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We perform direct numerical simulations of soluble bubbles dissolving in a
Taylor–Couette (TC) flow reactor with a radius ratio of η = 0.5 and Reynolds number
in the range 0 ≤ Re ≤ 5000, which covers the main regimes of this flow configuration,
up to fully turbulent Taylor vortex flow. The numerical method is based on a geometric
volume-of-fluid framework for incompressible flows coupled with a phase-change solver
that ensures mass conservation of the soluble species, whilst boundary conditions on solid
walls are enforced through an embedded boundary approach. The numerical framework
is validated extensively against single-phase TC flows and competing mass transfer
in multicomponent mixtures for an idealised infinite cylinder and for a bubble rising
in a quiescent liquid. Our results show that when bubbles in a TC flow are mainly
driven by buoyancy, theoretical formulae derived for spherical interfaces on a vertical
trajectory still provide the right fundamental relationship between the bubble Reynolds
and Sherwood numbers, which reduces to Sh ∝ √

Pe for large Péclet values. For bubbles
mainly transported by TC flows, the dissolution of bubbles depend on the TC Reynolds
number and, for the turbulent configurations, we show that the smallest characteristic
turbulent scales control mass transfer, in agreement with the small-eddy model of Lamont
& Scott (AIChE J., vol. 16, 1970, pp. 513–519). Finally, the interaction between two aligned
bubbles is investigated and we show that a significant increase in mass transfer can be
obtained when the rotor of the apparatus is operated at larger speeds.
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1. Introduction

Mass transfer in two-phase systems has several applications in the chemical engineering
field, such as the design of efficient and sustainable reactors for the production of
pharmaceutical and agrochemical compounds. The development of continuous flow
reactors, which are characterised by a continuous flow of reactants and products, has
recently attracted the attention of researchers due to promising performance compared
with standard batch devices. A successful design of continuous flows reactors based on
the Taylor–Couette (TC) flow was proposed recently for electrochemical (Love et al. 2021;
Lee et al. 2022) and photochemical (Lee et al. 2017, 2020) applications involving both
single- and two-phase (gas–liquid) reactions. The success of such design is mainly due to
the excellent mixing properties of TC flows and the optimal bubble size distribution within
the reaction vessel.

A TC (Couette 1890; Taylor 1923) apparatus consists of two coaxial rotating cylinders
and the flow behaviour within the gap is a well-studied configuration that exhibits several
consecutive states during the transition from the laminar regime (low rotating speeds)
to a fully turbulent flow. In the last few decades, TC flow has captured the attention of
both scientists active in the study of laminar to turbulent transition (see, for example,
Gollub & Swinney 1975; Smith & Townsend 1982; Townsend 1984) as well as engineers
involved in the design of rotating devices, such as rotating machinery (Nicoli, Johnson &
Jefferson-Loveday 2022) or chemical reactors (Schrimpf et al. 2021). Extensive literature
has been published on the characterisation of TC flows and the interested reader is referred
to the works of Di Prima & Swinney (1981), Andereck, Liu & Swinney (1986), Wang
(2015), Grossmann, Lohse & Sun (2016) and the references therein for a detailed review.
In this work, only the configuration where the inner cylinder is rotating and the outer one is
kept stationary is considered, but similar behaviours can be observed in the more generic
case of counter-rotating walls.

