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Multiscale Pressure Solvers for Stratigraphic
and Polytopal Grids

knut-andreas lie and olav møyner

Abstract

The multiscale restriction-smoothed basis (MsRSB) method is the current state-
of-the-art within multiscale methods. MsRSB is very robust and versatile and can
be used either as an approximate coarse-scale solver having mass-conservative
subscale resolution or as an iterative fine-scale solver that will provide mass-
conservative solutions for any given tolerance. The performance of the method has
been demonstrated on incompressible two-phase flow, on compressible two- and
three-phase black-oil models, as well as on compositional models. It has also been
demonstrated that the method can utilize combinations of multiple prolongation
operators; e.g., corresponding to coarse grids with different resolutions, adapting to
geological features, adapting to wells, or moving displacement fronts. This chapter
explains the basic ideas of the MsRSB method, including methods to construct
coarse partitions, prolongation, and restriction operators; reduction of the fine-
scale flow equations to a coarse-scale system; and formulation as part of a two-level
iterative solver. We outline the key functions in the module and show various exam-
ples of how the method can be used as an iterative solver for incompressible and
compressible flow on 2D rectilinear grids, unstructured grids, and 3D stratigraphic
grids.

4.1 Introduction and Background Discussion

Key elements of what today constitute the MATLAB Reservoir Simulation Toolbox
(MRST) were originally developed as a flexible research and prototyping platform
for multiscale methods and consistent discretizations on complex grids [26].
Research on multiscale methods and other methods aimed at accelerating reservoir
simulation has continued to fuel and direct the development of the software since
then. After more than 15 years of research, state-of-the-art in multiscale methods
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has reached a stage where these methods have been commercially implemented
and can be used to accelerate the simulation of large and complex geomodels
[27]. The purpose of this chapter is to give a basic introduction to the multiscale
finite-volume (MsFV) solvers implemented in the msrsb module of MRST and
demonstrate how you can use these to solve incompressible and compressible
flow equations, posed on Cartesian, stratigraphic, and complex polytopal grids.
Specifically, we will describe the original MsFV method [18, 32, 43, 56, 59],
which is based on primal–dual grid partitions, and the more flexible multiscale
restriction-smoothed basis (MsRSB) method [28, 44, 45, 47]. Both methods
are also implemented1 in the commercial INTERSECT simulator [23, 24, 27].
The commercial implementation is more specialized and has been thoroughly
optimized for computational speed, whereas the implementations in MRST are
primarily designed to enable simple experimentation with new ideas and suffer
from certain computational overhead you would not see with a compiled language.
Please keep this in mind if the multiscale solvers in MRST do not give you the
computational speedup you expect to see.

MRST also implements multiscale mixed finite-element methods for strati-
graphic and unstructured grids [1, 48] in the msmfem module. These methods are
robust and accurate alternatives to upscaling for incompressible flow problems.
The solvers are versatile and robust with respect to various kinds of polytopal grids
but proved difficult to extend to compressible flow, mainly because of the inherent
requirement that flow equations must be on mixed form. The module has therefore
not seen any significant development since 2012. In addition, the msfvm module
offers an early and obsolete implementation of the MsFV method, which we have
continued to release to respect the principle of reproducible research.

4.1.1 Why Do We Need Multiscale Methods?

Multiphase flow in porous rock formations is governed by physical processes that
take place on a wide range of spatial/temporal scales and is therefore said to be
a multiscale problem. To explain the fluid movement inside a petroleum reservoir,
which typically spans hundreds or thousands of meters in the areal direction, one
must understand the fluid movement that takes place inside individual pores and
pore throats on the size of micrometers and characterize the petrophysical proper-
ties of the porous rock all the way up to the kilometer scale. Unfortunately, flow
phenomena taking place on a microscale are not well separated from those on a

1 In fact, the MsRSB method was first developed in MRST and later reimplemented in INTERSECT. Likewise,
key parts of the strategy for generating primal–dual partitions in the MsFV method were first developed in
MRST.
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macro scale, and this makes modeling quite challenging. The MRST textbook [25]
gives a thorough introduction to flow modeling, seen from a macroscale perspec-
tive, as used to, e.g., describe the fluid behavior of hydrocarbon reservoirs and
large aquifer systems. A key modeling assumption is the existence of representative
elementary volumes to justify the continuum hypothesis and the Darcy effective-
property type description used in most parts of MRST. (See Blunt [5] for more
details on flow modeling from a pore-scale perspective.)

The multiscale nature of macroscale models primarily comes from heterogeneity
in the petrophysical characteristics of the porous rock. Properties can exhibit abrupt
orders-of-magnitude variations across short distances between different strata and
at the same time be strongly correlated over hundreds or thousands of meters inside
the same strata. Accounting for all pertinent variations is virtually impossible and,
as explained in chapter 2 of the MRST textbook [25], reservoir characterization
therefore usually involves a hierarchy of models that each covers a limited range of
physical scales. Models used for flow studies include core-scale models (centimeter
scale) and bed models (meter scale) that are used to give input to the geological
characterization and derive effective flow parameters in sector models (tens to
hundreds of meters) and field models (kilometer scale). Resulting high-resolution
geological models have grid cells in the range of centimeters to decimeters in the
vertical direction and meters to tens of meters in the horizontal direction to accu-
rately account for structural elements like faults, fractures, joints, and deformation
bands and stratigraphic characteristics like channels, clinoforms, lobes, shale and
mud drapes, etc.

The last decades have seen a tremendous increase in computational power, which
is equally matched by improvement in computational methods (massive paralleliza-
tion, multilevel iterative solvers, preconditioning methods, etc.). Simulating high-
resolution geomodels is nonetheless computationally costly and, as explained in
[25], it is common to use a combination of grid coarsening (discussed in chapter 14)
and upscaling (discussed in chapter 15) to derive more homogenized and coarser
models that are more computationally tractable. This process is complicated by the
lack of scale separation, which essentially implies that any upscaling procedure
based on local considerations is only valid for simplified or idealized setups and
that nonlocal information is generally needed to compute representative, effective
properties that can accurately reproduce the correct flow patterns.

The first so-called multiscale methods were presented two decades ago [3, 4,
8, 17] as a more robust alternative to conventional upscaling. The original idea
was to use special basis functions, computed numerically by solving localized flow
problems, to incorporate unresolved subscale effects into macroscale models in a
systematic and rigorous way that is consistent with the underlying flow equations.
These basis functions also gave an immediate mechanism for reconstructing
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approximate solutions on the fine or any intermediate scale. Over the years,
research focus has shifted toward accelerating the solution of the original fine-
scale problem, giving iterative multiscale methods [34, 56] that are contenders to
algebraic multilevel methods [12, 52, 54].

4.1.2 Basic Flow Model and Abstract Notation

Multiscale methods are essentially designed to solve second-order elliptic equa-
tions with strongly heterogeneous coefficients. To explain the key ideas in more
detail, it is therefore sufficient to consider the standard model for single-phase flow
in the absence of gravity:

∇ · (K(�x)∇p
) = q, �x ∈ �. (4.1)

Here, p denotes the fluid pressure, q contains volumetric source terms, and K is the
permeability tensor, whose spatial variations introduce the multiscale nature into
the problem. In abstract notation, we seek an unknown function p in a solution
space U defined over � that for given K and q satisfy the equation L(p;K) = q,
where L(·;K) = ∇ · K∇ is the second-order (Poisson) differentiation operator.

The conventional way of representing permeability is as a set of cell-centered
values Kh = {Ki}ni=1 defined over a volumetric mesh Mh = {�h

i }ni=1. To discretize
(4.1) over this mesh, we use the standard two-point flux approximation (TPFA)
scheme, which gives a discrete equation in each cell∑

k

T h
ik(pi − pk) = qi, i = 1, . . . ,n. (4.2)

Here, the transmissibility T h
ik is a discrete measure of the conductivity between

two neighboring cells i and k and involves the discrete permeability values and
geometric cell quantities. (Subsection 4.4.1 of the MRST textbook [25] gives more
details.) Collecting the discrete equations as rows gives the linear system

Ap = q, (4.3)

which we must solve with a direct or an iterative solver to obtain the unknown
cell-averaged pressures p ∈ R

n. Formulated in abstract notation, we thus seek an
unknown pressure ph in the finite-dimensional space U

h that satisfies the operator
equation Lh(ph;Kh) = qh given by (4.2) inside each cell.

4.1.3 Local Upscaling

To better motivate multiscale methods, we first briefly outline standard upscaling
methods. One starts by generating a coarser mesh, MH = {�H

i }Ni=1, and then seeks
a set of homogenized, effective permeabilities KH = {K∗

i } that ideally should

https://doi.org/10.1017/9781009019781.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.008


Multiscale Pressure Solvers for Stratigraphic and Polytopal Grids 101

p

p

p

p

Figure 4.1 Illustration of flow-based upscaling with constant pressures prescribed
along the inflow and outflow boundaries and no-flow (or sealing) boundary
conditions elsewhere.

reproduce the same total flow through each homogeneous region as you would
obtain by solving (4.1) with the full fine-scale permeability Kh.

The simplest way to compute the individual K∗
j values is through arithmetic,

geometric, or harmonic averaging inside each coarse block. This is generally not
accurate and will only provide upper and lower bounds on the effective permeabil-
ities. Sharper bounds are obtained through directional combinations of arithmetic
and harmonic averages.

Alternatively, we can use a flow-based method in which we first solve local
flow problems Lh(ϕ;Kh) = 0, localized to each coarse block �H

j or a somewhat
enlarged domain, with suitable boundary conditions. A standard choice is to impose
a unit pressure drop in each axial direction, as illustrated in Figure 4.1, which
emulates how permeabilities are measured from cores in the laboratory. Using
Darcy’s law, �v = −K∇p, we can then relate the total outflow in each axial direction
to the associated pressure drop over the block and use this to determine the axial
components of the effective permeability. Section 15.3.2 of the MRST textbook
[25] gives more details and discusses alternative setups of boundary conditions.

We can then use the upscaled permeabilities to solve a coarse-scale flow problem
LH(pH ;KH) = qH that has significantly fewer unknowns. With a TPFA discretiza-
tion it is more convenient to use a similar procedure defined over each pair of neigh-
boring grid blocks to upscale the transmissibilities to coarse-scale transmissibilities
{T H

ij } associated with MH , as discussed in more detail in section 15.4 of the MRST
textbook [25].

