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THE MOBIUS BOUNDEDNESS OF THE SPACE Qp
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Abstract

In this note, a characterization of the Mobius invariant space Qp for the range 1 — 1/n < p < 1 is given.
As a special case p = 1, we get the Mobius boundedness of BMOA in the space H2. This extends the
corresponding result for 1-dimension.
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1. Introduction

Let B be the unit ball of C" (« > 1) with boundary 5, v the Lebesgue measure on
B normalized so that v(B) = 1 and a the normalized rotation invariant measure on
5, that is a(S) = 1. The class of all holomorphic functions with domain B will be
denoted by//(fi).

Let/ be in H(B) with Taylor expansion / (z) = ^a>oaaz
a. For p e K, / is said

to be in the Dirichlet type space ®p provided that

(1) | | / | | ^ =
o>0

Here [Ru]

• / '
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The space $\ is called Dirichlet space. The spaces @0 and S?_i are just the Hardy
space H2 and the Bergman space L2

a(B), respectively.
For a € B, cpa is the Mobius transformation of B which satisfies <pa(0) = a,

<pa(a) = 0 and q>a — <p~l, <pa e Aut(B). Aut(B) is the group of biholomorphic
automorphisms of B [Ru].

Let Dj = d/dzj,j = 1 , . . . , n and V/ = (DJ,..., Dnf) denote the complex
gradient of / , &f = ]£J=, Zj Djf denote the radial derivative of / . If we let
dk(z) = dv(z)/(l - |z|2)"+1, then dk is ^-invariant (see [Ru]), which means

(2) / / (z)dk(z) = [ fo is(z)dk(z)
JB JB

for each/ € Ll (k) and \fr e Aut(5). Let V/(z) = V(/ o^)(0) denote the invariant
gradient of/ . In [St], the invariant Green's function is defined as G(z, a) = g(<pa(z)),
where

(3)
l \ z \

We define (as in [OYZ]), for 0 < p < oo,

QP(B) = If € H(B) : sup f \Vf(z)\2G2(z,a)dk(z) < oo
[ aefi JB

Obviously, QP{B) is ^-invariant.
In [OYZ], the authors proved that QP(B) = Bloch(5) (the Bloch space) for

1 < p < n/{n - 1), Qi(B) = BMOA{S) and QP(B) is trivial when 0 < p <
(n — l ) /n or p > n/(n — 1). For the case of (n - \)/n < p < 1, they proved that
QP(B) = {/ e H(B) : supa e B/B |V/ (z) | 2 ( l - \<pa(z)\2)npdk(z) < oo}. In this note,
a new characterization of Qp (B) for (n — Y)/n < p < 1 is given by using the Mobius
boundedness in the space Q>n(\-py As a special case, we get a characterization of
BMOA. These results in the setting of one dimension can be found in [ALXZ] and
[Ba].

Our main result is the following theorem.

THEOREM 1. For f e H{B), if\-\/n<p<\, then f e Qp if and only if
Mob ( / ) 15 bounded in @nii-p), where

(4) M o b C H = {fa(z)=f(<pa(z))-f(a) :a&B}.

The fact £̂ 0 = H2 together with this theorem gives a corollary.

COROLLARY 1. For f e H{B), the following are equivalent:
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(i) / e HMOA.
i:'i) M o b ( / } ,':•• nounded • > H2.

In, the following C denotes a positive constant which may be different from one
occurrence '<• the next.

2. The proof of the main result

In order to prove the theorem, we first give some lemmas.

LEMMA 1 ([OYZ]). Let 0 < p < 1 and f e H(B), then f e Qp if and only if
supaeB fB |V/(z)|2(l - \<pa{z)\2)npdX{z) is finite.

LEMMA 2. Let p < 2, then f € % if and only if

\Vf(z)\2(l-\z\2)l-pdv(z)<oc,

/ \\%p - \f (0)|2 ~ fB | V/ (z)|2(l - \z\2)l-pdv(z).

The notation 'A ~ B' means that there exist constants C\ and C2 such that C\B <
A < C2B.

PROOF. It is the direct result of calculation with integration in polar coordinates. •

LEMMA 3. Let f e H(B) and p > 1 — l/n, then the following are equiva-
lent:

(i) fB |V/(z)|2(l - \z\2)-l-"+Hpdv(z) < o
(ii) fB |Vr/(z)|2(l - \z\2Tp-ndv(z) < oo;

(iii) fB |V/(z)|2(l - \z\2)np-n+1dv(z) < c».

Here |Vr/(z) |2 = 2(|V/(z)|2 - ^ / ( z ) | 2 ) , and Vr/(z) is called the tangent
gradient of / .

PROOF. First we show that (i) is equivalent to (ii). This is a direct result of the
equality in [JP]

Next we show that (ii) implies (iii). This we can get from

|Vr/(z)|2 = |V/(z)|2 - m(z)\2 > (1 - |z|2)|V/(z)|2.
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Now suppose (iii) holds, we show that (ii) is true. Then

(5) 2 2 2 2

implies that

< 00.(6) f |^/(z)|2(l-|z|2r-n+1rfv(z)
JB

Since

(7) Ul2ivr/(z)i2 = 2 ((i - iz|2)i^/(z)i2 + Y, \Tufb)n'

where Ty = zJD, — zJD,-. Since / is holomorphic, then by (6) and (7), we need only
to prove that

(8)

for all 1 < i < j < n.
An integration by parts shows that

(9) f(z)= I {&f{tz)+f{tz))dt.
Jo

Then

fl ( " \
T,jf(z)= / [J2tzkTljDkf(tz) + 2TiJf(tz))dt.

Jo \ t = i /

From this we conclude that it is sufficient to prove

.1 ^ 2

(10)

and

j (j |7^Dt/(/z)|jA (1 - \z\2)np~"dv(z) < oo

(11) j (f \Tof(tz)\dt\ (1 - \z\2)np-"dv(z) < oo.

To prove (10), we note that for any s > 0, [Je]

(12) f ITgDJitzW <C [ i\~]W!2ylD
l
k/J^)ldv(w)

Jo JB |1 - ( Z , w)\n+s+2
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Sincep > 1 — 1/n, then there exists S > 0 such thatp — S > 1 —1/n. Using Holder's
inequality, Fubini's theorem and [Ru, Proposition 1.4.10], (12) we obtain

f (J WjDJOz^dt] (1 - \z\2r-"dv(z)

r

(13) < C f \Dkf (w)\2(l - \w\2r-n+ldv(w).
JB

This gives (10).
In order to get (11), we first prove

f |/ (z)|2(l - \z\2r~n+ldv(z) < ex).
JB

From [Je], for s > 1,

(14) f
JB

Fubini's theorem and [Ru, Proposition 1.4.10], and (15) gives

f \f(z)\2(l-\z\2r-n+idv(z)
JB

\2yp-n+l

(16) <C [
B

Then (14) is valid. The similar method used in the proof of (10) gives (11). So the
proof is complete. •
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PROOF OF THEOREM 1. By Lemma 1, Lemma 2 and Lemma 3, and the invariance
of V for 1 — \/n < p < 1, we have

/ e Qp <=> sup [ |V/(Z) |2 (1 - \<pa(z)\2)npdX(z) < oo
aeB JB

sup f |V(/ o <pa)(z)\2 (1 - \z\2)vdk(z) < oo
aeB JB

sup / |V(/ o^a)(z)|2(l - \z\2rp-n+ldv(z) < oo
a£B JB

Mob (/) is bounded in the space ^n ( i - p ) .

This completes the proof. •
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