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Abstract. The orbital evolution of planetary systems similar to our Solar one represents one of
the most important problems of Celestial Mechanics. In the present work we use Jacobian co-
ordinates, introduce two systems of osculating elements, construct the Hamiltonian expansions
in Poisson series for all the elements for the planetary three-body problem (including the prob-
lem Sun–Jupiter–Saturn). Further we construct the averaged Hamiltonian by the Hori–Deprit
method with accuracy up to second order with respect to the small parameter, the generating
function, the change of variables formulae, and the right-hand sides of the averaged equations.
The averaged equations for the Sun–Jupiter–Saturn system are integrated numerically over a
time span of 10 Gyr. The Liapunov Time turns out to be 14 Myr (Jupiter) and 10 Myr (Saturn).
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1. The Hamiltonian of the planetary three-body problem
The orbital evolution of a planetary system similar to our Solar one represents one of

the most important problems of Celestial Mechanics. The secular behaviour of the plan-
etary three-body problem has been extensively investigated both from the mathematical
and numerical point of view by many researchers. The stability of the spatial plane-
tary three-body problem using KAM theory has been investigated by Robutel (1993a),
Robutel (1993b), Laskar & Robutel (1995), Robutel (1995). These results have been
obtained for extremely small planetary eccentricities and masses. The motion of the
Jupiter–Saturn planetary system near the 5 : 2 mean-motion resonance has been mod-
eled analytically by Michtchenko & Ferraz-Mello (2001) in the framework of the planar
general three-body problem.

In this paper, we continue researches of the spatial planetary three-body problem
Sun–Jupiter–Saturn begun in Kholshevnikov, Greb, & Kuznetsov (2001), Kholshevnikov,
Greb, & Kuznetsov (2002) and Kuznetsov & Kholshevnikov (2004). We use Jacobian
coordinates as the best suited. Let us assume m0, µm0m1, µm0m2 as masses of the Sun,
Jupiter and Saturn respectively. The small parameter µ is equal to 10−3. In this case the
dimensionless masses m1 and m2 are of order unity (m1 ≈ 1,m2 ≈ 1/3).

Let us represent the Hamiltonian as a sum of the unperturbed part h0 and the per-
turbed one µh1:

h = h0 + µh1. (1.1)
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The first term depends on the semi-major axes only

h0 = −Gm0m1

2a1
− Gm0m2

2a2
,

G being the gravitational constant. Here and below the subscripts 1 and 2 for coordinates
and elements correspond to Jupiter and Saturn respectively. The second term of (1.1)
may be thought of as a constant factor having the dimension of velocity squared and a
dimensionless part h2

h1 =
Gm0

a0
h2 , h2 = h3 + h4 , (1.2)

where a0 is an arbitrary parameter with dimension of the length,

h3 =
m2a0

µ

(
1
r2

− 1
ρ

)
=

m2a0

[
2 m1

1+µm1
r1r2 + µ

(
m1

1+µm1

)2

r2
1

]
r2ρ(r2 + ρ)

,

h4 = −m1m2a0

∆
, ρ =

∣∣∣∣r2 +
µm1

1 + µm1
r1

∣∣∣∣ , ∆ =
∣∣∣∣r2 −

1
1 + µm1

r1

∣∣∣∣ .

2. Systems of osculating elements
Let us introduce two systems of osculating elements. The first system is close to the

Keplerian one

x
(1)
3s−2 = ãs, x

(1)
3s−1 = es, x

(1)
3s = Ĩs , y

(1)
3s−2 = αs, y

(1)
3s−1 = βs, y

(1)
3s = γs. (2.1)

Here ã = (a − a0)/a0, Ĩ = sin(I/2), α = l + g + Ω, β = g + Ω, γ = Ω are expressed
in terms of Keplerian elements a, a0, e, I, l, g, Ω: semi-major axis and its mean value,
eccentricity, inclination, mean anomaly, argument of pericenter, longitude of ascending
node. The index s changes from 1 to the number of planets N = 2.