4.2 Multiscale Finite-Volume Methods

Multiscale methods build on similar ideas as flow-based upscaling in the sense that
we need to solve a set of representative flow problems that each is localized to
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a small region. However, instead of using these local flow solutions to compute
effective properties, we use them as local building blocks (basis functions) that
are combined into an approximate solution by solving a global flow problem on
a coarse scale. In other words, we construct a coarse-scale approximation space
or, more generally, a set of such coarse-scale spaces that each consists of numeri-
cally computed functions that incorporate representative, localized behavior of the
true solutions. The resulting reduced coarse-scale problem not only accounts for
the effective average flow properties but also incorporates information about the
influence of local, subscale variations in pressures and flow directions.

We have already mentioned the MsFV methods implemented in the msrsb
module. As with geometric and algebraic multigrid, MsFV methods were first for-
mulated in geometric form [18, 19] and later developed in algebraic form [32, 59].
We can use the following diagram to illustrate the differences between the two
(details will be explained shortly):

L(p;K) = q L
(∑

i piψ
H
i

) = q

Ap = q AH
h pH = q

L(ψH
i ;K)=0

�→MH,DH

�→Mh ψH
i →ψ

H,h
i

wirebasket

R,P

In the geometric formulation (blue arrows), we first partition the domain into a
set of primal–dual subdomains and construct a multiscale approximation space
consisting of analytical solutions to the elliptic flow model (4.1) localized to these
domains. To derive a discrete method, we discretize the local flow problems and use
their numerical solutions as basis functions in a global coarse-scale flow problem.
In the algebraic formulations (red arrows), we first discretize the global flow
problem on the fine scale and then use algebraic operations to formulate discrete
prolongation and reduction operators that reduce the fine-scale discretization
matrix A to a coarse-scale problem. Geometric formulations are rarely used in
practical simulations, but for completeness and pedagogical reasons we describe
both forms in detail in the rest of this section.

4.2.1 Geometric Formulation of the Original MsFV Method

As in upscaling, we start by subdividing the domain � into a primal coarse mesh
MH = {�H

i }Ni=1, where H is a parameter characterizing the size of the grid blocks
�H

i . In practice, the coarse blocks are formulated as connected aggregates of cells
from the fine mesh Mh, represented in terms of a partition vector P ∈ N

n, defined
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Figure 4.2 Partition of a 6 × 6 fine mesh Mh into a coarse mesh MH with six
blocks. Colors and numbers show the entries of the corresponding partition vector
P , which takes six distinct values.

Figure 4.3 Parts of a primal coarse mesh MH (blue lines) and the corresponding
dual mesh DH (red dashed lines). The centroids of the primal mesh are shown as
blue circles, and the support region �H

i of the basis function ψH
i associated with

the coarse block in the middle is shown in green.

such that P(k) = i if fine cell k belongs to block i; see Figure 4.2. Chapter 14 of the
MRST textbook [25] discusses various techniques for generating such partitions.

Next, we associate a multiscale basis function ψH
i to each coarse block. These

basis functions will be developed as generalizations of the standard first-order
Galerkin finite-element basis functions defined on the dual coarse mesh DH . This
mesh is defined so that the block centroids of the primal mesh MH form vertices
in DH ; see Figure 4.3. We then define the basis function ψH

i as a generalized hat
function by requiring that it equals unity at the centroid of block i and zero at all
other block centroids, has compact support within the local domain �H

i defined
as the collection of all dual coarse blocks �H

k that overlap with �H
i , and satisfies

a homogeneous flow problem L(ψH
i ;K) = 0 inside the support region �H

i . The
localization is enforced by imposing a reduced-dimensional homogeneous flow
equation on the edges connecting block centroids, as illustrated in Figure 4.4.
The procedure is essentially the same in three spatial dimensions, except that the
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Dual coarse mesh

Primal coarse mesh

t (K tΦ) = 0

Φ = 1

Φ = 0

(K Φ) = 0

Figure 4.4 Definition of basis functions for the MsFV method. To localize the
basis function, we set a unit pressure at the block center and zero pressure at
the centers of neighboring blocks and then impose a reduced flow problem as
boundary conditions along the dual edges connecting the block centers. The basis
function can then be computed by discretizing and solving the flow problems in
the region bounded by the dual edges, giving the generalized hat function shown
to the right.

localization must be enforced in two steps: First, we extrapolate the constant pres-
sures at the block centroids to the edges of the dual mesh by imposing a reduced-
dimensional flow equation in one independent variable. Then, we extrapolate the
edge values to the dual block faces by imposing a reduced-dimensional flow equa-
tion in two independent variables.

Altogether, the collection of basis functions {ψH
i } defines a coarse-scale approx-

imation space U
H , in which we can seek an approximate solution p ≈ pH =∑

i piψ
H
i that satisfies L

(∑
i piψ

H
i ;K) = q.

To get a fully discrete method, we discretize the local flow problems to compute
numerical approximations ψ

H,h
i to ψH

i . In principle, one could solve the reduced-
dimensional flow problems to localize each basis function using lower-dimensional
grids, but this becomes quite cumbersome unless all coarse blocks have simple
geometrical shapes; in practice, the localization equations are solved on collections
of fine-scale cells that trace out the edges and faces of the dual coarse blocks.

Once the numerical basis functions are computed (see the right plot in
Figure 4.4), we use them to write the multiscale approximation to the fine-scale
solution as the following series:

ph ≈ pH,h =
N∑

i=1

pH
i ψ

H,h
i , (4.4)

where the unknown coefficients pH
1 , . . . ,pH

N must be determined by inserting (4.4)
into the discrete fine-scale problem, Lh

(∑
i p

H
i ψ

H,h
i ;Kh

) = q.
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By extending the definition of each basis function to the whole grid we can
represent them as vectors bi ∈ R

n. If we collect these vectors as columns in a
matrix, we get an n × N so-called prolongation matrix P h

H = [b1, . . . ,bN ] and
can write (4.4) as an vector equation, p ≈ P h

HpH , where pH ∈ R
N . Inserting this

approximation into (4.3) gives the linear system AhP h
HpH = q, which consists of

n equations for N unknowns. To avoid having an overdetermined n × N system,
we simply sum the equations for all fine cells inside each coarse block to obtain an
N×N system. To this end, we introduce the N×n restriction matrix RH

h , in which
entry Rij equals 1 if cell j is contained in block i and 0 otherwise. Summing up,
we obtain the following reduced coarse-scale system:(

RH
h AhP h

H

)
pH = RH

h q ⇐⇒ AH
h pH = qH . (4.5)

Solving this system gives an approximate coarse-scale pressure pH but also sug-
gests an approximate fine-scale pressure pH,h = P h

HpH . We can then use Darcy’s
law to compute coarse-scale fluxes from pH and fine-scale fluxes from pH,h. The
coarse-scale fluxes are mass conservative, because they satisfy the conservation
equation inherent in (4.5).

The fine-scale fluxes resulting from pH,h are generally not mass conservative.
They are mass conservative inside each dual coarse block �H

k , where (4.3)
holds, but along the edges/faces of the dual blocks, ∂�H

k , they only satisfy
a reduced-dimensional flow problem and will hence not be conservative.
To remedy, we impose the fine-scale fluxes derived from the approximate
multiscale solution as Neumann conditions on the boundary of the primal
blocks, where these fluxes are mass conservative, because ∂�H

i is inside �H ,
and solve a local flow problem L(p̃;K) = 0 on each �H

i to reconstruct fine-
scale fluxes that are mass conservative inside �H

i and thus also on ∂�H
k .

Notice that we could also have used (P h
H )T to reduce the overdetermined system.

This gives a Galerkin-type discretization [6], which is generally not locally mass
conservative.

4.2.2 Algebraic Formulation of the Original MsFV Method

We will now explain how the same construction can be obtained through pure
algebraic operations on the fine-scale discretization matrix A from (4.3). To this
end, we first introduce a wirebasket ordering, in which each cell is categorized as
being either a node, part of an edge of a dual block (or part of a dual face in 3D),
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Figure 4.5 Wirebasket ordering of cells for a 15 × 15 fine-scale mesh partitioned
into a 3 × 3 coarse mesh (left), sparsity pattern of the fine-scale discretization
matrix A (middle), and the same matrix after permutation to wirebasket order
(right). (Soure code: illustrateMsFV.m.)

or an inner cell. Using this ordering, we can permute the linear system (4.3) so that
we first have the equations for the inner cells, the edges, and then the nodes. For a
2D system, this reads

Ap = q −→
⎡⎣Aii Aie 0

Aei Aee Aen

0 Ane Ann

⎤⎦⎡⎣pi

pe

pn

⎤⎦ =
⎡⎣q i

qe

qn

⎤⎦ . (4.6)

Here, matrix block Aie represents the influence that inner-cell pressures have on the
edge-cell pressures, etc. The zero blocks arise because node-cell pressures cannot
influence inner-cell pressures, and vice versa, if we use a two-point discretization
on the fine grid. Figure 4.5 illustrates the wirebasket ordering and the corresponding
permutation for a small 2D test problem.

The system (4.6) is symmetric so that cells influence each other in a fully sym-
metric way. A quick recap of the previous section shows that to compute basis
functions, we first impose a unit or zero pressure at the nodes, solve reduced flow
problems in the edge and face cells to impose localizing boundary conditions,
and finally solve a homogeneous flow problem in the inner nodes. To mirror this
approach, we must break the symmetry of (4.6) by removing the influence of inner
cells on the edge cells and similarly make node cells unaffected by edge cells
(Aei = 0, Ane = 0). The resulting matrix system reads

Ã =
⎡⎣Aii Aie 0

0 Ãee Aen

0 0 Ãnn

⎤⎦ . (4.7)

Here, the new matrix block Âee represents how edge cells influence each other
and is defined by removing the influence from the inner cells on the edge cells to
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ensure that no mass-balance errors are introduced by removing internal coupling
(and equations). Specifically, we set

Ãee = Aee + diag

(∑
i

AT
ie

)
,

where the summation is interpreted row-wise and the diag operator works as in
MATLAB; i.e., mapping a vector to a diagonal matrix. The other new matrix block
Ãnn represents how node cells influence each other and should be defined as the AH

h

matrix derived in the previous section.
Because Ã is upper block triangular, we can, without any prior knowledge of

the algorithm, use block elimination to find an explicit inverse. However, to make
the connection between the geometric and algebraic formulation of MsFV, we
will form the part of the inverse that accounts for the influence of source terms
associated with nodes [0 0 qn]T , where qn should be set equal to qH . To this end,
we solve the following system (where I n is the N ×N identity matrix):⎡⎣Aii Aie 0

0 Ãee Aen

0 0 Ãnn

⎤⎦B =
⎡⎣ 0

0
I n

⎤⎦ −→ B =

⎡⎢⎢⎣A−1
ii AieÃ

−1
ee Aen

−Ã
−1
ee Aen

I n

⎤⎥⎥⎦ Ã
−1
nn = P̃ Ã

−1
nn .

