_1/\mathbb{Z}(N_1) \times \cdots \times N_\ell/\mathbb{Z}(N_\ell)$. For $i \in \{1, \dots \ell\}$, let $q_i = p_i^{\alpha_i}$ be a prime nower such that $N/\mathbb{Z}(N_i) \cong \text{PSL}_2(a_i)$. Set $C = C_G(K)$. Note that $o(C) \cap o(G/C) \subset \{2\}$ power such that $N_i/\mathbb{Z}(N_i) \cong \text{PSL}_2(q_i)$. Set $C = C_G(K)$. Note that $\rho(C) \cap \rho(G/C) \subseteq \{2\}$. (Otherwise, if $2 \neq r \in \rho(C) \cap \rho(G/C)$, then, by Lemma [2.5\(](#page-1-2)c), *r* is adjacent to all vertices in $\rho(C)$ and $\rho(G/C)$. Since $\rho(G) = \rho(C) \cup \rho(G/C)$ and $\Delta(G)$ is regular, $\Delta(G)$ is a complete graph and so $\Delta(G)$ is bipartite, which is a contradiction.)

First, we assume that $\ell \neq 1$. By Lemma [2.5\(](#page-1-2)c), every prime $t \in \rho(C)$ is adjacent in $\Delta(G)$ to all primes *q* (different from *t*) in $\pi(G/C)$. Hence $\rho(C) \cap \rho(G/C) = \emptyset$, as otherwise $\Delta(G)$ is complete. No vertex in $\rho(C)$ in $\Delta(G)$ is adjacent to any vertex in $\rho(G/C)$. Obviously, C does not have any characteristic subgroup isomorphic to a twodimensional special or projective special linear group over a finite field of order at least four. Thus Lemma [2.5\(](#page-1-2)a) guarantees that $\overline{\Delta}(C)$ is a bipartite graph. Since $\overline{\Delta}(G)$ is regular, $\overline{\Delta}(C)$ is a regular bipartite graph. As $K/Z(K) \cong N_1/Z(N_1) \times \cdots \times N_\ell/Z(N_\ell)$ and $\ell \neq 1$, by Lemmas [2.5\(](#page-1-2)c) and [2.6,](#page-2-0) 2 is adjacent to all vertices in $\Delta(G)$ and so $\Delta(G)$ is a complete graph which is impossible by our assumption. It follows that $\ell = 1$. In this case $G/C \le \text{Aut}(\text{PSL}_2(p_1^{\alpha_1}))$ and $K \cong \text{SL}_2(p_1^{\alpha_1})$ or $K \cong \text{PSL}_2(p_1^{\alpha_1})$. We suppose $p_1 \ne 2$ and return to the case $p_1 = 2$ later $p_1 \neq 2$ and return to the case $p_1 = 2$ later.

First, assume that 2 is not adjacent to p_1 in $\Delta(G)$. Then, using Lemmas [2.6,](#page-2-0) [2.5\(](#page-1-2)c) and [2.7,](#page-2-1) 2 is adjacent to all vertices except for p_1 . So $d_G(2) = |\rho(G)| - 2$ and hence $d_G(p_1) = |\rho(G)| - 2$, which implies that p_1 is adjacent to all vertices, apart from 2. If $2 \neq s \in \pi(G/CK)$, then, by Lemmas [2.5](#page-1-2) and [2.7,](#page-2-1) *s* must be adjacent to all vertices of ∆(*G*), which is a contradiction, as $d_G(s) = |\rho(G)| - 1 \neq d_G(2)$. So we deduce that $\pi(G/CK) \subseteq \{2\}$. By the above argument, for every odd prime $s \in \pi(p_1^{2\alpha_1} - 1)$ there exists $v \in \text{Irr}(G)$ such that so, divides $v(1)$ and hence there exists $\theta \in \text{Irr}(CK)$ such exists $\chi \in \text{Irr}(G)$ such that sp_1 divides $\chi(1)$ and hence there exists $\theta \in \text{Irr}(CK)$ such that $\chi(1)/\theta(1)$ divides $|G/CK|$ by Lemma [2.3.](#page-1-3) Since $\pi(G/CK) \subseteq \{2\}$, we see that sp_1 divides $\theta(1)$. As $\rho(C) \cap \rho(G/C) \subseteq \{2\}$, it follows that *s*, $p_1 \notin \rho(C)$ and so, by Lemma [2.2,](#page-1-4) *^C* has a normal abelian Hall {*s*, *^p*1}-subgroup, say *^H*. Set

