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SUMMARY

Contagious bovine pleuropneumonia (CBPP) is a cattle respiratory disease that represents one of

the major threats to cattle health and production in sub-Saharan Africa. The transmission

contact rate of CBPP plays a key role in the spreading dynamics of the disease. We have

developed an approach based on the combination of a SEIR model describing the spread of

CBPP with the dynamic of seroconversion to determine the transmission contact rate for CBPP.

This method has been subsequently applied to serological diagnostic data obtained from an

experimental vaccine trial. As a result, we find that the transmission contact rates for subclinical,

clinical and chronic infective states are respectively, 0.084/N, 0.45 and 0.14/N per animal per day,

where N is the herd population size, and the basic reproductive number corresponding to this

trial (N=28) is R0=27.

INTRODUCTION

Contagious bovine pleuropneumonia (CBPP) is a

respiratory disease caused by Mycoplasma mycoides

subsp. mycoides Small Colony, designated MmmSC

[1]. It is a disease classified in the A list of the World

Organisation for Animal Health (ex. OIE) as causing

cattle mortality and loss of production along with

high costs for controlling [2]. Although CBPP out-

breaks occur regularly in Europe, CBPP remains one

of the major threats to cattle health and production in

Africa. The cessation of pan-African campaigns of

mass vaccination (PARC programme) has led to the

re-emergence of the disease in sub-Saharan Africa [3].

CBPP is mainly transmitted through expectorations

of coughing animals and secondarily through direct

contact [4]. As well as being contagious for the

duration of the incubation period, which is still

debated, freshly infected animals also become con-

tagious well before the onset of symptoms [5]. The

clinical patterns are extremely varied, from asympto-

matic to hyperacute forms. During the acute phase,

which is the most contagious stage, animals undergo

an increase of temperature, anorexia and respiratory

difficulties, sometimes until death, and present lesions

of severe fibrinous pneumonia with pleural exudate.

Survivors of acute CBPP evolve to the chronic stage

that is often asymptomatic. It is assumed that the

chronic form is responsible for the disease persistence

[6], but to an extent which is still unknown [7].

Moreover, some animals may have developed natural

resistance to the disease.

In this paper, we address the issue of the trans-

mission contact rate (b), a parameter that plays a key

role in the spreading dynamics of the disease since it

measures the capability that an infective animal has

of transmitting the disease to others. All outputs of

models used in the control strategies of the disease
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and in cost–benefit studies are very dependent upon

how the disease is spread, and thus, on the trans-

mission contact rate. Unfortunately, estimated values

of b for CBPP are still lacking in the literature. For

this purpose, we have developed an approach based

on the combination of a SEIR model describing the

spread of the disease with the dynamic of sero-

conversion to determine the transmission contact

rate of CBPP. Indeed, rather than directly following

the spread dynamics of a disease, which may prove

to be an onerous (if not impossible) task even in ex-

perimental trials, serological diagnostics is becoming

a widely used alternative technique for timing the

disease propagation in a given sample of the popu-

lation. In the form of a feedback loop, our approach

uses such a kind of serological diagnostic data to

assess the value of b that in turn controls the propa-

gation of the disease following the SEIR picture.

We have subsequently applied this method to sero-

logical data obtained from an experimental vaccine

trial to determine the transmission contact rate of

CBPP in experimental conditions.

METHODS

Description of mathematical models

The within-herd spread of CBPP is described using

the classical SEIR model where S, E, I and R rep-

resent the number of susceptible, latently infected,

infective and recovered animals respectively [8]. In

our model (Fig. 1), the infective class is, according to

the epidemiology of CBPP, subdivided into three

states: Is, Icl and Ich, where Is denotes the number of

early infective animals at the end of the incubation

period (subclinical), Icl the infective animals with

clinical symptoms (cough) and Ich the infective ani-

mals in the chronic state [9]. Each of these infective

states has a different infectiousness represented by a

constant transmission contact rate, bi. The time evol-

ution of CBPP infection within a herd is described by

the following system of equations:

dS

dt
=xlS=x(bIcl Icl+bIs Is+bIch Ich)S

dE

dt
=lSxnE

dIs
dt

=nEx(a1+a2+a3)Is

dIcl
dt

=a1Isx(v+m)Icl

dIch
dt

=a2Is+vIclxcIch

dR

dt
=a3Is+cIch

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(1)

where l(t) is the force of infection, i.e. the fraction of

susceptible population that the infective animals are

able to enter in contact with and infect per unit of

time; the other parameters are defined in the Table.

