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Abstract

Banach’s contraction principle guarantees the existence of a unique fixed point for any con-
tractive selfmapping of a complete metric space. This paper considers generalizations of the
completeness of the space and of the contractiveness of the mapping and shows that some re-
cent extensions of Banach’s theorem carry over to spaces whose topologies are generated by
families of quasi-pseudometrics.
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1. Introduction

The well-known theorem of Banach [1] concerning contractive self mappings
on a complete metric space has been widely used in existence theorems in dif-
ferential and integral equations. In line with recent work on fixed point theo-
rems, this paper considers generalizations of the two hypotheses of complete-
ness of the metric space and the contractive nature of the map in Banach’s
theorem. Specifically, our main object is to show that results of Edelstein [4]
and [5), and Reich [8] can be generalized to the non-metric situation afforded
by gauge and quasi-gauge spaces. In this sense, our work is a continuation
and extension of that of Tan {13].

A non-negative real valued function p on X x X with the properties that
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pix,x)=0, xe X,and p(x,y) < p(x,z)+p(z,y), x,y,z2€ X, is
called a quasi-pseudometric on the non-void set X . According to Reilly {9]
a topological space (X, ) is a quasi-gauge [gauge] space (X, , #), or
simply (X, P), if there exists a family 2 of quasi-pseudometrics [pseudo-
metrics] such that the open balls

B(x,p,e)={y e X|p(x,y) <&}, xeX, peP

form a subbase for the topology .7 . In a quasi-gauge space (X, 7 , %),
the sequence {x,} is said to be a left [right] Cauchy sequence if for each
p € % and each ¢ > 0 there is a point x € X and an integer n, such that
p(x, x,) <¢ [p(x,,x) <e]l, n>n,. If every left [right] Cauchy sequence
in the space (X, 7 , %) converges to a limit in the topology .7, the space is
said to be left [right] sequentially complete. If p is a quasi-pseudometric on
X sois p' defined by p'(x,y) =p(y,x), x,y € X, and p’ is called the
conjugate of p. And (X, 7", '), where #' = {p':p € P} and I is the
topology with the balls {B(x,p’,¢), x€ X, ¢>0, p' € &'} as a subbase,
is a quasi-gauge space and is called the conjugate of (X, .7, £). Reilly [10]
used the term completeness for what we call left sequential completeness.
Right sequential completeness is thus completeness of the conjugate space in
the terminology of [10]. It is well to note that left sequential completeness
and right sequential completeness are independent notions.

EXAMPLE 1. The space X = {1/n:n € N} with the quasi-gauge induced
by the quasi-pseudometric p defined as

x—-y ifx>y,

p(x,y)={1 if x <

is readily seen to be right sequentially complete. But the left Cauchy sequence
{1/n} is not convergent in X . (Incidentally the operator T defined on X
as T(x)=1/3 for x #1/4 and T(1/4) = 1/5 is a continuous right Banach
operator [12, Definition 4] which is not a left Banach operator implying
thereby that the dual version of [12, Theorem 1] is non-vacuous.)

We extend in the following formal definitions the corresponding concepts
for metric spaces to quasi-gauge spaces.

DEFINITION 1. In the quasi-gauge space (X, %), x € X, is said to be
e-chainable to y € X for some ¢ > 0 if for each p € &, there exist a
finite number of z, € X, i=0,1,...,n(p) -1, n(p) such that z; = x,
Z,p =¥ and p(z;,z, . )<efori=0,1,...,n(p)-1. And (X, &) is
said to be e-chainable if for any x, y € X, either x is e-chainable to y or
y is e-chainable to x .

DEFINITION 2. An operator T on a quasi-gauge space (X, %) into itself
is said to be an e-local left [right] weak contraction if for each x € X and
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p € P there exist ¢ and 4 (¢ > 0, 0 < A < 1) such that for each y in
B(x, p, €) we have

p(T(x), T(y)) <4ip(x,y) [p(T(y), T(x)) <ip(y, x)).

If ¢ and A are independent of x though not of p, T iscalled an (¢—A4)
uniformly local left [right] weak contraction.

However, we employ a more general definition for our purposes.