This defines the prolongation matrix P (and the basis functions), which can be
obtained by permuting P̃ back to the original order. The action of matrix B can
therefore be interpreted as first solving the coarse-scale equation (associated with
the node cells) and then interpolating the result onto the remaining cells.

Similarly, we can define an inverse that accounts for the influence of the source
terms corresponding to edge and inner cells in the fine-scale system [q i q̃e 0]T by
inverting the following system:⎡⎣Aii Aie 0

0 Ãee Aen

0 0 Ãnn

⎤⎦C =
⎡⎣I i 0 0

0 I e 0
0 0 0

⎤⎦ −→ C =

⎡⎢⎢⎣A−1
ii A−1

ii AieÃ
−1
ee 0

0 Ã
−1
ee 0

0 0 0

⎤⎥⎥⎦ .

Whereas the basis functions can be thought of as homogeneous solutions to the
elliptic operator, the nonzero columns of matrix C are called correction functions
[29, 30] and can be thought of as inhomogeneous or particulate solutions of the
elliptic equation that account for effects not represented in the basis functions such
as gravity, compressibility, and source terms from wells and aquifers. We can thus
write the whole multiscale solution as

p̃ = P̃ (AH)−1qH + Cq̃, (4.8)
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Basis function

P̃ P
PT

R
Fine-scale system: Ah Coarse-scale system: AH

Figure 4.6 Illustration of basis function, prolongation and restriction operators,
and fine- and coarse-scale system for the setup in Figure 4.5. (Complete source
code: illustrateMsFV.m.)

where the tilde means that the vectors appear in wirebasket order. Without correc-
tion functions, the method can be interpreted as a special case of classic nonover-
lapping domain-decomposition methods; see Nordbotten and Bjørstad [50].

Example 4.1. Figure 4.6 illustrates how this construction looks for the simple setup
from Figure 4.5. Here, we reduce the 225 × 225 fine-scale system to a 9 × 9 system,
which corresponds to an upscaling ratio of 25. Notice that whereas the fine-scale
system has a pentagonal structure, the coarse-scale system has more diagonals and
thus can be considered a multipoint discretization. The extra multipoint connections
are introduced because of overlap among the different basis functions.

4.2.3 Deficiencies and Limitations of the Original MsFV Method

Extensive numerical tests have shown that the MsFV method, as outlined thus far,
is accurate and robust compared with local upscaling methods and gives solutions
that generally agree well with the corresponding fine-scale solutions. However,
exceptions to this rule occur on meshes with high aspect ratios and for channelized
media with strong permeability contrasts, for which the method tends to produce
solutions with (large) unphysical pressure oscillations and highly circular velocity
fields [21, 31]. This deficiency is a result of inadequate localization assumptions,
which become particularly evident when extrapolating across large media contrasts.
This introduces a pronounced lack of monotonicity unless the coarse-scale stencil
is modified locally to be closer to the classic two-point scheme; see [16, 51, 57]
for more details. Attempting to remedy this deficiency led to the development of
iterative versions of MsFV, which we will discuss in Subsection 4.2.6.

In algebraic operator form, the MsFV method can in principle be applied to any
mesh, provided one has a suitable wirebasket ordering of the fine-scale cells. Using
MRST, we developed algorithms to construct such orderings for general meshes
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Figure 4.7 Illustration of some of the geometrical and topological challenges
encountered in meshes modeling real assets.

[40, 42, 43]. These algorithms work well for rectilinear, curvilinear, triangular, and
Voronoi meshes and can also be applied to stratigraphic meshes that do not have
too complex geometry and topology. However, meshes encountered in models of
real petroleum assets are usually quite complex because of inactive cells, degen-
eracy in cell geometry, nonmatching cell faces across faults, and nonneighboring
connections that are used to model pinch-outs, erosion, faults, etc., as illustrated in
Figure 4.7. Developing practical methods that can generate admissible primal–dual
partitions for such grids in an automated manner has proved wickedly difficult.

The main challenge is that we need to solve reduced-dimensional problems
along the perimeter of the dual blocks to set the boundary conditions for the
basis functions. A two-point discretization can only model flow across interfaces
between neighboring cells (or, more generally, across nonneighboring connections
that have associated transmissibilities). This means that the edge cells in the
wirebasket ordering, outlined in black in Figure 4.5, must form a contiguous chain
that is connected through cell faces of codimension one; face cells in the 3D
ordering should be connected in the same way. Cells that only share a vertex or
an edge – i.e., share a connection of codimension two or three, have no associated
transmissibility in the fine-scale discretization, and these connections will thus
act as internal no-flow boundaries in the reduced flow problems used to provide
localization; see Figure 4.8.

Ensuring that edge and face cells are properly connected will inevitably make
the edges/faces thicker, and one can easily end up with cluttered partitions in which
edge/face cells represent a large fraction of the available cells, in particular for
partitions with a low coarsening ratio. In addition, the edges and faces of dual
blocks should preferably not contain high-contrast streaks, which are known to
introduce numerical instabilities. In our experience, these requirements limit the
resolution and type of partitions one can generate and in many cases preclude the
use of automated approaches. We have also encountered numerous cases, typically
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Figure 4.8 Ensuring contiguous connections in a wirebasket ordering. Blue cells
are either nodes or edges, green cells are part of a connected edge or face, and the
red cells are only connected through interfaces of codimension two that effectively
represent internal barriers for the reduced flow problems. The corresponding
edges/faces can be made contiguous by adding the yellow cells so that two-point
fluxes can be computed across all internal cell faces.

containing complex fault architectures, that we were not able to partition with
contemporary partition methods. This motivated the development of an alternative
way of computing basis functions based on algebraic smoothing, which we explain
in the next subsection.

4.2.4 The Multiscale Restriction-Smoothed Basis Method

If we take a step back and consider how we constructed the matrix AH to form
the coarse system, we see that we only need a pair (P ,R) of prolongation and
restriction operators. We have already discussed suitable choices of R, either as
a block-wise summation operator or as P T . The essential feature of P is that it
maps degrees of freedom associated with the coarse scale to degrees of freedom on
the fine scale. Constructing P as a generalized version of standard finite-element
hat functions is one of many possible choices. A trivial alternative would be to
construct P as the characteristic function of the coarse partition; i.e., from piece-
wise constant basis functions that equal unity inside the corresponding coarse block
and zero outside. We could also let each basis function sample a hat function with
finite support covering the associated coarse block. Neither of these choices would
satisfy the flow equation on the fine scale but nonetheless lead to admissible coarse-
scale systems and provide a crude way of mapping coarse-scale solutions onto the
fine mesh that may be sufficient when the method is applied as part of an iterative
framework [41], which we will discuss in more detail in the Subsection 4.2.6.

From multigrid theory [54], we generally have that P should:

1. be a partition of unity to represent constant field (in the discrete case, this implies
that each row of P has unit row sum, and likewise we require that each column
of R has unit column sum);

2. be algebraically smooth in the sense that ‖AP ‖1 is minimized, so that AP �pH ≈
Ap locally;
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3. be localized, which in the discrete case means that the basis functions defined by
the columns of P should have compact support within a (small) support region
that contains the corresponding coarse block.

To achieve this, we could imagine that we initiate each column of P as the char-
acteristic function of the corresponding coarse block and then use a standard alge-
braic smoother, like Jacobi or Gauss–Seidel, to transform P so that the columns
gradually become consistent with the discretized flow equation. Unfortunately, the
support of the columns will increase by one cell layer in each iteration, and to
ensure compact support, we would have to stop after a few iterations, giving us a
prolongation operator that is only partially consistent with A. In [45], we proposed
a careful localization strategy that enabled us to continue the iterations as long as
we want and still obtain a prolongation operator that satisfies all three conditions
just stated.

To explain this construction, we first supply each coarse block by a surrounding
support region inside which the corresponding basis function will have compact
support; see Figure 4.9. Our construction will force the basis function to be zero
in a layer of cells surrounding the support region, and to ensure overlap among the
basis functions, the support region should therefore extend at least one cell layer
outside of the coarse block. If a primal–dual partition is available, each support
region can be set as the union of dual blocks that overlap each coarse block. In
[45], we presented an alternative geometric construction based on triangulation of
coarse-block centers. Alternatively, one could form the support region by growing
the coarse blocks outward.

Starting with P as the n × m characteristic function of the coarse partition and
assuming that we already have obtained ν iterates, we first compute the next Jacobi
increment for each column j defined as

Figure 4.9 Construction of basis functions for the MsRSB method. The left plot
shows the support region and boundary cells. The right plots show iterations.
(Source code: illustrateMsRSB.m.)
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dj = �AP ν
j, � = diag([1/a11, . . . ,1/ann]). (4.9)

To ensure that the support of the basis function does not extend outside its support
region (defined as all cells i ∈ S(j)), we reset dj to zero in all of the support
boundary cells B(j) of S(j), shown in red in Figure 4.9. This will effectively
remove mass from the iteration, and to ensure that the basis functions represent
a partition of unity, we must sum the mass loss from different basis functions and
add it back in. To this end, let G =⋃m

j=1 B(j) denote the set of all cells that belong
to the support boundary of a basis function and define H(i) as the set of indices of
the support regions the cell i belongs to; i.e., H(i) = {j |i ∈ S(j),i ∈ G}. Then,
the updated to Pj reads

P ν+1
j = P ν

j − ω d̂j, d̂ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dij, i ∈ S(j),i �∈ G
1−P ν

ij

∑
k∈H(i) djk

1+∑k∈H(i) djk
, i ∈ S(j),i ∈ G,

0, i �∈ S(j).

Here, ω is a relaxation parameter, typically chosen as 2/3. How to define a similar
iteration based on Gauss–Seidel is discussed in [20].