In writing the system of equation (1), we have ne-

glected the natural births and deaths and considered

only the disease-induced mortality such that the total

number of animals in the herd,

N(t)=S(t)+E(t)+Is(t)+Icl(t)+Ich(t)+R(t)

decays as, dN/dt=xmIcl.

In practice, except for clinical animals, a clear-cut

distinction between SEIR states as described above

is difficult, if not impossible. On the contrary, sero-

logical diagnostics is a widely used technique to

identify animals that have been infected by patho-

gens. In this respect, it is very useful for practical

purposes to complement the above equations with

the dynamics of seroconversion. Animals newly con-

taminated by MmmSC become seropositive after a

time, T1, required for the synthesizing of antibodies.

In the absence of additional infectious contacts, a

seropositive animal will lose antibodies and become

seronegative beyond an elapsed time, T2, several

months after the onset of antibodies. We consider,

for simplicity, the case where the serological test is

perfect (i.e. the sensitivity and specificity level is

100%) and denote by Ax the number of animals

that are newly infected but still free of antibodies

(i.e. those entering the E compartment of SEIR as

described above) and denote by A+ the number of

animals that have seroconverted (i.e. carrying anti-

bodies). The dynamics of seroconversion can be

S E Is Ich

Icl

R
β ν γ

ω

µ
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Fig. 1. Kinetic scheme of the within-herd compartmental
model for CBPP.
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described as:

dAx

dt
=l(t)S(t)xl(txT1)S(txT1)

dA+

dt
=l(txT1)S(txT1)

xl(txT1xT2)S(txT1xT2)

9>>>>>=
>>>>>;

(2)

with l(t)=0 for tf0. Note that these equations can

also be used for IgM or IgG antibodies with corre-

sponding T1 and T2. It is clear from equation (2) that

the dynamics of seroconversion is related to the

transmission contact rates through the force of infec-

tion, thus providing a useful way to determine the

rate of b. These transmission contact rates play a key

role in the spreading dynamics of the disease. Indeed,

following the introduction of a single infectious ani-

mal into a herd entirely constituted of susceptible

animals, CBPP will only spread if the basic repro-

ductive number, R0, is greater than 1, i.e. R0>1,

where:

R0=
bIsN0

a
+

a1

a

bIclN0

(m+v)
+

a1

a

v

(m+v)

bIchN0

c

+
a2

a

bIchN0

c
,

(3)

with a=a1+a2+a3. By definition, R0 is the mean

number of secondary cases generated by one primary

case in a naive population. Thus, the disease will die

out for R0f1. The expression of R0 given in equation

(3), that can also be derived using the next generation

method [12], is the summation of three terms each

representing the number of secondary cases generated

by subclinical, clinical and chronic infective animals

respectively. All these numbers of secondary cases are

proportional to their respective b’s.

Model of the transmission contact rate

The transmission contact rate, b, is the probability

per unit of time that an infectious animal will have

contact with and successfully transmit infection to a

susceptible animal. It is a bi-individual rate (i.e. in-

volves two individuals) that captures the aetiology

of the infectious process and combines a number of

epidemiological and environmental factors that affect

the disease transmission. Under the homogeneous

mixing hypothesis, the transmission contact rate, bi,

of CBPP by an animal in one of the three infectious

states can be factorized as bi=aisibi, where ai is

related to the titre level of MmmSC in the animal’s

respiratory system, si is the contact rate between an

infective and a susceptible animal, and bi the trans-

mission probability in an established contact. As

CBPP can be transmitted either indirectly through

Table. Numerical values of the parameters of the model

Definitions Symbol Value Unit Reference

Latent rate n 0.0714 1/day [5]
Transmission contact rate of clinic b0 0.45 (0.42–0.46)a 1/animal/day

Scaling factor of the contact rate s0 0.91 (0.83–1)a

Transition rate
Subclinical to clinical a1 0.0184 1/day [4, 10]

