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We present evidence revealing that an object with specific properties can exhibit multiple
stable falling postures at low Reynolds numbers. By scrutinizing the force equilibrium
relationship of a fixed object at various attack angles and Reynolds numbers, we introduce
a methodology that can obtain the stable falling postures of the object. This method
saves computational resources and more intuitively presents the results in the full
parameter domain. Our findings are substantiated by free-fall tests conducted through both
physical experiments and numerical simulations, which validate the existence of multiple
stable solutions in accordance with the interpolation results obtained with fixed objects.
Additionally, we quantify the abundance and distribution patterns of stable falling postures
for a diverse range of representative shapes. This discovery highlights the existence of
multiple stable solutions that are universally present across objects of different shapes. The
implications of this research extend to the design, stability control and trajectory prediction
of all free and controlled flights in both air and water.
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1. Introduction

Objects of different sizes, shapes and weights fall with different trajectories in fluids under
the action of gravity and buoyancy. For instance, falling leaves and seeds (Burrows 1975;
Augspurger 1986; Azuma & Okuno 1987), descending volcanic ash (Wilson & Huang
1979), landing parachutes (White & Wolf 1968; Tory & Ayres 1977; Strickland & Higuchi
1996), hailstones (Kry & List 1974) and meteorites, are all free-falling objects driven by
gravity in nature. Their trajectories can be categorized into stable falls and various periodic
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or chaotic paths. In the scientific community, the behaviours of free-falling objects such
as disks, plates, spheres, cylinders, wedges and cones in fluids have been extensively
explored, both theoretically and experimentally.

In all previous efforts, the relationships between the final falling or rising status and
the properties of the objects, as well as the fluid medium, were mainly studied. For disks,
the falling patterns were closely related to the Reynolds number Re and the dimensionless
moment of inertia I∗ of the disk (Willmarth, Hawk & Harvey 1964). Three falling modes
of disks were observed, including steady falling, fluttering and tumbling. The slightly
unstable disks would be stable by reducing I∗. In addition to these three states, there
is a chaotic falling state of the disk (Field et al. 1997). The aspect ratio of the disk
has a significant influence on the falling pattern, and it may completely change the
boundaries between the various falling pattern regimes (Shenoy & Kleinstreuer 2010;
Auguste, Magnaudet & Fabre 2013). In addition to the disk, the behaviours of the falling
ellipse or plate can be classified into four types: steady falling; fluttering; tumbling; chaos
(Belmonte, Eisenberg & Moses 1998). Mahadevan, Ryu & Samuel (1999) revealed the
relationship between the tumbling frequency and geometric dimensions. Furthermore,
it was found that the tendency of tumbling increases with increasing Reynolds number
and decreasing thickness ratio (Mittal, Seshadri & Udaykumar 2004). For both fluttering
and tumbling, Andersen, Pesavento & Wang (2005b) found that the fluid circulation
was governed by a rotational term proportional to the angular velocity of the plate.
Additionally, the wedges with different angles also have tumbling and fluttering fall states,
and at an intermediate range of angles, wedges can fall in a steady state (Sanaei et al.
2021). The motion patterns of spheres in viscous liquids at different Reynolds numbers
and object–liquid density ratios were found to be vertical, oblique, intermittent oblique
and zigzag motion (Jenny, Duek & Bouchet 2004; Horowitz & Williamson 2010). In
addition to spheres and disks, Zhou, Chrust & Dušek (2017) studied the path instabilities
of oblate spheres and made a classification into regimes. Will et al. (2021) identified six
regimes with different ascending dynamics for the spheroids with different aspect ratios.
These studies have focused on studying the unsteady motion of objects. Ern et al. (2012)
discussed wake-induced loads associated with wake instabilities and their effect on object
paths.

The transition between the falling modes may be attributed to small changes in the
parameters. Due to the growth of three-dimensional disturbances, the falling mode of
the disk transitions from a two-dimensional zigzag motion to a three-dimensional spiral
motion (Lee et al. 2013). Hu & Wang (2014) observed motion transitions of a falling plate
from periodic fluttering, tumbling along a cusp-like trajectory, irregular, to tumbling along
a straight trajectory. Some new patterns may emerge in some transition states. Lee et al.
(2013) observed two kinds of transition modes for falling disks, including the zigzag–spiral
transition and the zigzag–spiral–zigzag intermittency transition. Andersen, Pesavento &
Wang (2005a) observed the cards flutter periodically but tumble once between consecutive
turning points in the transition from fluttering to tumbling. Moreover, there are multiple
falling patterns in the transition state. A bistable behaviour of the system is detected in the
transition from the straight vertical falling to the planar fluttering regime (Auguste et al.
2013; Chrust, Bouchet & DusEk 2013). Depending on the initial release angle during the
transition state, the plate may either fall steadily or tumble down (Lau, Huang & Xu 2018).