4.2.5 Introduction to the MRST Implementation

The msrsb module of MRST implements the algebraic multiscale methods
explained in Subsections 4.2.2 and 4.2.4. Next, we describe the most basic
routines and demonstrate how to solve a simple incompressible flow problem
in 2D. The multiscale methods are implemented as solvers and not simulators, and
to use them you must first set up a suitable problem description and construct a
fine-scale linear system, as explained in chapters 5 and 10 of the MRST textbook
[25]. You will also find full details in the source codes that accompany each
example. The basic multiscale solvers also assume that you have partitioned the
mesh into coarse blocks and created an instance of MRST’s coarse-grid structure;
see chapter 14 of the MRST textbook [25].

The basic multiscale solver for incompressible flow is implemented with an
interface that resembles the incompressible solvers in the incomp, mimetic, and
mpfa modules in the sense that it consists of two parts:

[basis, CG] = getMultiscaleBasis(CG, A, varargin)
[state, report] = incompMultiscale(state, CG, hT, fluid, basis, varargin)

The first function takes two arguments, a coarse grid CG and a fine-scale linear
system A, and constructs a pair of restriction and prolongation operators, returned
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in the basis structure. Likewise, the function stores interaction regions to CG.
For the prolongation operator, basis.P, the routine supports both MsFV- and
MsRSB-type basis functions, which you can select by specifying the optional
parameter 'type' (default value is 'msrsb'):

[basis, CG] = getMultiscaleBasis(CG, A, 'type', 'msfv')

The restriction operator, basis.R, is by default set to be a control-volume sum-
mation operator, but you can also get a Galerkin-type restriction (R = P T ) by
setting the optional parameter 'useControlVolume' to false. In addition, there
are optional parameters that let you control the convergence tolerance and the
maximum number of iterations used to construct MsRSB bases. By default, the
routine regularizes A before computing basis functions by ensuring that the row
and column sum of the matrix is zero, but this is possible to disable.

The incompMultiscale function implements the main solver interface for
incompressible problems. The function is a wrapper around incompTPFA from the
incomp module and solves the problem with MsRSB (or MsFV), producing both
an approximate fine-scale pressure and a reconstructed, divergence-free velocity
field. The first four input parameters are almost the same as for the other incom-
pressible solvers in MRST: reservoir state, coarse grid, transmissibilities for the
fine-scale problem, and a fluid object. These are passed on to the incompTPFA
solver to construct a new fine-scale system based on the current reservoir state.
In addition, the solver accepts several optional parameters; some of these will be
discussed later.

The solver is split across two functions so that we can solve dynamic multiphase
flow problems more efficiently. The key idea is to first construct basis functions
from a static flow equation∇·(K0∇p) = q and then reuse these to compute approx-
imate pressure updates for a multiphase equation ∇ · (λ(S)K∇p) = q, in which
λ(S) changes with time. This works well as long as the heterogeneity of λ(S)K
is similar to K0 inside each coarse block. (If not, basis functions must be updated
locally.) Because the global pressure is solved using many fewer unknowns, we can
potentially save a lot of computations at the expense of only obtaining an approxi-
mate fine-scale solution; see, e.g., [21] for a more comprehensive discussion. This
possibility was one of the main initial motivations behind multiscale methods.

Example 4.2. As an example of a strongly heterogeneous problem, we consider
single-phase flow within a rectangular domain represented on a 20 × 20 Cartesian
mesh with permeability sampled from Model 2 of the SPE10 upscaling benchmark
[9], driven by a pressure drop of 50 bar from the west boundary to the east boundary.
What we present in the following is the shortMultiscaleIntro.m script from
the msrsb module, in which we have edited and condensed some key statements for
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brevity. In particular, we omit all statements necessary to set up the fine-scale flow
problem; i.e., define the grid G and petrophysics, half-transmissibilities hT, the fluid
description fluid, boundary conditions bc, and initial condition state0.

To set up and use the multiscale solver, we start by creating a rectangular partition
and a coarse-grid structure augmented with support regions:

CG = coarsenGeometry(generateCoarseGrid(G, partitionUI(G, [5, 4])));
CG = storeInteractionRegion(CG);

Next, we can use the incompTPFA function to assemble the fine-scale linear system
and return the result without solving it:

state = incompTPFA(state0, G, hT, fluid, 'bc', bc, ...
'MatrixOutput', true, ...
'LinSolve', @(A, x) zeros(size(x, 1), 1));

Then, we use the resulting fine-scale matrix state.A to construct basis functions,
form and solve the multiscale system, and prolongate the result back to the fine scale
to obtain an approximate solution:

basis = getMultiscaleBasis(CG, state.A);
Am = basis.R * state.A * basis.B;
bm = basis.R * state.rhs;

p_ms = Am\bm;
p_prol = basis.B * p_ms;

The structure of the fine-scale matrix, the prolongation and restriction operators,
and the coarse-scale matrix are essentially the same as shown for a slightly smaller
problem in Figure 4.4 and are thus not reported for brevity.

Figure 4.10 compares the multiscale solution on the fine and coarse meshes with
the fine-scale solution and a corresponding upscaled solution computed using the
local flow-based upscaling discussed in Subsection 4.1.3. On the coarse scale, the
multiscale approximation is significantly more accurate than the upscaled solution
and using the basis functions to project onto the fine scale reveals more of the struc-
ture of the true solution, even though not all details are fully correct. The multi-
scale solution has two sources of error: the approximations made to ensure that the
basis functions have local support and the error in the coarse-scale system. In this
case, however, the relative error is less than 9%, which can be acceptable for some
purposes.

A fine-scale pressure approximation is not our primary interest when solving
incompressible, multiphase flow problems. Instead, we need to have fine-scale fluxes,
which will be used as input to the transport equation,

∂t (φS) +∇ · (f (S)�v) = q.
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Figure 4.10 Multiscale and upscaled approximations compared to the fine-scale
solution for a 20 × 20 subsample of Layer 15 from SPE 10 with a pressure drop
from 100 bar (left) to 50 bar (right).

For incompressible flow, the velocity field is divergence free away from source
terms. As pointed out on p. 105, the prolongated pressure solution is not mass
conservative and will not generally be divergence free. Instead, we need to solve
a local flow problem inside each coarse block to reconstruct a more correct flux
approximation that is suitable for use with a transport solver. To this end, we use the
full solver to compute the multiscale solutions with and without flux reconstruction:

rec = incompMultiscale(state0, CG, hT, fluid, basis, 'bc', bc, ...
'reconstruct', true);

prol = incompMultiscale(state0, CG, hT, fluid, basis, 'bc', bc, ...
'reconstruct', false);

We can then use the divergence operator from the ad-core module to verify the
divergence properties of the corresponding fluxes:

op = setupOperatorsTPFA(G, rock);
Div = @(flux) op.Div(flux(op.internalConn));
[df, drec, dprol] = deal( Div(state.flux), Div(rec.flux), Div(prol.flux) );

Figure 4.11 shows that the discrete divergence of the fine-scale flux is only nonzero
near the boundary where we have imposed boundary conditions that act like source
and sink terms. The same is true for the reconstructed flux, whereas if we compute
fluxes directly from the prolongated pressure using Darcy’s law, the resulting flux
field has nonzero divergence in almost all cells. This means that this flux field is not
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Figure 4.11 Cell-wise discrete divergence for the fine-scale flux, the reconstructed
flux, and the flux computed from the prolongated pressure solution.
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Figure 4.12 Streamlines traced for the fine-scale flux and the reconstructed
multiscale approximation.

suitable for use with a transport solver. The reconstructed flux field, on the other hand,
reproduces the transport properties of the fine-scale solution with good accuracy, as
can be seen from the streamline plots in Figure 4.12.

For completeness, let us also compute an approximate solution using MsFV basis
functions. We start by forming a wirebasket ordering:

wb = partitionUIdual(CG,[5 4]);
CG.dual = makeExplicitDual(CG, wb);

which here will define 30 dual coarse blocks. The second line extends CG with an
extra field CG.dual that contains the global wirebasket ordering as well as a local
categorization of all cells that make up each dual coarse block. We can now construct
basis functions and use these to compute an approximation solution:

basis = getMultiscaleBasis(CG, A, 'type', 'msfv');
state = incompMultiscale(state0, CG, hT, fluid, basis, 'bc', bc);

Figure 4.13 compares the error in the MsRSB and MsFV approximations relative to
the pressure computed by solving the original fine-scale system. The error for MsFV
is significantly larger.

For the interested reader, we show the essential code that getMultiscaleBasis
uses to compute the MsRSB basis functions. If we drop processing of input argu-
ments and checks for convergence, the key lines read (see illustrateMsRSB.m):
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Figure 4.13 Relative error in the fine-scale pressure approximations computed by
the MsRSB and the MsFV methods.

P = zeros(n, m);
for i=1:m, P(p==i,i)=1; end
J = spdiags(1./diag(A), 0, n, n)*A;
for j=1:itMax

incr = J*P.*M;
P = P - 2/3*incr;
P = bsxfun(@rdivide, P, sum(P, 2));

end

Mij =
{

1, if j ∈ H(i),

0, otherwise

Here, p holds the coarse partition and has values 1, . . . ,m, whereas the n × m

indicator matrix M signifies whether the cell corresponding to row i belongs to the
support region of the block corresponding to column j . The matrix is constructed
from a cell array containing the indices of the cells belonging to each support
region:

lens = cellfun(@numel, CG.cells.interaction);
blocks = rldecode((1:CG.cells.num)', lens);
ia = vertcat(CG.cells.interaction{:});
M = sparse(ia, blocks, ones(size(ia)), CG.parent.cells.num, CG.cells.num);

4.2.6 Iterative Formulation

The multiscale method, as discussed thus far, can compute mass-conservative, fine-
scale approximations and reproduce qualitatively correct flow patterns but has no
guarantee on the approximation error or the size of the fine-scale residual. The
method can have significant local errors (as seen in Figure 4.13), and these errors
can be particularly large at the interfaces between coarse-grid blocks as a result of
inaccurate boundary conditions that do not necessarily represent the influence from
global flow patterns in a good way. To diminish errors and provide a systematic
means of controlling the overall multiscale approximation, Hajibeygi et al. [13–15]
proposed to use line relaxation to smooth high-frequency error components and
propagate fine-scale residuals from the interfaces and into the coarse blocks, where
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they can be efficiently reduced by reapplying the multiscale solver with improved
localization from the smoothed solution. This approach is tied to rectilinear or
curvilinear meshes and cannot easily be generalized to other mesh types.