DEFINITION 3. An operator T on a quasi-gauge space (X, %) is called
an e-local left [right] asymptotic weak contraction (for a positive &) if for
each x e X, pe % and y € B(x, p, ¢) there is a sequence of real num-
bers A, (v, &) (depending on x, p, y) such that > ;7 A, (v, &) < +oo and
p(T*(x), T0) < Ay, &) (T D), T(x)) < 4 (v, &)].

REMARK. A contraction on a metric space is evidently a uniformly local
left and right contraction and a uniformly local left [right] weak contraction
on a quasi-gauge space is a local left [right] asymptotic weak contraction.

2. On the contractiveness of the operator

Edelstein [4, Theorem 5.2] showed in the case of an &-chainable metric
space that any (¢ — A) uniformly local contraction on the space has a fixed
point. His result generalizes as follows to a quasi-gauge space. We omit the
proof, which is based on the technique in Edelstein’s proof.

THEOREM 1. Let T be a continuous operator on a Hausdorff left [right]
sequentially complete quasi-gauge space (X , &) into itself such that

(1) T is an e-local left [right] asymptotic weak contraction,

(i) for some point x in X, x is e-chainableto T(x) [T(x) is e-chainable
to x].

Then T has a fixed point in X .

If (X, ) is an e-chainable sequentially complete Hausdorff gauge space
then the hypothesis of continuity is redundant, since a local weak contraction
is necessarily continuous. Also in this case the fixed point is unique.

We observe that the Hausdorff requirement in Theorem 1 can be weakened
to the condition that convergent sequences have unique limits, that is, that
the space be a US space in the sense of Wilansky [14].

The following example shows that even for metric spaces the theorem is
stronger than that of Edelstein.

EXAMPLE 2. Let X be a subset of the space of bounded real sequences with

the supremum-norm defined by X = U:‘;l I, where I, is the set {ae :a €
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[0, 2]} and I, is the set {ae,:a €[1, 2]} for n > 2, e, being the sequence
taking 1 at the nth place and elsewhere identically zero for each n. Let T
be the operator on X defined by
T(x)={x/2’ %fxell,
i U X=ae,, n>2.

It is clear that X is complete in the induced metric, though not compact.
Besides it is é-chainable for ¢ = 3/2. For any pair of elements x (= ae,)
and y (= Be,) with |x — y| < 3/2 it follows that |[T*(x) — T*(»)|| <
1 /2"‘“2 for all k£ > s, where s = max{m, n}. So the continuous operator
T is an e-local asymptotic weak contraction for ¢ = 3/2. Hence by Theorem
1, every sequence of iterates converges to a fixed point which is unique. By
considering 7" on I, (for n > 2) it follows that T is notan (¢—4) uniform
contraction, however small ¢ may be. Thus Edelstein’s theorem cannot be
used in this case to establish the fixed point of T .

Next we generalize to quasi-gauge spaces a result of Reich [8, Proposition
1.2]. The hypotheses on the operator were motivated by the extension of the
fixed point theorem of Kannan [6] given in Subrahmanyam [12, Theorem 2].

ae

THEOREM 2. Let T be an operator (not necessarily continuous) of the quasi-
gauge space (X , P) into itself- Suppose that

(1) & contains a conjugate pair (p,, p(')) ,

(ii) there exist non-negative real numbers a, b, c,d and e such that for
X#y

p(T(x), T(y)) < apy(x, T(x)) +bpy(y, T(y)) +cpy(x, T(y))
+dpy(y, T(x)) +epy(x, y),

(iii) 1 >b+c and (a+c+e)/(1-b-¢c)=1,

(iv) X is sequentially compact in the topology induced by .

Then T has a fixed point. Further, if d/(1 —c—e) <1, the fixed point is
unique.

PROOF. Let r be inf{p,(x, T(x)):x € X}. Then we can find a sequence
of points x, in X such that py(x,, T(x,)) converges to r. As X is se-
quentially compact, T'(x,) has a subsequence y, = T(x,,) converging to
y.