The impact of the uniformity of the objects on their falling mode has also been taken
into account. The periodic modes of the plate, such as fluttering, tumbling and bounding,
gave way to gliding and then downward diving as the centre of gravity shifted to one edge
(Huang et al. 2013; Li et al. 2022). Kim et al. (2020) investigated the falling modes of
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homogeneous and heterogeneous cones, including straight fall, regular oscillations, large
rotations with inclined translations, and tumbling. The offset of the mass changes the
rotational dynamics, and the phenomenon of resonance occurs when the time scales of
rotation and vortex shedding reach a certain ratio (Will & Krug 2021; Assen et al. 2024).

It is concluded that, based on numerous existing studies, the properties of an object
such as aspect ratio, density, mass distribution and initial release conditions influence its
final falling mode. In addition, the existence of multiple stabilized falling postures of an
object has been mentioned in some studies (Słomka & Stocker 2020; Will et al. 2021).
However, this question remains thoroughly investigated. The reasons for the existence of
various stable falling postures at low Reynolds numbers and their influencing factors have
not been studied.

In this study, we analyse the existence and distribution of the multiple falling postures
of an object in a fluid at low Reynolds numbers. Our study includes static equilibrium
derivations and free-fall tests based on both physical experiments and numerical
simulations. The results confirmed the existence of multiple stable falling postures of an
object in a fluid.

2. Problem description

2.1. Methodology to determine stable postures
In addressing the problem, we developed a methodology that is based on the
equilibrium relationship for a two-dimensional object. This methodology operates under
the assumption that at low Reynolds numbers, the stable falling of an object is effectively
identical to a scenario where uniform flow passes around a stationary object. As
illustrated in figure 1, we consider an object of arbitrary shape, with the origin of the
coordinate system (O–xy) positioned at its geometric centre. Notably, while the centre of
buoyancy (CoB) of the object is invariably located at its geometric centre, the centre of
gravity (CoG) is contingent on the mass distribution of the object and may not coincide
with the geometric centre. Here, we define the Reynolds number as Re = Urd/ν, where
Ur represents the relative velocity of the incoming flow, d is the characteristic length of
the object and ν is the kinematic viscosity of the fluid. Here d is calculated as

√
S, with S

being the area of the object. The d used in the validation process is consistent with other
articles and will be described separately. The angle of attack α is defined as the direction
of incoming flow with respect to the x-axis.

For a steady falling object in a fluid, the force equilibrium equations can be expressed
as F = G − B and M = GL, where F and M are the total fluid force and moment acting on
the object, respectively. Here B and G denote the buoyancy and gravity forces, respectively,
and L represents the arm of the gravity force. Here L = m∗CM/CF can be derived, where
CM and CF are moment and total force coefficients, respectively. The equations for CM
and CF can be expressed as

CM = 2M
ρf U2

r d2 , (2.1)

CF = 2F
ρf U2

r d
, (2.2)

where ρf is the density of the fluid. And one of the influence parameters is m∗ =
1 − ρf /ρs, where ρs is the density of the object. According to the force balance equation
F = G − B and (2.2), another influence parameter Archimedean number Ar can be
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Figure 1. Schematic of the force (B, G and F) and moment (M) acting on a falling object.

derived:

Ar = Fd
ρf ν2 = gd3

ν2

(
ρs

ρf
− 1

)
. (2.3)

Thus, for any specific combination of m∗, Ar and α, we can consistently derive a line
of solutions for the CoG that adheres to the force equilibrium relationship. It is noted that
only the lower half of this CoG solution line represents static stable conditions for a falling
object. Consequently, the upper half, which signifies unstable conditions, is not depicted
in figure 1. The critical point between the upper and lower half-lines refers to the CoG
location where the restoring moment equals zero. The direction of gravity is indicated by
an arrow in the diagram. By systematically adjusting the angle of attack through a full
360◦ rotation, we can map out all possible stable solution lines for the CoG. This approach
enables us to thoroughly understand and predict the range of stable falling postures for an
object under different conditions of fluid dynamics.