Fortunately, the algebraic formulation of the multiscale method can easily be
applied as part of a suitable iterative algebraic framework:

• Modified Richardson iteration is similar to Jacobi and Gauss–Seidel:

pν+1 = pν + ωνP (AH
h )−1R(q −Apν). (4.10)

Here, ω is a relaxation parameter that has to be chosen so that {pν} converges.

• In a two-stage iterative method [56, 60], the Richardson iteration is precondi-
tioned with a local smoother S such as additive Schwarz or block incomplete
lower–upper (ILU) factorization. The resulting method reads (with p1 =
P (AH

h )−1Rq)

p∗ = pν + S(q −Apν),

pν+1 = p∗ + P (AH
h )−1R(q −Ap∗).

(4.11)

• One can also use one iteration of the two-stage method as a preconditioner in a
Krylov subspace method like GMRES, as first suggested by [33].

All approaches give a systematic means for reducing the fine-scale residual toward
machine precision. Effectively, this means that multiscale methods can be used in
three different modes: (i) as a linear solver for the fine-scale system; (ii) as an
approximate solver that only reduces the fine-scale residual below a prescribed,
relaxed tolerance and still guarantees a mass-conservative approximation; or (iii) as
a one-step coarse-scale alternative to upscaling that gives mass-conservative fluxes
on the fine and any intermediate meshes.

Example 4.3. We continue studying the setup from Example 4.2 (source code is
given in shortIterativeIntro.m). To motivate the iterative method, we start by
plotting the residual of the fine-scale multiscale approximation to the upper left in
Figure 4.14. We observe that the residual is highly localized around the support of
each basis function, forming patches that trace the contours of G. In other words,
large residual errors are primarily caused by the localization imposed on the basis
functions to ensure that the coarse-scale system is sparse in nature. The smoother
will in most cases consist of the application of a matrix that has approximately the
same sparsity as the fine-scale discretization and hence only modifies the solution
locally. Here, we observe that its main effect is to significantly reduce the high
residuals on G.

The interplay between local smoothers and coarse-grid corrections is widely stud-
ied for multilevel solvers. The central idea is to use the inexpensive smoother to
remove local errors and let the coarse-scale solver remove low-frequency errors and
account for the global forcing of drive mechanisms like boundary conditions, source
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Figure 4.14 Cell-wise absolute residual value after the first four substeps in a mul-
tiscale iteration: initial multiscale solution, after local preconditioner (smoother)
in first iteration step, after global corrector (multiscale solver) in first iteration
step, and after smoother in second iteration step.

terms, and wells. Together, the two solvers can fairly efficiently remove error modes
from elliptic or near-elliptic problems, as we can observe in going from upper left to
lower right in Figure 4.14.

Let us look at how this is implemented, starting with the construction of the
smoother, which is done in two separate function calls:

fn = getSmootherFunction('type', 'ilu0');
S = fn(A, b);

fn =
function_handle with value:
@(A,b)getILU0(A,b,opt.iterations)

S =
function_handle with value:
@(d)U\(L\d)

The first call selects a single cycle of ILU(0) as our smoother and returns an interface
to an anonymous function @(A,b). When evaluated with our specific system A and
b as input parameters, which usually is performed in a setup phase inside the solver
but here is done explicitly for pedagogical reasons, this function performs a partial
factorization of A and returns an approximate inverse of A. With ILU(0), the partial
factorization is constructed so that the sum of the lower- and upper-triangular matri-
ces L and U does not have more nonzero elements than A.
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Figure 4.15 Decay in the residual norm for the iterative two-stage MsRSB method
(4.11) with ILU(0) as smoother compared with the residual decay observed when
the same two stages are used as a preconditioner for GMRES.

With the smoother specified, we can call the solver to compute the solution using,
e.g., no initial guess for p, at most 50 iterations, and a residual tolerance of 10−6:

p = solveMultiscaleIteratively(A, b, [], basis, fn, 1e-6, 50);

By default, the solver uses the two-stage iteration (4.11), for which the essential code
lines are summarized quite compactly:

mssolve = @(d) basis.B * mldivide(basis.R*A*basis.B, basis.R*d);
resnorm = @(p) norm(b-A*p,2)/norm(b,2);
res = zeros(nit+1,1);
p = mssolve(b);
res(1) = resnorm(p);
for i=2:nit+1

p = p + S(b - A*p);
p = p + mssolve(b-A*p);
res(i) = resnorm(p);

end

The first line defines an anonymous function that computes the multiscale correction,
and resnorm evaluates the residual normalized by the norm of the right-hand side.
The rest of the code should be self-explanatory. The actual implementation includes
a more advanced loop control so that the iteration terminates once the residual norm
is below the prescribed tolerance.

Figure 4.15 shows that using a single step of the two-stage iteration as a precon-
ditioner to MATLAB’s built-in GMRES solver is much more efficient than the basic
Richardson iteration if we want to reduce the residual to machine precision. The
GMRES version is invoked by the call

https://doi.org/10.1017/9781009019781.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.008


Multiscale Pressure Solvers for Stratigraphic and Polytopal Grids 121

[pg, report] = solveMultiscaleIteratively(A, b, [], basis, fn, ...
5e-15, nit, @mldivide, true);

Here, the second output argument is a result report that contains the total number of
iterations, the residual for each of the iterations, and the coarse-scale matrix.

Notice that the iterative multiscale solver only computes the fine-scale pres-
sure. If you also want the corresponding fluxes, the solver must be called through
the higher-level interface that corresponds to standard incompressible solvers in
MRST:

[state,report] = incompMultiscale(state0, CG, hT, fluid, basis,'bc', bc, ...
'getSmoother',fn,'iterations',nit, 'useGMRES', true, 'tolerance',5e-15);

There is also a multiscale linear solver class for use with the object-oriented,
automatic differentiation (AD-OO) framework from the ad-core module, which
uses the same internal interface. To use this, we first construct the solver and then
use the solveLinearSystem interface (see the MRST textbook [25, subsection
12.3.4]) to solve the fine-scale system

solver = MultiscaleVolumeSolverAD(CG, 'getSmoother', fn, ...
'maxIterations', 50, 'tolerance', 1e-6, 'useGMRES', true);

sol = solver.solveLinearSystem(A, b);

Note that this generates a basis from A, which can be reused for subsequent solves.
We end the section by remarking that we recently [22, 28] showed that iterative

methods as just described can be made even more efficient if, instead of using a
single pair of restriction–prolongation operators to define the multiscale systems
AH

h , we cycle through an alternating sequence of operator pairs constructed from
different types of partitions that, e.g., offer improved resolution of near-well regions
and special features in the geological model or adapt to dynamic changes in the
solution. It is also possible to extend the two-stage method to a multilevel setting,
in which another multiscale solver is developed for the coarse system [49], and so
on. However, we will not discuss these possibilities further herein.

4.3 Numerical Examples

This section highlights the performance and utility of the (iterative) multiscale
solvers on a series of test cases, following a progression from incompressible
single-phase flow to compressible multiphase flow.
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Figure 4.16 Lack of monotonicity for multiscale solutions computed for the
bottom layer of SPE 10 subject to unit pressure drop from left to right. (Source
code: lackOfMonotonicity.m.)

4.3.1 Lack of Monotonicity

The reduced system arising from a multiscale method will effectively represent
a multipoint coarse-scale stencil, as shown in Figure 4.6, because of the overlap
among basis functions from neighboring coarse blocks. Multipoint schemes are
generally not monotone, as discussed in the MRST textbook [25, section 6.5],
and give solutions that contain local oscillations and/or out-of-bound values. To
illustrate this, we consider single-phase flow of a fluid with unit viscosity through
the bottom layer of the SPE10 benchmark, subject to a unit pressure drop in the
y-direction and sealing boundary conditions in the x-direction.

Figure 4.16 reports the permeability (shown on a logarithmic scale) along with
the solutions computed on the fine scale and by the MsRSB and MsFV solvers
without any iterations. The MsRSB solution exceeds unity by 0.3% in seven cells
near the inflow boundary; likewise, there are seven cells near the outflow bound-
ary in which the pressure is between −0.003 and 0. The MsFV solution, on the
other hand, exhibits large patches of out-of-bound values. Altogether, there are 379
cells with values in the interval [1,15.7] and 421 cells with values in the interval
[−5.86,0]. These large oscillations are primarily the result of the localization that
attempts to extrapolate pressure values across high-contrast streaks that cross the
edges in the wirebasket ordering. As a result of this tendency to introduce nonphys-
ical oscillations, the iterative MsFV method not only starts with a higher residual
norm than MsRSB but also needs more iterations to reduce the residual to below a
prescribed tolerance, as shown in Figure 4.17.

https://doi.org/10.1017/9781009019781.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.008


Multiscale Pressure Solvers for Stratigraphic and Polytopal Grids 123

5 10 15 20 25 30

10–6

10–4

10–2

Convergence of GMRES

msrsb
msfv

Figure 4.17 Convergence history for the iterative MsFV and MsRSB solvers
applied to the bottom layer of SPE10 shown in Figure 4.16. Because MsFV has a
tendency to create nonphysical oscillations, it needs more iterations to reduce the
residual compared with MsRSB. (Source code: lackOfMonotonicity.m.)

4.3.2 Grid-Orientation Errors

Because the MsFV and MsRSB methods give multipoint coarse-scale stencils, one
may be tempted to believe that these schemes do not suffer from the type of grid-
orientation errors discussed in chapter 6 of [25]. This is unfortunately not the
case: If an inconsistent scheme like the TPFA method is used to compute basis
functions over a grid that is not K-orthogonal, the resulting multiscale method will
to a large degree inherit the corresponding inconsistencies. This is important to be
aware of, and to illustrate, we revisit example 6.1.2 from [25], which considers a
homogeneous reservoir with a symmetric well pattern consisting of one injector and
two producers, posed on a skew grid that is not K-orthogonal. As we can see from
Figure 4.18, the multiscale solutions exhibit significant grid-orientation errors, but
these are less if we choose the coarse mesh to be less skewed than the underlying
fine mesh. Bosma et al. [7] discuss how to formulate MsRSB with a consistent
fine-scale discretization.