The second system realizes simplifications due to the homogeneity of the perturbation
function with respect to the semi-major axes. In this system the denominators arising in
a process of averaging transforms are extremely simple. On the other hand, it introduces
a complication, by mixing the orbital elements of different planets

x
(2)
3s−2 = zs, x

(2)
3s−1 = es, x

(2)
3s = Ĩs , y

(2)
3s−2 = αs, y

(2)
3s−1 = βs, y

(2)
3s = γs , (2.2)

where z1 = ω0
1/ω1 − 1, z2 = (ω0

1ω2)/(ω0
2ω1)− 1. Here ωs = κsa

−3/2
s are mean motions of

the planets, ω0
s are constants close to mean values ωs, κ2

s = Gm0ms/Ms are gravitational
parameters of the planets, reduced masses are Ms = ms(1 + µm1 + · · · + µms−1)/(1 +
µm1 + · · · + µms), s = 1, 2.

3. Expansion of disturbing Hamiltonian into Poisson series
The disturbing Hamiltonian h2 is presented as Poisson series

h2 =
∑

Aknxk cos ny. (3.1)

Here x = {x1, . . . , x6} are action-like elements, y = {y1, . . . , y6} are angular ones, Akn

are numerical coefficients, k = {k1, . . . , k6} and n = {n1, . . . , n6} are multi-indices. The
summation is taken over non-negative ks and n1 and integer n2, ..., n6.
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It is well known (see for example Charlier 1927, Subbotin 1968) that

n1 + n2 + n3 + n4 + n5 + n6 = 0 , n3 + n6 = even ,

ks = |ns| + non-negative even (s = 2, 3, 5, 6) (3.2)

The simplest restrictions on k and n are

k1 + k2 + · · · + k6 � d , n1 � c , |n4| � c. (3.3)

The other ns are less than d according to D’Alembertian properties of the Hamiltonian
h2 (Kholshevnikov 1997, 2001).

Designate b the order of approximation with respect to µ. To evaluate d(b) it is sufficient
to take into account that Jupiter’s and Saturn’s eccentricities e1 = 0.05, e2 = 0.05 and
the sines of the half-angles of inclinations I1 = 0.01, I2 = 0.02 are small values of the
same order µ1 ∼ µ1/2. The choice of c(b) is controlled by the rate of convergence at
µ1 = 0. According to Kholshevnikov, Greb, & Kuznetsov (2002):

d(2) = 6 , d(3) = 11 , d(4) = 16 , c(2) = 13 , c(3) = 25 , c(4) = 37. (3.4)

The parameters a0, m1, m2, a0
1, a0

2 (necessary to calculate the coefficients Akn and the
multiplier to convert the Hamiltonian h1) are given in Kholshevnikov, Greb, & Kuznetsov
(2002). In this paper it is shown also that the expansions up to µ4 has only one small
divisor 2ω0

1 −5ω0
2 . The constant F = |2ω0

1 −5ω0
2 |/ω0

1 describing commensurability degree
is equal to 0.023331 for the chosen values of the parameters: this indicates that a weak
resonance F ∼ √

µ is present.
The Poisson series processor PSP (Brumberg 1995, Ivanova 1996) is used to construct

the expansion of disturbing Hamiltonian h2 into Poisson series (3.1). The rational version
of the PSP is used to decrease round-off errors during calculations of the coefficients Akn.
The expansion of the disturbing Hamiltonian is processed up to µ2. The summation is
taken over k1 + · · ·+ k6 � 6, |ns| � 15 (s = 1, . . . , 6). For each of the osculating elements
system two variants of the expansion are constructed. The first variant deals with numer-
ical values of parameters (masses, mean values of semi-major axes, . . . ) corresponding
to the Sun–Jupiter–Saturn system. The second one deals with the litteral expressions
depending upon the parameters of the system.

4. Averaged planetary three-body problem
The Hori–Deprit method (Lie transformation method) is used to construct the aver-

aged Hamiltonian H. This method is based on Poisson brackets that allow us to use
non-canonical elements, by writing down the Poisson brackets in the corresponding sys-
tem of phase variables (Kholshevnikov & Greb 2001).