Subclinical to chronic a2 0.0422 1/day [4, 10]
Subclinical to recovered a3 0.0107 1/day [4, 10]
Clinical to chronic v 0.0219 1/day [10, 11]

Per capita mortality rate m 0.0257 1/day [10, 11]

Recovery rate c 0.0083b 1/day
Mortality and morbidity

Deaths

�
13.8c %

13.7d

Cumulative clinical incidence

�
25.5c %
25.7d

Cumulative chronic incidence

�
71.2c %
71.3d

Time of appearance of antibodies T1 20¡4a days

a Result from the best fit to experimental data.
b See discussion in the text.
c Result from the experimental vaccine trial.
d Result from simulations.
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aerosol during animal coughing or through direct

contact, the contact rate function of clinical animals

(which cough) comprises two contributions, say,

sIcl=sa+sd (where sa and sd are the aerosol and

direct contact rates respectively) while that of sub-

clinical and chronic animals involve only sd. At the

scale of a herd, sd represents contributions to con-

tagion of the very local contacts while sa stands for

long-range contacts. It follows that bIs=aIssdbIs ,

bIcl=aIcl (sa+sd)bIcl and bIch=aIchsdbIch . It makes

sense to think that these b’s are not independent

of each other. In this respect, we set bIcl=b0, and as-

suming that transmission probabilities of MmmSC

are identical for all infectious states, i.e. bIs=bIcl=bIch ,

then bi can be written as follows: bi=aisibi.

bIs=
aIs
aIcl

sd

sd+sa
b0=

1

5

s0

N
b0

bIcl= aIcl (sa+sd)bIcl=b0

bIch=
aIch
aIcl

sd

sd+sa
b0=

3

8

s0

N
b0

9>>>>>=
>>>>>;

(4)

The ratios aIs=aIcl=1=5 and aIch=aIcl=3=8 have been

estimated from the mean titre of MmmSC in the ani-

mal respiratory system during an experimental study

of CBPP [5]. The ratios depend on the animal recep-

tivity to a given MmmSC strain. Next, we assume

that the transmission through the aerosol is density-

dependent, i.e. sa is constant such that the force of

infection due to aerosol contribution is proportional

to saIcl, and that the transmission through the direct

contact is frequency-dependent, i.e. sd / 1=N (where

N is the population size) in which the force of infec-

tion is a function of the proportion of infectivity,

namely sdI / I=N. The second equality in equation

(4) is obtained by setting sd/sa=s0/N and requiring

that s0/N<1. With these definitions, we have s0<N,

bIcl is independent of N but bIs and bIch are both de-

creasing functions of N. Now, according to the re-

lations in equation (4), the determination of three

transmission contact rates is reduced to determine b0

and s0, in for example, a vaccine trial.

Experimental data

For our purpose, we consider the experimental vac-

cine trial conducted in Australia by Hudson & Turner

[10] on 392 animals divided into 14 groups, each

comprising 28 animals. In each group, the trial con-

sisted of mixing nine non-vaccinated and 14 vacci-

nated animals with five experimentally infected and

symptomless animals, and following up the daily sero-

conversion of non-vaccinated animals employing a

complement fixation test [13]. As a result, the authors

reported the daily proportion of seroconverted (IgM

antibodies) animals, of animals with clinical symp-

toms, the proportion of deaths, and of animals with

chronic lesions. The authors did not report either the

spread dynamics of the disease or the entire serologi-

cal dynamics, but only the day of the first positive

serological reaction for each animal.

Determination of the transmission contact rate

In order to determine b0 and s0 from the data de-

scribed above, we ran simulations to mimic the situ-

ation of the vaccine trial. The program used for

numerical simulations was written in Fortran

language and compiled with Absoft Pro Fortran

8.01. Stochastic simulations are carried out following

a birth-and-death process where each possible tran-

sition event (infection, seroconversion, recovery,

death) occurs at random with rates given by the

deterministic equation (1). All stochastic trajectories

are run using the parameters given in the Table and

with the initial conditions (S, E, Is, Icl, Ich, R)=(9, 0,

5, 0, 0, 14), where S represents the non-vaccinated

animals, Is the infected ones, and the vaccinated ani-

mals are considered as recovered, i.e. R.