4.3.3 Coarsening Complex Meshes

We have already discussed some challenges related to coarsening of realistic reser-
voir geometries in Subsection 4.2.3 and explained how difficulties in obtaining
suitable primal–dual partitions limit the applicability of the MsFV method. You can
find more details about difficulties related to faults in [43]. For the MsRSB method,
it is sufficient that the cells in the support boundaries B(j) are connected through
entities of codimension two (i.e., cell edges in 3D and vertices in 2D). In prac-
tice, this means that it is much easier to generate suitable coarse partitions and
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Figure 4.18 Solution of a symmetric flow problem in a homogeneous domain
using the MsRSB method defined on a 7 × 5 partition in index space (left
column) and in physical space (right column). In both cases, the basis functions
are computed by the TPFA method on a skew grid that is not K-orthogonal. The
upper plots show the pressure distribution, and the lower plots show streamlines
and values of time-of-flight less than 0.2 pore volumes injected. (Source code:
gridOrientationMsRSB.m.)

accompanying support regions for general polytopal meshes and heavily faulted
meshes like the ones shown in Figure 4.7. In our experience, the main challenges
for MsRSB do not come from complex topology but from strongly degenerate and
deviated cell geometries.

To exemplify, we consider a highly detailed, core-scale model of realistic bed-
ding structures, which is typically developed to derive directional permeability
for a given lithofacies and identify net pay below the level of petrophysical log
resolution. MRST contains several examples of such models in the BedModels1

and BedModel2 data sets. Here, we use the 30×30×333 corner-point model from
BedModel2; see Figure 4.19. The model has many layers that are fully or partially
eroded away, so that only 30% of the logical cells are part of the active model.
Among the active cells, the smallest half only make up 11% of the bulk volume. As
a result, the model has four orders of variations in cells volumes and three orders of
variation in the areas of the vertical faces. Many of the thin cells are also strongly
curved so that cell centroids fall far outside the cells.

The standard approach to partition a model is to create a load-balanced partition
in index space or use cell coordinates (centroids or vertices) to partition the cells
into rectangular boxes in physical space. As an alternative, we can also try to
make partitions that better reflect the structure of the model by merging layers
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Figure 4.19 Model of realistic bedding structure. The left column shows the
permeability and the distribution the six rock types, and the right column shows
the distribution and cumulative distribution of cells and pore volume per cell layer
in the ijk topology. (Source code: bedModelMS.m.)

vertically to obtain coarse layers with a certain “thickness” measured in cell count
or bulk/pore volume. The bar charts in Figure 4.19 indicate nine natural groups we
can use as a starting point. Once we have obtained a satisfactory vertical partition,
we can use a standard index partition in the horizontal direction. To this end, we
start by computing the cell count per layer and then use the cumulative sum to
partition the layers into bins of approximately the same number of cells:

[~,~,K] = gridLogicalIndices(G);
ncell = accumarray(K,1);
layPart = discretize(cumsum(ncell),linspace(0,G.cells.num+1,10));

Here, layPart is a standard partition vector that contains value m in element k

if layer k is part of coarse layer number m. We then use run-length encoding to
compress the partition vector and construct an indirection map, which we pass to
one of MRST’s standard partition routines (see [25, subsection 15.6.4]):

[~,edges] = rlencode(layPart);
part = partitionLayers(G, [6 6], [1; cumsum(edges)+1]);

Figure 4.20 shows the resulting partition. The multiscale solution exhibits
overshoots in a few cells near the inflow boundary but otherwise is visually
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Figure 4.20 Comparison of multiscale solutions for two different partitions:
6 × 6 × 9 in physical space (left) and vertical partition by cell count combined
with horizontal 6 × 6 partition (middle). The right figure shows the cumulative
distribution of cells per layer, with red dashed lines indicating the edges separating
different coarse layers. (Source code: bedModelMS.m.)
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Figure 4.21 Error measures for the six different partitions of the bed model.

indistinguishable from the fine-scale solution (which is not shown for brevity).
The left plot in the figure clearly shows how the edges of the coarse layers fall near
the plateaus in the cumulative cell distribution (these plateaus are more distinct for
the cumulative pore volume distribution). The figure also shows a uniform partition
in physical space. Partitioning in index by merging layers has the advantage that
the coarse block interfaces follow the bedding. Partitioning in physical space gives
jagged coarse faces, which can be more pronounced for other coarsening factors.

In addition to the two partitions shown in Figure 4.20, we ran four other parti-
tions: a load-balanced 6 × 6 × 9 partition in index space, two partitions in which
vertical layers are merged according to bulk and pore volume targets, and a manual
partition in which we tried to place the layer edges in the middle of the plateaus for
the cumulative pore volume function. Figure 4.21 reports various error measures for
these six different partitions. All over, the manual partition seems to give the best
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Figure 4.22 A 60 × 220 × 24 subset of the Tarbert formation from the SPE10
upscaling benchmark, with the 6 × 22 × 8 coarse grid outlined in black. The well
pattern differs from the original benchmark and follows the MRST textbook [25,
subsection 15.6.3], except for a slight offset to avoid having wells in the corner of
the coarse blocks. (Source code: upscalingVsMsRSB.m.)

compromise, having the fewest out-of-bound cells, second lowest L∞ error, and an
L2 error that is only 10% larger than the lowest. The worst behavior is observed for
the uniform partition in index space. This partition has second fewest out-of-bound
cells, but some of these cells are really far off and contribute to the largest overall
L∞ and L2 errors. A closer inspection shows that the worst monotonicity violations
can be traced back to coarse blocks that are partially eroded away so that the blocks
above and below also share a direct connection. In a more advanced approach, one
should thus postprocess the partition to merge and get rid of such pinched blocks.
(This would be similar to what is achieved by the PINCH keyword in ECLIPSE
input decks.)

4.3.4 Multiscale Methods as an Alternative to Upscaling

Next, we compare MsRSB to three upscaling methods: harmonic–arithmetic aver-
aging, local flow-based upscaling with sealing boundary conditions for upscal-
ing permeability as outlined in Subsection 4.1.3, and a global upscaling method
in which representative global flow solutions are imposed as accurate boundary
conditions on the local regions used to compute effective transmissibilities and
well indices [25, p. 584]. The setup is almost the same as in subsection 15.6.3 of
the MRST textbook [25], except that we now only consider the top 24 layers
of the Tarbert formation to reduce computational time. Figure 4.22 shows the fine-
scale model with the coarse grid outlined in black. All wells are controlled by
bottom-hole pressure.
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The MsRSB method is known to suffer from inaccuracies if wells are placed
near the corner of internal coarse blocks. This can be easily remedied by changing
the coarse grid locally around the affected wells or by introducing extra well bases
as discussed in [28]. These bases are not yet part of the basic setup in the msrsb,
and as a pragmatic workaround we have modified the well positions slightly so that
they fall near the center of the coarse blocks.

With 1 056 coarse blocks that each consists of 300 fine cells, the computational
overhead induced by MATLAB is unfortunately significant for the routines we
have used thus far to set up support regions and compute basis functions. In this
examples, we therefore introduce accelerated versions:

CG = storeInteractionRegionCart(CG);
CG = setupMexInteractionMapping(CG);
basis = getMultiscaleBasis(CG, A, 'type', 'msrsb', 'useMex', true);

The first routine is a specialized version of storeInterationRegion. For coarse
and fine meshes with a strict Cartesian topology, each support region is a rect-
angular block in index space, bounded by the centroids of blocks that are nodal
neighbors. The corresponding cells can be located very quickly operating on the
logical indices only. This assumption is not valid for more general coarse/fine
meshes.

The second function adds additional mappings to the coarse grid to enable
C-accelerated implementation of basis functions. This is somewhat time consuming
for a large grid but can be done once for a specific partition and reused throughout
a simulation. We can then pass the flag 'useMex' to the standard interface for
computing basis functions to tell the routine that it should use the C-accelerated
backend (cppMultiscaleBasis). Note that this requires a working C++ compiler
to be configured with the MATLAB builtin mex -setup and may take some time
to compile when first run. This interface also offers the opportunity to write
basis functions to disk as a series of text files; this is time consuming but can be
useful for setting up and generating basis functions that can be reused for some
other purpose. You can find more details in the tutorial examples of the msrsb

module.
To compare the accuracy of the different methods, we consider plots of well

allocation in Figure 4.23 computed by flow diagnostics. In short, the colored sectors
report that the cumulative flux out of injector I2, from the bottom to the top of the
well, is distributed onto flow paths that end up in each of the four producers, P1
to P4; see subsections 13.1.3 and 13.4.3 of the MRST textbook [25] for a more
detailed description. The dark lines outline the same allocation for the fine-scale
model, and the closer the colored sectors match these lines, the more accurately
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Figure 4.23 Cumulative well allocation factors, from bottom to top, for injector
I2 in the Tarbert test case (Figure 4.22) computed by three upscaling methods and
MsRSB. Dark lines outline the allocation factors computed on the underlying fine
model. (Source code: upscalingVsMsRSB.m.)

the upscaled or multiscale solution reproduces the volumetric connections in the
fine-scale model. Here, we see that the averaging and flow-based upscaling methods
underestimate the inflow into the reservoir, whereas the MsRSB method tends to
overestimate it. The global upscaling method uses specific information obtained
from the solution of the fine-scale flow problem to compute effective properties and
is therefore more accurate, but by adding only three iterations, which are not very
computationally expensive, the MsRSB method achieves better resolution. With
seven iterations, the match is almost exact.

4.3.5 Incompressible Multiphase Flow in Fractured Media

Accelerating the simulation of multiphase flow by systematic reuse of basis func-
tions from one time step to the next has been a key argument for multiscale methods
since their inception. In many cases, it is sufficient to compute the basis functions
at the outset of a simulation and keep the resulting prolongation and restriction
operators fixed throughout the whole simulation. In some cases, the effective per-
meability may change so much as a result of fluid movement that the basis functions
cease being representative and need to be updated. However, such updates are
usually localized and can, for the MsRSB method in particular, be obtained by
continuing to iterate on the existing basis functions using an updated A matrix.
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Figure 4.24 A two-phase fractured example adapted from [47]. The 13 fractures
are represented volumetrically on an unstructured perpendicular bisector mesh
generated by the upr module described in Chapter 1.