For a stationary change of variables without mixing impulses p = (p1, . . . , p6) and
coordinates q = (q1, . . . , q6) the Poisson bracket is written down through partial brackets
(Kholshevnikov & Greb 2001) as

{f, g} = Vjk(f, g)jk , Vjk =
∂xj

∂pi

∂yk

∂qi
, (f, g)jk =

∂f

∂xj

∂g

∂yk
− ∂f

∂yk

∂g

∂xj
.

Summation is made by repeating indices from 1 to 6.
The matrices V with elements Vjk for both the first and the second systems of elements

(2.1), (2.2) was obtained in Kholshevnikov & Greb 2001, Greb (2002). For the first system
(2.1) the Poisson matrix is block diagonal. For the second one (2.2) it is triangular.
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The Hamiltonian h (1.1) is averaged over the fast variables α1 and α2. The averaged
Hamiltonian H is represented by a power series in the small parameter µ. The Hamilto-
nian H and the generating function are echeloned Poisson series (Rom 1971).

For calculations we use the rational version of the echeloned Poisson series processor
EPSP (Ivanova 2001) to reduce the round-off errors. Transformations are made for both
systems of elements with numerical parameters corresponding to the Sun–Jupiter–Saturn
system.

The Hamiltonian H is represented by an echeloned Poisson series upto µ2. Two ap-
proximations of Hori–Deprit method are made for the first system of elements (2.1). For
the second system (2.2) only the first approximation is realized. The generating func-
tion, the change of variables formulae between averaged and osculating elements, and
the right-hand sides of the averaged equations of motion are thus obtained.

5. Behaviour of the Sun–Jupiter–Saturn system
The averaged equations are integrated numerically over a time span of 10 Gyr. The

equations for slow variables are integrated by 15 order Everhart and 11 order Runge-
Kutta methods. The equations for fast variables are integrated by spline interpolation
method.

The accuracy of the integration is controlled by computation of the integrals of energy
and area. The absolut value of the relative error for the energy integral calculation is less
than 5.2 · 10−13 for both integrators over a time span of 10 Gyr. The mean value of the
relative error is a constant over all integration time.

To calculate the area integrals the properties of the form conservation in Jacobian
coordinates (Charlier 1927) and under averaging transform (Kholshevnikov 1991) are
used. The area integrals are determined with respect to the Laplace plane. In this case
the vector σ = (σx, σy, σz) is directed along the z-axis. Hence σx = σy = 0. The absolute
value of the relative error for the σz area integral calculation is 3.5 · 10−10 for both
integrators over a time span of 10 Gyr. The amplitude and mean value of the relative
error are constant over all integration time. We find out that the area integrals σx,
σy are preserved with low accuracy: |σx/σz0| < 8.2 · 10−7, |σy/σz0| < 5.2 · 10−7. The
non-conservation of the σx and σy integrals has the following reason. As it is proved
in Kholshevnikov (1991), they are preserved in the system determined by the averaged
Hamiltonian H. But they are not preserved in a system determined by a finite sequence
of Poisson expansion of the averaged Hamiltonian H taking into account the restrictions
(3.3), (3.4) on k and n.

Table 1 presents the low and upper limits, mean values and amplitudes of oscillations
for the averaged eccentricities and inclinations obtained from the numerical integration of
the averaged equations for the first and second approximations over 10 Gyr. The results
obtained by the two integrators show a good agreement. The relative differences between
the first and second approximations are given in the two last columns of the table 1.
They are more than the small parameter µ = 1 · 10−3, but they are generally less than
the quotient µ/F = 4.4 · 10−2. The only exception is Jupiter’s eccentricity amplitude ea

for Runge–Kutta method.
The evolution of the ascending node longitudes γ of Jupiter and Saturn orbits depends

upon the choice of the reference plane. In the first approximation the evolution of the
ascending nodes longitudes with respect to the ecliptic plane turns out to be in libra-
tion with amplitudes 12.9◦ and 32.8◦ for Jupiter and Saturn respectively. The libration
amplitudes are in agreement with those obtained by Smart (1953). The evolution of the
ascending nodes longitudes with respect to the Laplace plane is secular. On the Laplace
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Table 1. Range of the eccentricity and inclination changes for Jupiter and Saturn orbits on
time interval 10 Gyr.