3. Experiments

3.1. Experimental set-up
Free-falling experiments are conducted in a static fluid tank for objects of different shapes,
namely, elliptical, triangular and L-shaped objects. The dimensions of the experimental
tank are 300 mm long, 250 mm wide and 1000 mm tall. Images of the object models
and the cross-section are shown in figure 2. The dimensions of the cross-section of the
objects are a1 = 7 mm, a2 = 10 mm and a3 = 1.25 mm. The height of the tank is 100
times a2 to ensure that the object has enough space to achieve stability. The spanwise
length of the model is 150 mm, indicating a sufficiently long object to minimize the
end effect. The object models are made of copper with a uniform mass distribution
(ρs = 8400.34 kg m−3); thus, the CoG of the object is located at its geometric centre.
The rectangular glass tank is filled with a mixture of glycerin and water. The mixture is
stirred thoroughly to ensure that the liquid is sufficiently uniform. The appropriate Ar and
m∗ can be achieved by adjusting the viscosity and density of the fluid with different ratios
of water and glycerin. Each object model is released at different initial angles from 0◦ to
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Figure 2. Physical image (a) and the cross-sectional dimensions (b–d) of the object models.

360◦ with an interval of approximately 30◦. The object model is released at rest from the
centre of the tank and at a depth of approximately 50 mm below the fluid surface. The
distance between the object and the walls of the tank is maintained at no less than 50 mm
to minimize the effect of the wall on the falling mode. The temperature of the room is
approximately 21–25 ◦C during the experiments, and the variation in temperature in the
experiment for one model is maintained within 0.6 ◦C to ensure that the variation in the
fluid viscosity is no more than 22.5 cP (centipoise, 1 cP = 10−3 Pa s). The fluid viscosity
was measured using a Brookfield DVS digital display viscometer. A camera-based motion
capture system is developed to measure the falling postures of the objects with high
accuracy. The NikonD850 was used to record the video of the falling motion. The shooting
resolution is 3840 × 2160, and the shooting frame rate is 30 f.p.s. (frames per second).
The camera is calibrated before measurement, and the distortion parameter obtained by
the calibration is used to correct the video results. The Hough transform is used to identify
the outlines of the models. Then, the position, orientation and speed of the objects are
calculated.

3.2. Free-fall tests
The properties of liquids are measured in experiments to obtain the viscosity and density
of the liquid. The elliptical and L-shaped objects are released in a liquid with a viscosity
of 386.25 cP and a density of 1332 kg m−3, while the triangular object is released in a
liquid with a viscosity of 757.5 cP and a density of 1349.8 kg m−3. The corresponding Ar
values are 34.79 (ellipse), 27.22 (triangle) and 49.44 (L-shape). In addition, m∗ is 0.841
(ellipse), 0.839 (triangle) and 0.841 (L-shape). For a steadily falling object, there are three
parameters that can completely express its state, including θg, Re and θm. The direction
θg is defined as the relative direction of gravity with respect to the x-axis. Here θm is
the direction of motion of the object, which corresponds to the direction of incoming
flow from the stationary object and is defined as the direction relative to the x-axis.
Figure 3(a–c) shows the variations in the gravity direction, Re and motion direction over
time. Two stable solutions are achieved for all three objects. The object tends to stabilize at
approximately 1.5 s. All the results are in perfect agreement with the interpolation results
based on the proposed approach (described later in § 4 in detail). The results obtained from
the experiment were superimposed. The typical fall postures and trajectories are shown in
figure 3(d). The snapshot intervals are 5, 3 and 4 frames for the elliptical, triangular and
L-shaped objects, respectively. Therefore, the existence of multiple stable falling postures
is demonstrated. The details are shown in Supplementary movie 1 is available at https://
doi.org/10.1017/jfm.2024.557.
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4. Numerical simulation

4.1. Numerical methods
The two-dimensional Navier–Stokes equations governing the incompressible fluid flow are

∂ui

∂xi
= 0, (4.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρf

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
, (4.2)

where i, j = 1, 2, p is the pressure. For clarity, the velocity components u1 and u2 are also
denoted by ux and uy, respectively. We use STAR-CCM+ software to solve these equations
using the finite volume method. Here, a second-order upwind scheme is used to discretize
the convective term, and steady and implicit unsteady solvers are used to perform transient
calculations for stationary and falling objects, respectively. A six-degree-of-freedom
motion solver is applied to simulate the migration of an object under flow-induced forces
as well as gravity.