To demonstrate the utility of reusing basis functions in a multiphase simulation,
we consider a simplified, incompressible, two-phase analogue of the example
studied in subsection 5.2 of [47]; see Figure 4.24. We inject a very light fluid of
density 300 kg/m3 and viscosity 0.3 cP into another fluid of density 1 000 kg/m3

and viscosity 1 cP that fills a layered medium containing 13 high-permeability
fractures. The injected fluid is highly mobile and will reach the first fracture after
a short time and then move rapidly through the fracture system to give early
breakthrough in the producer. Complete setup of the problem is described in
fracturedExampleMS.m.

We simulate the injection over a period of 10 years using a sequential solution
method that combines the standard implicit transport solver from incomp with
three different pressure solvers: the standard incompTPFA solver and the MsRSB
solver with either a rectangular partition or an unstructured partition generated
by the METIS graph partitioning software. The solvers are set up as anonymous
functions:

tsolver = @(state,dt) implicitTransport(state, G, dt, rock, fluid, 'W', W);
psolver = @(state) incompTPFA(state, G, hT, fluid, 'W', W);
mssolver1 = @(state) incompMultiscale(state, CG1, hT, fluid, basis1, 'W', W);
mssolver2 = @(state) incompMultiscale(state, CG2, hT, fluid, basis2, 'W', W);

Each of these functions compute a single transport or pressure step in the sequential
solution algorithm. To stabilize the simulation, we use a geometric rampup of the
first time steps and then continue with a uniform time step. The time steps are kept
in the array dt. The essential lines of the main simulation loop then read:
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Figure 4.25 Saturation profiles after 511 days for the fractured test case
(Figure 4.24) simulated with a fine-scale solver (left) and with a multiscale solver
with a rectangular coarse grid (middle) and an unstructured coarse grid adapted to
the fractures (right).

rstates{1} = psolver(state0);
rws{1} = getWellSol(W, rstates{1}, fluid);

for i=1:numel(dt)
state = psolver(rstates{i});
rstates{i+1} = tsolver(state, dt(i));
rws{i+1} = getWellSol(W, rstates{i+1}, fluid);

end

Here, rstates and rws are cell arrays that keep the reservoir states and well
responses for each time step. The updates for the multiscale solvers are virtually
identical and are omitted for brevity.

Figure 4.25 reports saturation profiles just after the first of the simulations have
broken through, and Figure 4.26 reports the corresponding fractional flow in the
producer. This happens for MsRSB with the adapted partition. For this partition,
we have configured METIS with fine-scale transmissibilities as edge weights in the
matrix and zero weight across interfaces between matrix and fracture cells to ensure
that the high-permeability fractures are represented as separate objects. This results
in a set of elongated coarse blocks that run across multiple blocks in the matrix.
These blocks cause MsRSB to overestimate flow through the fracture network,
resulting in premature breakthrough. In contrast, the straightforward rectangular
partition gives remarkable accuracy throughout the whole simulation, even without
any updating of basis functions.
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Figure 4.26 Fractional flow of the injected fluid in the producer for the three
different simulations of the fractured test case in Figure 4.24. The MsRSB solver
predicts premature breakthrough of the injected fluid on the adapted partition but
matches the fine-scale solution quite accurately on the rectangular partition.

In previous research, we have argued and demonstrated that using adapted
partitions can increase accuracy of the MsRSB method. However, as this
example and the one in Subsection 4.3.3 show, you need to know what you
are doing to avoid introducing artifacts that diminish the performance of the
method. Our general advice is thus to start with a relatively simple partition
and only try to do something clever if simple partitioning strategies fail to give
the desired accuracy or robustness. (Adapted partitions pay more off when used
as part of a multibasis approach [28].)

4.3.6 Gravity Segregation

As the previous example demonstrated, you can obtain good accuracy in many
dynamic flow simulations without updating basis functions or introducing itera-
tions. However, because the basis functions essentially are localized solutions of
a homogeneous elliptic flow problem, they cannot generally account correctly for
flow patterns induced by strong compressibility, gravity, or capillary effects, and
use of iterations is therefore necessary. To illustrate, we consider gravity segrega-
tion of a heavier fluid with density 1 000 kg/m3 and viscosity 1 cP placed on top of
a lighter fluid with density 600 kg/m3 and viscosity 0.5 cP inside a 500 × 60 m2

vertical cross section with heterogeneous media properties; see Figure 4.27. Both
fluids are assumed to have quadratic relative permeabilities.
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Figure 4.27 Setup for the gravity-segregation test case with a heavier fluid
on top of a lighter fluid. The permeability is related to a normally dis-
tributed porosity through the Carman–Kozeny relationship. (Source code:
gravitySegregationMS.m.)

We simulate the gravity segregation over a 10-year period using 100 equally
spaced time steps and the standard implicit transport solver from the incomp

module combined with three different pressure solvers: the standard incompTPFA

solver and the MsRSB solver with and without iterations. The solvers are set up
as anonymous functions and used in a simple sequential loop in almost exactly the
same way as in the previous section.

Figure 4.28 reports snapshots from the dynamic simulation. We clearly see that
the plain multiscale solver captures the general behavior of the fluid movement
but fails to resolve details correctly, giving an L1 error with mean value 6.4%
and maximum value 9.4% over the 10-year period. The iterative version, on the
other hand, can be set to match the fine-scale solver as close as you wish. With
a residual tolerance of 10−3 and an average of 4.6 iterations per step, the resulting
fluid distributions are visually indistinguishable from the fine-scale solution, having
an L1 error with mean value 0.12% and maximum value 0.21%.

4.3.7 Compressible Black-Oil Models: Fully Implicit Methods and CPR

In this section, we will demonstrate how multiscale methods can be used to solve
compressible black-oil models. Let us start by considering a fully implicit (FI)
formulation, which can be considered the industry standard approach over the past
decades. (Chapters 11 and 12 of the MRST textbook [25] give more details.) The
natural way to use multiscale methods in an FI setting would be to use them as
solvers for the elliptic pressure equation formed in a constrained pressure residual
(CPR) preconditioner (see, e.g., [25, subsection 12.3.4]), which represents state-of-
the-art for solving linearized black-oil equations.
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Figure 4.28 Snapshots of the gravity-segregation process after 146 days (top),
1 460 days (middle), and 10 years (bottom). Green denotes the lightest fluid and
blue denotes the heaviest fluid.

To demonstrate the use of MsRSB as part of a CPR preconditioner, we consider
the synthetic sector model from subsection 15.6.4 of the MRST textbook [25],
which models a waterflooding scenario with one injector and three producers using
a slightly compressible two-phase dead-oil model without any dissolved gas. The
full setup is presented in the script sectorModelMS.m and relies on the model
classes from the ad-blackoil module and the solver framework from ad-core.

The model contains several eroded layers with inactive cells and, as discussed in
Subsection 4.3.3, there are many different ways we could partition such a model.
However, to be consistent with our advice from Subsection 4.3.5, we choose a
straightforward uniform 8 × 8 × 3 partition (Figure 4.29), which is sufficient to
get a significant reduction in the number of unknowns of the coarse-scale system
compared with the fine-scale system and also avoid creating partially eroded blocks
that potentially could lead to monotonicity issues. The construction of a coarse-grid
structure and support regions is the same as in previous examples, and we omit the
code for brevity. We can then instantiate a multiscale solver class and configure it
to use the two-stage method with ILU(0) as smoother:

msSolver = MultiscaleVolumeSolverAD(CG, 'tolerance', 1e-4, ...
'maxIterations', 1, 'useGMRES', false, 'verbose', false, ...
'getSmoother', getSmootherFunction('type', 'ilu0', 'iterations', 1));
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Figure 4.29 The 40 × 40 × 12 sector model from [25, subsection 15.6.4] with
a 8 × 8 × 3 logical partition that gives 201 coarse blocks because of the three
faults. The model spans four layers with distinctly different permeability; all layers
except for the second are partially eroded. (Source code: sectorModelMS.m.)

To set up the full solver, we pass the msSolver object as an elliptic solver to the
CPR interface for black-oil-type equations from the AD-OO framework:

linsolve = CPRSolverAD('ellipticSolver', msSolver, 'relativeTolerance', 1e-3);

Once we have set up the model, the initial data, and the simulation schedule and
configured the linear solver hierarchy properly, we can run the simulation using the
standard method from ad-core:

[wellSolsMS, statesMS, reportMS] = ...
simulateScheduleAD(state0, model, schedule, 'LinearSolver', linsolve);

Figure 4.30 reports oil rates in all three producers and confirms that the multiscale
solver produces the exact same solutions as the reference simulation. This simula-
tion utilized an agglomeration-based algebraic multigrid (AMG) method from the
AMGCL library [11] to solve the elliptic equation in the CPR preconditioner; see
Chapter 6 for more details. Figure 4.31 compares the CPU times consumed by the
linear solver part of the simulation and confirms that MsRSB and the AMG solver
give more or less the same performance in terms of computational costs.

The reader should be cautious when interpreting (and extrapolating) runtime
comparisons like the one shown in Figure 4.31. Neither CPRSolverAD nor
the multiscale methods in the msrsb module are optimized for speed. Our
focus has instead been to create flexible implementations that can be used
to investigate new computational algorithms. For this reason, we also ran the
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examples in single-threaded mode. In other words: The purpose of the msrsb
module is not to create a high-performing solver but rather to provide a proof-
of-concept and demonstrate the potential of a new technology. If you primarily
want to accelerate (the linear solves of) your MRST simulator, we rather
encourage you to look into the high-performance CPR solver implemented as
a part of AMGCL outlined in the MRST textbook [25, subsection 12.3.4] and
in Chapter 6.
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Figure 4.30 Surface oil rate in all producers predicted by the two simulations
using AMG and MsRSB as solvers for the elliptic equations in the CPR
preconditioner.
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Figure 4.31 CPU times for the linear solves for each fully implicit time step with
AMG and MsRSB as solvers for the elliptic equations in the CPR preconditioner.
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4.3.8 Compressible Black-Oil Models: Sequential Solution Methods

In recent years, there has been a revived interest in sequential implicit approaches
for simulating the black-oil equations, and most of the research and commercial
development of multiscale solvers for black-oil equations has focused on sequential
formulations. To formulate a sequential implicit (SI) method, one starts by develop-
ing a pressure (or flow) equation as a weighted sum of all component conservation
equations. The weights are defined so that the derivative of the sum of the accumu-
lation terms with respect to any non-pressure variable is guaranteed to be identically
equal to zero. One then proceeds by alternatingly solving the (parabolic) pressure
and transport equations in the same way as for incompressible flow.