A x2 minimization procedure between the exper-

imental data and an average of 1000 stochastic simu-

lations has been used on the proportion of daily

seroconversion to determine T1 the onset time of

antibodies, b0 and s0. As a control, the simulated

deaths and cumulative incidence for clinical and

chronic animals are compared with observations of

the experimental trial in the Table. Next, 14 trajec-

tories (equivalent to 14 groups of the experimental

trial) using the parameters just determined have been

run to generate the curves in Figure 2.

RESULTS AND DISCUSSION

The best fit to experimental data using the x2 minimiz-

ation procedure givesT1=20 days for the onset of anti-

bodies, s0=0.91 (0.83–1) and b0=0.45 (0.42–0.46),

corresponding to R0=26.5 (25.2–26.7) calculated

from equation (3) with N=S0=9. The transmission

contact rates for infective animals are : bIs=0·084=N,

bIcl=0·45 and bIch=0·014=N per animal per day,

where N is the time-dependent herd population

size. At the beginning of the experiment when
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N=28, we had ratios between bIcl=bIs=150 and

bIcl=bIch=90.

Simulated and experimental mortality and mor-

bidity are respectively, 13.7% and 13.8% for deaths,

25.7% and 25.5% for cumulative clinical incidence

and 71.3% and 71.2% for cumulative chronic inci-

dence (see Table).

Under the hypotheses that (i) all I classes are in-

fective with a given bi and (ii) bi’s are related to each

other as given in equation (4), we found that the trans-

mission contact rates of CBPP are approximately

10x3–10x1 per animal per day. However, it is worth-

while to underline that these determined values have

been obtained for experimental conditions that are

known to be challenging for infectious contacts with

a high degree of confinement and highly virulent

strain of MmmSC. For instance, the mean number,

R0, of secondary cases generated by an infective

animal in this experimental condition is R0=27,

which is of the same order as the population size

N=28 of the trial. Thus, one expects that the trans-

mission rates found in field and natural conditions be

approximately one- to twofold smaller than in exper-

imental conditions. As an illustrative comparison, the

transmission contact rate for tuberculosis (another

chronic respiratory disease) has been found to be

y10x5 per animal per day for a herd of a few hundred

animals in natural conditions [14, 15].

Values of transmission contact rates obtained

above are conditional to the duration of the chronic

state. The reason why chronic animals are considered

to be responsible for the persistence of the disease is

that active MmmSC can be found in the sequestra of

chronic animals during 27 months [7]. In our simu-

lations, we found that the spreading dynamics became

independent of the chronic state for durations of

>30 days (results not reported). Thus, consistent

with the literature [4, 6], we used a mean duration

of 120 days for the chronic state in all simulations.

We also found that not just the duration but the

presence of the chronic class is essential to correctly fit

experimental data as the introduction of subclinical

animals generates chronic ones according to the

dynamic picture described earlier. When the chronic

state is removed from the spreading dynamics of the

disease, simulations failed to properly reproduce the

time evolution of seroconversion and the values of

transmission contact rates thus obtained are much

higher.

Nevertheless, it is worthwhile mentioning that the

same set of experimental data can be well fitted even

with spreading dynamics models that do not incor-

porate the chronic class. Examples of such models

use a distribution of incubation periods for the E

class (Lesnoff, M. personal communication). Hence,

different patterns of the spreading dynamics of the

disease may also lead to identical dynamics of sero-

conversion. This emphasizes that more data on the

dynamics of the disease are required to test and

choose appropriate models.

Finally, it is already remarkable that the approach

outlined above is capable of reproducing a number of

features of an experimental trial. It will now be inter-

esting to use the same method on serological field data

to determine the transmission contact rates of CBPP

in natural conditions, provided that the recovery rate

is known. However, the model can be embellished in

various directions, for instance, by simultaneously

using a different functional form of b vs. N and
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Fig. 2. Experimental data [(a) black histograms, (b) symbols]
from Hudson & Turner [10] and simulated data [(a) white
histograms, (b) solid line] for a vaccine trial. Panel (a) shows

the incidence of weekly seroconversion and panel (b) the
cumulative daily seroconversion. The parameters used are
given in the Table, with b0=0.45 per animal per day,

s0=0.91 and T1=20 days.
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including the distribution of incubation times. Such a

work is underway.
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