$$
\overline{CK} = CK/(\mathbf{Z}(K)H) \cong \mathrm{PSL}_2(q_1) \times C/(\mathbf{Z}(K)H).
$$

Obviously, there is no irreducible character in $\text{Irr}(\overline{CK})$ whose degree is divisible by sp_1 , since $(|C/H|, sp_1) = 1$ and sp_1 does not divide any character degree of $PSL_2(q_1)$. So there exists $\xi \in \text{Irr}(\mathbf{Z}(K)H)$, $\xi \neq 1$, such that $\theta \in \text{Irr}(CK \mid \xi)$. Set $I = I_{CK}(\xi)$. By Clifford's theorem [\[4,](#page-4-2) Theorem 6.11], there exists a character $\psi \in \text{Irr}(I)$ such that $\theta(1) = |CK : I| \psi(1)$. As $HK \leq I$, sp_1 does not divide $|CK : I|$ and hence sp_1 divides $\psi(1)$. Let $\psi \in \text{Irr}(I | v)$ for some $v \in \text{Irr}(HK)$. Since $HK \cong H \times K$, $v(1)$ is not divisible by both *s* and p_1 . Therefore $\psi(1)/\nu(1)$ is divisible by either *s* or p_1 . As $\psi(1)/\nu(1)$ divides $|I/HK|$, it follows that $\psi(1)/\nu(1)$ divides $|C/H|$, a contradiction. So we may assume that 2 is adjacent to p_1 in $\Delta(G)$. Then 2 is a complete vertex, which implies that $\Delta(G)$ is complete, a contradiction.