A rectangular computational domain is adopted, and the size of the domain is large
enough to eliminate the boundary effect. Since the dimensions and shapes of the objects
are different, the computational domain sizes used here are different for different shapes.
The distances from the upstream, downstream and lateral boundaries to the centre of the
object are no less than 49d, 149d and 62d, respectively. For the numerical simulation of the
falling object, a moving computing domain is adopted based on the overset grid method.
The computational domain moves at the same speed as the object. This approach ensures a
sufficiently long development process for simulating the falling object. The overset mesh
scheme is employed to solve the problem of rotational and large amplitude horizontal
migration of an object during its fall.

In order to verify the accuracy of the calculations, the numerical simulation results for
the fixed ellipse were verified. Table 1 is a comparison of CD, CL and CM for fixed ellipses
between the present numerical simulations and the literature. Drag coefficient CD and lift
coefficient CL are

CD = 2FD

ρf U2
r d

, (4.3)

CL = 2FL

ρf U2
r d

, (4.4)

where FL and FD are lift and drag. The results at different Reynolds numbers are in
good agreement with the literature. In numerical simulations, the computational domain
is partitioned into a set of unstructured trimmed cells. The mesh is initially generated at a
basic size, it is refined in the region containing the object. The effects of the grid resolution
on the calculated results are verified for the elliptical object using four meshes with
different numbers of elements from 51 670 to 105 211. As shown in table 2, good agreement
is obtained for the cases with different meshes, indicating good grid convergence. In the
simulation of this work, we all use the M2 which is shown in figure 4. Here M2 is used for
all the following simulations in this study.

4.2. Interpolated results
As in the experiments, we consider elliptical, triangular and L-shaped objects as shown
in figure 2(b–d). Based on the extensive numerical simulations for flow past the fixed
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Figure 3. Experimental verification results of the multiple falling postures of the objects. (a–c) The variations
in θg, Re and θm over time for the elliptical, triangular and L-shaped objects released at different initial angles.
(d) Results showing the fall postures and trajectories of the elliptical (left-hand), triangular (middle) and
L-shaped (right-hand) objects.

Re CD CL CM

Dennis & Young (2003) 15 1.870 1.065 −0.291
Alben (2008) 15 1.873 1.051 —
Sen, Mittal & Biswas (2012) 15 1.898 1.079 −0.305
Present 15 1.904 1.069 −0.297
Dennis & Young (2003) 30 1.43 0.935 −0.253
Alben (2008) 30 1.406 0.941 −0.244
Sen et al. (2012) 30 1.425 0.943 −0.256
Present 30 1.423 0.940 −0.249

Table 1. Comparison of results for CD, CL and CM for Re = 15 and 30 (the characteristic length is the length
of the major axis of the ellipse), α = 45.
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Mesh Number of meshes CD

M1 105 211 1.988
M2 71 497 1.987
M3 60 809 1.987
M4 51 670 1.986

Table 2. Effect of the mesh resolution of the ellipse on the drag coefficient CD when Re = 25 (the
characteristic length is the length of the major axis of the ellipse), and α = 90.

(a) (b)

Figure 4. Grid distribution of ellipse in a falling view. (a) The mesh in the whole computational domain.
(b) Close-up view of the mesh around the object.

objects, the fluid force and moment for the objects at different Re and α are obtained. The
Re ranges from 1 to 15 at an interval of 0.5 or 1, while α ranges from 0◦ to 360◦ at an
interval of 10◦. Figure 5 shows the distribution of the CoG lines for elliptical, triangular
and L-shaped objects, respectively, at Ar = 150 and m∗ = 0.5. For each shape, the stable
solutions of the CoG line are depicted for the incidence angle α, ranging from 0◦ to 360◦
at an interval of 10◦. The solution map for each shape can be classified into several base
families according to the distribution. Figure 5(a) illustrates two base families of CoG
lines for an elliptical object, denoted in yellow (family 1) and blue (family 2), respectively.
Each base family of solution is of a trumpet shape with its mouth facing outward and the
tip facing inward. Therefore, in regions where different base families overlap, the CoG
lines intersect, indicating the existence of multiple stable falling solutions. The overlapped
multiple-solution region is represented in figure 5(b) using a mixed colour (green) of the
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Figure 5. Distribution of CoG lines for elliptical, triangular and L-shaped objects at Ar = 150 and m∗ = 0.5.
(a) Two base families of CoG lines of elliptical objects. (b) The single stable (SS) fall posture region and
bistable (BS) fall postures region of elliptical. (c) Three base families of CoG lines of triangle objects. (d,e) The
SS, BS and tristable (TS) fall postures regions of (d) triangular and (e) L-shaped objects.