First approximation Second approximation Relative difference
15 order 11 order 15 order 11 order 15 order 11 order
Everhart Runge–Kutta Everhart Runge–Kutta Everhart Runge–Kutta
method method method method method method

Jupiter
emin 0.0184 0.0187 0.0171 0.0171
emax 0.0510 0.0508 0.0511 0.0511
emean 0.0347 0.0348 0.0341 0.0341 1.8 · 10−2 2.1 · 10−2

ea 0.0163 0.0161 0.0170 0.0170 4.1 · 10−2 5.3 · 10−2

imin 1.2657 1.2698 1.2705 1.2679
imax 2.0011 2.0002 2.0005 2.0006
imean 1.6334 1.6350 1.6355 1.6342 1.3 · 10−3 4.9 · 10−4

ia 0.3677 0.3652 0.3650 0.3664 7.4 · 10−3 3.3 · 10−3

Saturn
emin 0.0212 0.0212 0.0194 0.0194
emax 0.0772 0.0771 0.0780 0.0780
emean 0.0492 0.0492 0.0487 0.0487 1.0 · 10−2 1.0 · 10−2

ea 0.0280 0.0280 0.0293 0.0293 4.4 · 10−2 4.4 · 10−2

imin 0.7240 0.7346 0.7344 0.7340
imax 2.5366 2.5319 2.5317 2.5349
imean 1.6303 1.6333 1.6331 1.6344 1.7 · 10−3 6.7 · 10−4

ia 0.9063 0.8987 0.8987 0.9005 8.5 · 10−3 2.0 · 10−3

plane the difference between the ascending nodes longitudes of Jupiter and Saturn orbits
is equal to 180◦ exactly. This property is used as a test of the integration accuracy.

In the second approximation the evolution of the ascending nodes longitudes with re-
spect to the ecliptic plane turn out to be a large amplitude oscillations with a slow secular
motion. The mean values over one period of the ascending node longitudes decrease by
6◦ per Gyr.

The evolution of the pericentre longitudes β of Jupiter and Saturn orbits turns out to
be secular for both approximations.

Table 2 gives estimations of the mean squared norm

||f ||2 =


 1

N

N∑
j=1

(fj)2




1/2

and the uniform norm
||f ||∞ = max

j=1,...,N
|fj |

of the variable change functions describing, for each element, the short periodic pertur-
bations, i.e. the differences between mean and osculating elements. Here N is the number
of the orbital elements values on the time interval.

The short-period perturbations of Jupiter and Saturn semi-major axes a do not ex-
ceed 0.0022 a.u. and 0.0121 a.u. respectively. The tables 1 and 2 comparison shows that
the maximum values of the short-period perturbation norms for the eccentricities e and
inclinations i are much less than the amplitudes of the corresponding long-period per-
turbations. The variable change function norms for the longitudes α, β and γ are much
less than the amplitudes of the long-period perturbations also.
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Table 2. Mean squared and uniform norms of the variable change functions.

Planet Orbital elements
a, a.u. e i, degrees α, degrees β, degrees γ, degrees

Mean squared norm
Jupiter 0.0006 0.0005 0.0005 0.0113 0.9738 0.0182
Saturn 0.0038 0.0012 0.0013 0.0402 1.7033 0.0522

Uniform norm
Jupiter 0.0022 0.0011 0.0013 0.0304 3.1538 0.0616
Saturn 0.0121 0.0027 0.0032 0.1127 7.6316 0.2603

Estimates of the Liapunov Exponents for the Sun–Jupiter–Saturn system have been
obtained. The corresponding Liapunov Time turns out to be 14 Myr (for Jupiter) and
10 Myr (for Saturn).

6. Conclusion
A numerical integration of the averaged equations for the Jupiter–Saturn system shows

that the motion has a quasiperiodic character over the time-scale of 10 Gyr. The eccen-
tricities and inclinations of Jupiter and Saturn orbits remain small and their values are
separated from zero. The lines of nodes and apsides have a secular motion. The short-
periodic perturbations remain small during the considered time interval.
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