Now we may assume that p_1 is even. In this case $\rho(C) \cap \rho(G/C) = \emptyset$, since otherwise $\Delta(G)$ is complete by Lemma [2.5.](#page-1-2) If 2 divides $|G/CK|$, then, by Lemma [2.7,](#page-2-1) 2 is adjacent to all vertices in $\Delta(G/C)$. Therefore 2 is a complete vertex in $\Delta(G)$ and hence [∆](*G*) is complete, which is impossible. So 2 does not divide [|]*G*/*CK*|. Assume that $|G/CK| \neq 1$ and *r* is an odd prime divisor of $|G/CK|$. By Lemmas [2.7](#page-2-1) and [2.5,](#page-1-2) *r* is adjacent to all elements in $\pi(2^{2\alpha_1} - 1) \cup \rho(C)$. If *r* is adjacent to 2, then *r* is a complete vertex, which implies that $\Delta(G)$ is complete, a contradiction. Hence $d_G(r) = |\rho(G)| - 2$. Then by the regularity of $\Delta(G)$, we have $d_G(s) = |\rho(G)| - 2$ for all $s \in \rho(G)$. If there is an odd prime $t \in \rho(G) \setminus (\pi(G/CK) \cup \rho(C))$, then there exists $\chi \in \text{Irr}(CK)$ such that 2*t* divides χ (1), which gives a contradiction because $C \times K \cong CK$ and $2 \notin \rho(C)$. So we may assume that $\rho(G) \subseteq \pi(G/CK) \cup \rho(C) \cup \{2\}$. Hence $\pi(2^{2\alpha_1} - 1) \subseteq \pi(G/CK) \subseteq$ $\pi(\text{Out}(\text{PSL}_2(2^{\alpha_1})))$ and so $\pi(2^{2\alpha_1}-1) \subseteq \pi(\alpha_1)$. If *a* is a primitive prime divisor of $2^{2\alpha_1}-1$ then by Remark 2.8, 2 α , divides $a-1$ and also *a* divides α_1 , a contradiction $2^{2\alpha_1} - 1$, then, by Remark [2.8,](#page-2-2) $2\alpha_1$ divides $a - 1$ and also *a* divides α_1 , a contradiction.
Thus $2^{2\alpha_1} - 1$ has no primitive prime divisor. By Lemma 2.1, $\alpha_1 = 3$, which is Thus $2^{2\alpha_1} - 1$ has no primitive prime divisor. By Lemma [2.1,](#page-1-5) $\alpha_1 = 3$, which is impossible, as $7 \in \pi(2^6 - 1) \nsubseteq \pi(3)$. Hence $|G/CK| = 1$ and thus $G \cong C \times K$. So, by the structure of *G*, $\Delta(K)$ is regular. Therefore $|\pi(2^{\alpha_1} + 1)| = |\pi(2^{\alpha_1} - 1)| = 1$ and $K \cong A_5$ or $PSL₂(8)$. We now invoke the Feit–Thompson odd-order theorem that every finite group of odd order is solvable. Since $2 \notin \rho(C)$, Lemma [2.2](#page-1-4) and the odd-order theorem together show that *C* is solvable. Suppose *C* is nonabelian and $|\rho(C)| = m$. By [\[8,](#page-5-0) Theorem A], $\Delta(C)$ is a complete graph or an $(m-2)$ -regular graph. So $d_{\overline{C}}(s) = 0$ or $d_{\overline{G}}(s) = 1$, for every $s \in \rho(C)$, and hence $d_{\overline{G}}(s) = 0$ or $d_{\overline{G}}(s) = 1$. But that is impossible as $d_{\tilde{G}}(b) = 2$ for every vertex $b \in \rho(K)$. So *C* is abelian, which is our desired result.

Acknowledgement

The authors would like to thank the referee for valuable comments and suggestions.

References

- [1] Z. Akhlaghi, C. Casolo, S. Dolfi, E. Pacifici and L. Sanus, 'On the character degree graph of finite groups', *Annali di Mat. Pura Appl.*, to appear.
- [2] Z. Akhlaghi, S. Dolfi, E. Pacifici and L. Sanus, 'Bounding the number of vertices in the degree graph of a finite group', Preprint, 2018, [arXiv:1811.01674.](http://www.arxiv.org/abs/1811.01674)
- [3] B. Huppert, *Character Theory of Finite Groups* (de Gruyter, Berlin, 2011).
- [4] I. M. Isaacs, *Character Theory of Finite Groups* (Academic Press, New York, 1976).
- [5] H. P. Tong-Viet, 'Finite groups whose prime graphs are regular', *J. Algebra* 397 (2014), 18–31.
- [6] D. L. White, 'Degree graphs of simple groups', *Rocky Mountain J. Math.* 39 (2009), 1713–1739.

[6] Regularity of character degree graphs 433

[7] K. Zsigmondy, 'Zur Theorie der Potenzreste', *Monatsh. Math. Phys.* 3 (1892), 265–284.

[8] C. P. M. Zuccari, 'Regular character degree graphs', *J. Algebra* 353 (2014), 215–224.

Z. [SAYANJALI,](https://orcid.org/0000-0003-1189-951X) Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 15914 Tehran, Iran e-mail: zohrehsayanjali@aut.ac.ir

Z. [AKHLAGHI,](https://orcid.org/0000-0003-0351-4325) Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 15914 Tehran, Iran e-mail: z [akhlaghi@aut.ac.ir](mailto:z_akhlaghi@aut.ac.ir)

B. [KHOSRAVI,](https://orcid.org/0000-0002-2091-1210) Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 15914 Tehran, Iran e-mail: khosravibbb@yahoo.com

<https://doi.org/10.1017/S0004972719000315>Published online by Cambridge University Press