base family colours (blue and yellow). A similar procedure is employed for the more
complex cases with additional base families. As shown in figure 5(c–e), a pink colour is
introduced to represent a third base family. The dark brown area represents the convergence
of three base families, indicating that three different falling postures can occur there. These
regions are named as SS fall posture regions, BS fall posture regions and TS fall posture
regions, respectively. As shown in these figures, the ellipse has no more than two stable
falling postures. However, up to three stable solutions can be obtained for the triangular
and L-shaped objects. It is noted that the single-solution area still dominates the majority
of the map.

4.3. Parameter influence
In the methodology for determining stable postures, it is found that the direction of the
CoG line is only determined by Ar. This is because the direction of the CoG line is
dependent on the direction of the force on the object, and the direction of the force on
a fixed object is determined by the angle of attack and the Re together. The Re is embodied
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m* = 0.5, Ar = 20

m* = 0.5, Ar = 100

m* = 0.5, Ar = 180

Ar = 100, m∗ = 0.3

Ar = 100, m∗ = 0.5

Ar = 100, m∗ = 0.7

Ar = 100, m∗ = 0.9

(a)

(b)

Figure 6. The influence of Ar and m∗ on the boundary of SS, BS and TS region. (a) The boundary of SS, BS
and TS region changes with m∗ when Ar = 100. (b) The boundary of the SS, BS and TS region changes with
Ar when m∗ = 0.5.

in Ar, so the direction of the CoG line at a certain angle of attack is determined by Ar. The
magnitude of L is determined by m∗, CF and CM , where CF and CM are also determined
by Ar in the same way as the direction of the CoG line. Therefore, the distance L of the
CoG line from the origin is determined by m∗ and Ar together.

Figure 6(a) shows the distribution of the boundary of the different regions under
different m∗ when Ar = 100. The force and the moment coefficient on a stationary object
remain constant when Ar is constant, thus, the relationship between L and m∗ is linear.
The entire boundary is enlarged by a corresponding factor centred on the coordinate
origin as m∗ increases. Therefore, the area of the BS and TS region is linear with m∗2.
Figure 6(b) shows the boundary distribution between different regions under different Ar
when m∗ = 0.5. When m∗ is constant, the area of the BS and TS region increases with the
increase of Ar. To the extent that the force on the fixed objects is stabilized, Ar has less
effect on the distribution in the SS, BS and TS region which is due to the small variation
of forces and moments on fixed objects over a small range of Re.

4.4. Free-fall tests
The experiment faced limitations due to material selection and manufacturing accuracy.
To ensure that the geometric centre is positioned within the multisolution region, copper
was selected as the material for the object, resulting in m∗ being greater than 0.8. In
contrast, the convenience of numerical computation allows for the selection of appropriate
parameters to discover three stable falling postures. Therefore, the free-falling simulation
is conducted for the cases at Ar = 150 and m∗ = 0.5. As shown in figure 7(a), three shapes
same to the experiments, i.e. the ellipse, triangle and L-shape, are considered, and the
coordinates of their CoGs (CoG1, CoG2 and CoG3) that are listed in table 3 are selected
in SS, BS and TS regions. For the initial state of a falling object, parameters such as initial
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Figure 7. Numerical verification of the multiple falling postures of the objects. (a) The selected CoGs in
different regions and the θg obtained by the proposed method of these CoGs. (b) The change in gravity direction
with time for selected CoGs released at various initial angles and the potential energy of the chosen CoGs at
different θg of (i) elliptical, (ii) triangular and (iii) L-shaped objects when Ar = 150 and m∗ = 0.5.

velocity, angular velocity and initial release angle are considered. In this study, the object is
released from a state of rest, so the initial state is characterized solely by the initial release
angle. Therefore, 12 independent free-falls are simulated at different initial angles with
an interval of 30◦ for each object. Figures 7(b) and 8 show the variations in the gravity
direction, Re and motion direction over time. All the terminal stable falling postures
perfectly coincide with interpolation results based on the proposed method, confirming
the existence of multiple stable falling postures.