The transport equations can be composed in different ways. We can use the
constraint that the fluid saturations sum to unity to eliminate one transport equation
and solve for the others, which will ensure volume conservation but not mass
conservation for compressible fluids. In our experience, however, it is better to solve
all component equations, which ensures conservation of mass.

To demonstrate how MsRSB can be used in such a setting, we continue consid-
ering the sector model from the previous section. The sequential module, which
is part of the AD-OO framework, has functionality that automatically sets up a
sequential model, consisting of a pressure and transport submodel, from a given
fully implicit simulation model. That is

seqmodel = getSequentialModelFromFI(model);
seqmodel.transportModel.conserveOil = true;
seqmodel.transportModel.conserveWater = true;
seqmodel.transportModel.useCNVConvergence = true;

The second and third lines specify that we should solve transport equations for
both the oil and the water component (default: only water), whereas the fourth line
specifies that we should use the maximum normalized residual in addition to mass
balance to measure convergence (see the MRST textbook [25, subsection 12.3.2]).
The msrsb module offers a function that sets up and adds a multiscale solver to the
pressure equation of a sequential model, which can then be simulated as usual:

msmodel = addMultiscaleSolverComp(msmodel, CG, 'maxIterations', 50,...
'useGMRES', true, 'tolerance', 0.01);

wsFIms = simulateScheduleAD(state0, seqmodel, schedule);

The approximate solution obtained after two consecutive pressure and transport
steps will generally neither satisfy the residual equations of the underlying fully
implicit discretization exactly nor conserve both mass and volume (depending on
the formulation). Hence, the FI and SI methods will not produce the same solutions.
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Figure 4.32 Surface oil rates for all three producers in the sector model
from Figure 4.29 predicted by the FI, SFI, and SI methods. (Source code:
sectorModelMS.m.)

The sequential fully implicit (SFI) method attempts to remedy this shortcoming
of the SI method by introducing outer iterations that systematically reduce the
total residuals and the mass/volume discrepancies below a prescribed tolerance.
In MRST, the sequential model just described can easily be changed to describe an
SFI simulation by adjusting a few parameters as follows:

seqmodel.stepFunctionIsLinear = false;
seqmodel.outerCheckParentConvergence = false;
seqmodel.volumeDiscrepancyTolerance = 3e-3;
seqmodel.incTolSaturation = inf;

The first parameter says that each time step is not linear and should thus be iterated
upon until convergence in some norm(s) prescribed by the user. The next three
parameters specify these norms and here configure the algorithm to only check the
volume discrepancy

(∣∣∑
α Sα−1

∣∣) against a prescribed tolerance and neither check
the fully implicit residual nor the increments in saturations from one transport step
to the next within the outer iteration. The volume discrepancy is adjusted up from
the very strict default of 1e-3 to a value of 3e-3. In many cases, larger values can
be allowed without significant impact to the simulation accuracy.

Figure 4.32 reports surface oil rates for all three producers. The SI method is
generally able to reproduce the qualitative behavior of the FI solution but overes-
timates the peak production rates in all producers. We expect that the discrepancy
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between the two methods would have been smaller if we had used a longer rampup
period for the initial time steps. Adding outer iterations gives an SFI solution that is
almost indistinguishable from the FI solution. At most, the SFI method uses three
outer iterations in step number 6 (corresponding to the peak in P2) but otherwise
converges in one or two iterations in the other steps, giving a total of 40 outer
iterations over the 30 time steps.

4.3.9 Compositional Flow

In the previous examples, we have looked at a range of different ways of using mul-
tiscale methods. We will conclude the numerical examples with an isothermal com-
positional version of the incompressible two-phase scenario in Subsection 4.3.5.
The reservoir is initially filled with 30% methane, 10% carbon dioxide, and 60%
n-decane by moles at a pressure of 75 bar, 150◦C in a mostly liquid state. We
simulate the injection of approximately 0.25 pore volumes of gas over a 7-year
period. The injection gas is mostly supercritical carbon dioxide but contains
10% methane. Vapor–liquid equilibrium and densities are modeled by the Peng–
Robinson equation of state, with the Lohrenz–Bray–Clark viscosity correlation for
both phases. The pressure drop over the domain is slightly below 50 bar, with a
producer operating at fixed bottom-hole pressure of 50 bar.

Our baseline is a fully implicit simulation with the OverallComposition

Model from MRST’s compositional module. (This module is discussed in
detail in Chapter 8.) The simulation uses a uniform step length of 20 days
after an initial rampup period, giving a total of 136 time steps. Computational
simulations are generally time consuming, and it is therefore important to use
features in MRST that are optimized for computational performance. That is, we
use the accelerated backend for automatic differentiation introduced in Chapter 6
in combination with optimized linear solvers from the AMGCL library [11].
For convenience, we also use functionality for so-called packed simulations
discussed in Chapter 6, which runs simulations and stores computed time steps
consecutively on disk. This enables you to easily retrieve simulation results
that have been run in a previous MATLAB session or restart simulations that
have been interrupted. Complete source code for the whole setup is given in
fracturedExampleCompositionalMS.m.

We compare the baseline simulation to a sequential setup with three differ-
ent linear solvers for the pressure equation (Figure 4.33): (i) an accurate alge-
braic multigrid (AMG) solver, (ii) a multiscale solver with relaxed tolerances, and
(iii) a multiscale solver with the same tolerances as the AMG solver. As before,
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Figure 4.33 Saturation of the hydrocarbon phase (top) and composition (bottom)
after 660 days.

we build a sequential model from the fully implicit model and add the multiscale
solvers to it:

msmodel = getSequentialModelFromFI(model);
msmodel = addMultiscaleSolverComp(msmodel, CG, 'maxIterations', 50, ...

'useGMRES', true, 'tolerance', 1e-3);
msmodel.pressureModel.incTolPressure = 0.05; % Default 1e-3

The last line imposes the relaxed convergence criterion on the pressure increment,
which is defined as ‖�p‖∞/(max(p) − min(p)). Using relaxed tolerances in the
pressure solver requires that the transport solver is sufficiently robust to converge.
Fortunately, the compositional transport solvers based on a total saturation formu-
lation can produce reliable results even when there is significant compressibility
and volume change on mixing.

The problem is challenging to simulate because of the orders of magnitude differ-
ences in flow velocities in the background sand and the high-permeability fractures.
We decided to run with uniform time steps of 20 days, which give a reasonable
compromise between having too high Courant numbers in the fractures and too low
Courant numbers in the background matrix. In addition, we add a standard rampup
that doubles the time step from 1.875 hours and up to 20 days to stabilize the
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Figure 4.34 Maximum cell-wise compositional Courant number over all time
steps for the compositional fracture example.
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Figure 4.35 Nonlinear iterations in the pressure step, transport step, and the outer
loop for the compositional example.

displacement fronts as they move into the reservoir. This gives a total of 136 time
steps, with maximum Courant numbers between 1 and 10 in the background sand
but exceeding 100 in the high-permeability fractures (Figure 4.34). We see this
reflected in the nonlinear iterations in Figure 4.35: The fully implicit solver uses a
total of 641 iterations, or approximately 4.8 iterations per step, whereas the baseline
sequential solver needs a total of 332 pressure iterations and 446 transport itera-
tions. The strict multiscale solver is comparable to the baseline sequential solver,
with 303 pressure and 467 transport iterations. Using a relaxed tolerance nearly
halves the number of pressure iterations to 184 without introducing significant
difficulties in transport (450 iterations). Small variations in the pressure solution
can lead to one or more additional iterations in transport, but it is encouraging that
we can relax the pressure tolerance without introducing significant performance
degradation.
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Figure 4.36 Left: Production rates for each mass component in the fracture
example. Right: Volume discrepancy for each of the four simulations in the
fracture example.

Reducing the number of iterations is of questionable value if it also reduces
the accuracy of the solver. The plot of component production rates to the left in
Figure 4.36 verifies that there is excellent agreement among all four solvers. We
know that the sequential scheme is mass conservative for all components without
an outer loop, because we solve for all components at once. One way to measure
the error of the solution is then to look at the volume discrepancy introduced by the
transport solver,

es =
∫

φ|(Sl + Sv) − 1| dV
/∫

φ dV . (4.12)

The right plot in Figure 4.36 confirms that all three sequential simulators have a low
volume error relative to the total pore volume of the domain, except in the beginning
of the simulation. The pressure equation in each step will ensure that the volume
discrepancy from the previous time step is not carried forward. In particular, we
observe that there is no additional increase in volume discrepancy for the solver
with looser tolerances, which used significantly fewer pressure iterations.

4.4 Concluding Remarks

In this chapter, you have seen how to use the MsRSB solvers on a variety of
problems that range from immiscible and incompressible two-phase flow to
compressible, miscible multicomponent flow. To apply the multiscale method, you
must generally isolate a pressure-like equation, either as a CPR-type preconditioner
[12, 55] or, as we have done here, as part of a sequential splitting algorithm in
which the pressure-like degrees of freedom are frozen in a subsequent transport
step. Different formulations have been proposed to this end [2, 10, 53, 58],
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and it is still an open question which approach is the best. Recent research has
focused on developing robust splitting methods for general compositional cases
[37–39, 46, 47]. The general idea is to use a weighted sum of the nonlinear
conservation equations with weights that remove derivatives of the linearized
accumulation terms not associated with pressure. The resulting linearized pressure
system is similar to the one formed by the true-IMPES approach in a CPR
preconditioner.

Once a proper pressure equation is formulated, the error of the multiscale method
can be controlled by iterations in a similar way as in algebraic multigrid solvers;
the use of such solvers in MRST is discussed in Chapter 6. Altogether, we believe
that the current chapter gives a solid introduction to the different parts of a modern
multiscale solver, because we have covered basis functions, coarse grids, sequential
schemes, and iterative correction. The code described in this chapter can be used to
quickly bootstrap new multilevel methods to complex flow problems, by modifying
either of the constitutive parts with your method of choice. However, we emphasize
that because the msrsb module is a prototype implementation intended for research
purposes, you should not expect it to have the full computational efficiency of a
solver implemented in a compiled language. Our current research on the MsRSB
method focuses on integrating it efficiently into a multilevel solver framework [49].
Work also remains to be done on efficient multicore and multiprocessor implemen-
tations; see [20, 24, 35, 36] for some early work to this end.
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