Since

oy, TV)) S py(y, T(x,)) + po(T(x,,), T(¥)),
Po(T (%), T(W)) < aby(x,y > T(x1)) + b0o(y, T(¥)) + cpo(X,y > T(¥))
+ dpo(y s T(x,)) +epy(x,. > ¥)s
Po(Xpe > TV) < Po(Xie > T(X4)) + Po(T(X,1) 5 ¥) + 0o (¥, T(¥)),
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and
po(x,,k » V) < po(-x,,k > T(xnk)) + po(T(xnk) ,»Y)
we have that
Py, T()) < (@+c+e)py(x,, T(x,)) +(b+c)py(y, T(y))
+ (1 +d)py(y, T(x,,) + (c+e)py(T(x,;) »)-

Hence

(1=b-0)py(y, T(y)) < (a+c+e)py(x,, T(x,))
+ (1 +d)po(y T(x,)) + (¢ + €)pg(v, T(x))-
Proceeding to the limit as kK — oo we have (1 — b~ c)p,(y, T(y)) <

(@+c+e)r. As (a+c+e)/(1-b—c)=1 it follows that p,(y, T(y))=r.
If y # T(y), we obtain from (ii) that

(1=b—c)py(TW), T*(¥)) < (a+c+e)py(y, T(y)).

Hence p,(T(y), Tz(y)) < py(¥, T(y)) = r, which contradicts the definition
of r, so that y = T(y) as desired.
If x and y are both fixed points of T, then

Po(x, ¥) =po(T(x), T(¥)) < (c+e)py(x, y)+dpy(y, x)
from (ii). Thus (1 —c —e)py(x, ¥) < dpy(y, x). Similarly, interchanging
the roles of x and y gives (1 -c—e)p,(y, x) < dpy(x, y). Hence
(1 —c—e){py(x, y) +py(y, x)} <d{py(y, x) +py(x, »)},
so if that d/(1 —c —e) <1 the fixed point is unique.

REMARKS. Reich’s result mentioned above corresponds to the case & =
{d}, d ametricand a=b=1/2, c=d=e=0.

Condition (iii) in Theorem 2 can be replaced by the alternative

(iii) 1>a+d and (b+d+e)/(1-a-d)=1.

3. Convergence of iterates

We begin by stating a result of Bailey [2] supplementing one of Edelstein
[5, Theorem 1]: if (X, d) is a compact metric space and 7T is a weakly
contractive continuous operator on it (that is, there exists an integer n such
that d(T"(x), T"(y)) <d(x,y), x,y € X and n depends on x and y),
then T has a unique fixed point. In passing, we remark that the assumption
of continuity cannot be dispensed with in the above result.
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ExampLE 3. Let X =[0, 1] and T be givenby T(0) =1/2 and T(x) =
x/2 on (0, 1]. Then T is not continuous at 0 and has no fixed-point. But
T is weakly contractive over [0, 1]. Indeed if x,y are in (0, 1] then
IT(x)-TW) =|(x-y)/2|<|x-y| for x#y.If x=0 and y € (0, 1]
then there exists n > 1 such that |(1 —y)/y| < 2". Then |T(x) - T(»))| =
(1=»)/2" <y =|x—-yl.

With Bailey’s result in the background the following theorem generalizes
Edelstein’s assertion that any contractive operator 7' on a metric space with
a convergent subsequence of 7-iterates has a fixed point.

THEOREM 3. Let T be a continuous operator on a quasi-gauge space (X, P)
into itself such that
() there exists a pseudometric p, in & such that

po(T(x), T*(x)) < py(x, T(x)), x € X,
(ii) for each x # T(x), there is a positive integer n such that
po(T"(x), T (x)) < polx, T(x)),

(iii) x,, = T (x), k=0,1,2,..., asubsequence of T-iterates at some
point x, converges to u.
Then u is a fixed point of T .