In terms of the potential energy, a multiple stable system has multiple local
minimums corresponding to the static stable equilibrium solutions and local maximums
corresponding to the unstable equilibrium solutions. Here, we define the potential energy
as

E = −
∫ θg

0
N dθ, (4.5)

where N represents the restoring moment caused by gravity at θg. Specifically, N = Gd′,
where d′ is the distance from the CoG of the object to the CoG line at θg. As shown
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Coordinates (x/d, y/d)

Shape Ellipse Triangle L-shape

CoG1 (−0.6, 0.05) (0.2, 0.05) (0.1, −0.2)
CoG2 (−0.1, 0.1) (0.06, −0.04) (0.1, 0.2)
CoG3 — (−0.001, −0.025) (0.162, 0.05)

Table 3. The dimensionless coordinates of CoG for the objects selected in numerical simulations.

CoG1 CoG2 CoG3 Interpolated
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Figure 8. The change in Re (a) and θm (b) with time for selected CoGs released at various initial angles of
elliptical (i), triangular (ii) and L-shaped (iii) objects when Ar = 150 and m∗ = 0.5.

in figure 7(b), the number and locations of potential wells agree well with those of
the interpolation results based on the proposed method. The deeper the potential well
corresponds the more easily attainable falling posture. It also corresponds to a wider range
of initial release angles. Therefore, it is concluded that the proposed method based on the
static flow simulation can interpolate to obtain the stable posture solution of the free-falling
body in fluid at low Re.

4.5. Discussions on general shapes
Figure 9 shows the stabilized falling posture maps obtained by interpolation with the
proposed method at Ar = 150 and m∗ = 0.9. This analysis reveals the shape dependence of
the stability solution distribution. The maximum number of solutions for a square triangle,
a square and an equilateral pentagon are three, four and five, respectively. It appears that,
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Figure 9. Solution maps for the equilateral triangle (a), square (b), equilateral pentagon (c), rhombus (d),
cross (e), H-shape ( f ), T-shape (g) and U-shape (h) at Ar = 150 and m∗ = 0.9.

for equilateral shapes, the maximum number of solutions for a given object equals the
number of its edges. However, this does not mean that the existence of multiple solutions
is due to the rotational symmetry features of the objects. In addition, there is a correlation
between the increase in the number of sides of the shape and the decrease in the area
of the multiple solution area. Shapes resembling an equilateral form, such as the cross
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and H-shape illustrated in figures 9(e) and 9( f ), tend to show a maximum number of
solutions similar to that of a square. The distribution of these CoG lines is categorized into
several ‘trumpet’ shapes, as shown in figure 9. It is observed that the primary dimension
of the object, either the longest edge or the maximum projected dimension, significantly
influences these trumpet distributions. Each primary dimension corresponds to a trumpet
with the deepest tip. For instance, the trumpet distribution for a square aligns with its four
edges, whereas for a rhombus, it aligns with its maximum projected dimension. Shorter
sides may also have corresponding trumpets, as shown in the upper side of the T-shaped
trumpet in figure 9(g). The presence of concavity in a shape tends to enhance the formation
and depth of these trumpets, leading to a larger area of multiple solutions. This is evident in
the cross-shaped, H-shaped, T-shaped and U-shaped objects. Conversely, convex features
tend to have the opposite effect, as observed in the distribution diagram of the U-shaped
object in figure 9(h).

5. Conclusions

Based on the above studies, it is concluded that an object with specific properties may
have multiple stable falling postures at low Reynolds numbers. This discovery highlights
the existence of multiple stable solutions that are universally present across objects of
different shapes. The method proposed in this work can efficiently obtain results for the full
parameter domain of an object. This saves computational cost and provides a clearer view
of the results. Moreover, this methodology can also guide subsequent work on the study
of objects falling. This method is also applicable to three-dimensional objects, by adding
an extra dimension to the computation for fixed objects. Given that the computational
coefficient for fixed objects is higher than that for the falling of three-dimensional objects,
employing this method is a preferred means of saving computational cost. However, the
increase in the number of dimensions results in a significant increase in the number
of computational angles and computational cost. Additionally, handling and visualizing
the CoG line of three-dimensional objects becomes somewhat more challenging. The
implications of this research can be extended to the design, stability control and trajectory
prediction for free and controlled flights in both air and water.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.557.
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