PrROOF. Since T is continuous and p, is symmetric the map ¢, (x) =
Po(x, T(x)) is a real valued continuous function on X . From (i) it is clear
that {¢,(T"(x))} is a monotonic decreasing sequence of non-negative real
numbers. Hence this sequence converges to a real number r. As x,, con-
verges to # and ¢, is a continuous function, {¢,(x,,)} convergesto ¢ (u)
and so ¢ (u) = r. If u # T(u) then by (ii) there is a positive integer m
such that ¢,(T"(u)) < ¢,(u). But as {x, } converges to u, {T"(x, )}
converges to 7" (u) due to the continuity of 7. Hence {¢,(T"(x,,))} con-
verges to ¢,(T" (u)) . Noting that the latter is a subsequence of {¢,(T"(x))}
we have r = ¢, (u) = qST(Tm(u)) , a contradiction of the choice of m . Hence
u is a fixed point of 7.

CorOLLARY. Let T be a continuous operator on a sequentially compact
quasi-gauge space (X, P) into itself such that there exists a fixed pseudo-
metric p, in & with p,(T(x), Tz(x)) < po(x, T(x)) whenever x # T(x).
Then T has a fixed point.

We observe that the use of the function ¢, as a measure of the expansive
nature of T was suggested by Dieudonné {3, p. 262, Problem 1}].
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In Theorem 3, the fixed point # need not be unique. For example let
X={(x,y):(x,y)eR, x*+y’ <1, x>0, x’ +x<1}.

Then the map (x,y) — (x2 , y) satisfies the conditions of Theorem 3 for
the euclidean metric on R? and has more than one fixed point.

ExaMPLE 4. Let X be [0, 1] and p be the pseudo-metric on X defined
by 0 ifx,y¢S,
128 ifx=1/2"andy ¢S,
1/2"  ifx¢Sandy=1/2",
lx—y| ifx,yesS,

p(x’y)=

where S = {1 /2k: k € N}. The topology induced by p has as a base all sets
of the form {1/2"} and (X -S) U{I/Zk: k > k,}. Clearly X is sequentially
compact. The operator 7 on X defined by

T()_{x, ifx¢gs,
=12, ifxes

is continuous and p(7'(x), Tz(x)) < p(x, T(x)) for x # T(x). Hence by
the corollary to Theorem 3, T has a fixed point, which however is not unique.
It may be noted that though 7 is a Banach operator of type 1/2, Theorem
1 of [12] cannot be used here as X is not Hausdorff.

The next result gives sufficient conditions under which the sequence of
iterates of 7" at a point converges. It is a generalization to gauge spaces of a
result of Ortega and Rheinboldt [7, Section 12.3.5] for euclidean spaces and
subsumes Sehgal’s extension [11, Theorem 5] of Edelstein’s earlier result [5,
Theorem 1].

THEOREM 4. Let T be a continuous operator on the gauge space (X , &)
into itself. Suppose that

(i) p(T(x), T*(x)) < p(x, T(x)) for each p € P;

(i) if x # T(x), then for each p there exists an integer n (which may
depend on x and p), such that p(T"(x), T"+l(x)) <plx, T(x));

(iii) the closure, S, of {T"(x,):n=1,2, ...} is sequentially compact, for
some point x, € X ;

(iv) T has at the most one fixed point.
Then {T"(xo)} converges to the unique fixed point of T .

ProoF. That any limit point of {T"(x,)} is a fixed point of T is a con-

sequence of Theorem 3 above. Since 7T has at most one fixed point and S
is sequentially compact, T has a unique fixed point u. For each p € &,
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p(u, T"(x,)) converges to zero. Otherwise we can find a subsequence y, of
{T" (x4)} converging (in view of the sequential compactness of S) to some
element v and with the property that for some p € #, p(u,y,) >e >0
for a fixed real number ¢. Proceeding to the limit we have that p(u, v) >¢.
Thus (v # u) would be a fixed point of T, contradicting that u is the only
fixed point.

COROLLARY (Sehgal [11]). If (X, d) is a metric space and T is a continu-
ous operator on X such that for x #y, d(T(x), T(y)) < max{d(x, T(x)),
d(y,T(y)),d(x, y)} then T has a fixed point provided the sequence of T-
iterates at x,, has a convergent subsequence.

The deduction of the corollary rests on observing from the proof in [11]
that {7"(x,)} itself is convergent and so the closure S of {T"(x,)} is se-
quentially compact.
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