The majority of studies concerning disperse bubbly flows in TC apparatuses is mainly
devoted to the analysis of drag reduction mechanisms (such as bubble deformability or
effective compressibility of the flow, Ferrante & Elghobashi 2004) on the rotating walls
(Murai, Oiwa & Takeda 2005; Van den Berg et al. 2005; Murai, Oiwa & Takeda 2008;
Sugiyama, Calzavarini & Lohse 2008; Van Gils et al. 2013; Murai 2014; Wang, Wang
& Liu 2022), as well as bubble accumulation patterns and their interaction with the
flow structures (Shiomi et al. 1993; Djeridi, Gabillet & Billard 2004; Murai et al. 2005;
Climent, Simonnet & Magnaudet 2007; Mehel, Gabillet & Djeridi 2007; Ymawaki et al.
2007; Chouippe et al. 2014; Gao, Kong & Vigil 2015b, 2016). On the other hand, a
comprehensive understanding of gas–liquid mass transfer in TC flows is missing in the
literature and the available studies mainly focus on the experimental quantification of mass
transfer coefficients (km) through the measurement of dissolved gaseous concentration in
the liquid solution (Ramezani et al. 2015; Qiao et al. 2018). Since the interfacial gas–liquid
area (aΣ ) is difficult to measure experimentally, the product kmaΣ is generally provided
instead and correlation formulae of the type Sh = f (Re, Sc) are proposed, where Sh is
the Sherwood number and Sc is the Schmidt number. The Sherwood number compares
the mass transfer coefficient against the characteristic velocity of diffusion and is defined
as Sh = kmLref /Dc (where Lref is the reference length and Dc is the diffusion coefficient
of the gaseous species in the liquid (continuous) phase), whereas the Schmidt number is
Sc = νc/Dc, and νc is the kinematic viscosity of the liquid. Gao et al. (2015a) combine a
theoretical model, based on the penetration theory of Higbie (1935), with an Euler–Euler
numerical framework to quantify mass transfer in TC reactors. The Euler–Euler approach
does not resolve the gas–liquid interface and allows disperse bubbly flows to be modelled
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Figure 1. Geometrical parameters of a TC apparatus and representation of counter-rotating Taylor vortices.

in large domains. However, its accuracy relies on the choice of appropriate closure models,
which typically depend on the specific application for the exchange of interfacial mass and
momentum. To the best of the authors’ knowledge, no studies have been published on
the modelling of bubbles in TC flows by means of fully resolved interfacial simulations.
The present study (of which part of the material is based on one of the present author’s
thesis, Gennari 2023) contributes to the understanding of gas–liquid mass transfer in TC
flows by deploying a fully resolved and state-of-the-art numerical volume-of-fluid (VOF)
framework to capture both the fluid flow and mass transfer occurring at the interface and
investigate how bubble dissolution is affected by the different regimes of TC flows. In the
rest of this section, the main features of TC flows are briefly discussed along with a review
of the available numerical methodologies for fully resolved two-phase flows with mass
transfer.

The non-dimensional groups generally used for the characterisation of this flow
configuration take into account both the geometry of the apparatus (see figure 1), which
is defined by the radius ratio (η = rin/rout) and the aspect ratio (Γ = Lz/(rout − rin)), as
well as the Reynolds number Re = ρcUin(rout − rin)/μc, where the subscript c is used to
refer to the liquid (continuous phase) within the reactor. The inner and outer radii are rin
and rout, respectively, whereas Lz is the axial extension of the device and Uin = rinωin is
the peripheral speed of the inner rotor.

The first instability that occurs in a (planar, time-independent and axisymmetric)
cylindrical Couette flow, when the rotating speed exceeds a critical value, consists of
pairs of counter-rotating vortices (also known as Taylor cells) superimposed on the main
flow; this flow regime is referred to as Taylor vortex flow (TVF) and the cells have a
characteristic toroidal-like shape. The flow is periodic in the axial direction, axisymmetric
and time-independent. The Reynolds number at which this instability occurs is referred
to as critical Reynolds (Recr) and the expected wavelength λ (i.e. the axial extension
of two consecutive Taylor cells; see figure 1) is approximately twice the gap between
the cylinders. As the rotating speed is further increased beyond the critical Reynolds, a
second instability is observed, which causes the vortices to travel along the azimuthal
direction, following a wavy trajectory. The boundaries between two adjacent Taylor cells
have a sinusoidal shape (wave) and the flow is no longer time-independent. The waves are
periodic along the azimuthal direction and this configuration is referred to as wavy vortex
flow (WVF). In this regime, the flow can exhibit multiple states, i.e. different number
of Taylor cells and azimuthal waves for the same Re (Coles 1965). A third instability
occurs for larger Reynolds numbers and it is characterised by the appearance of two sharp
frequencies in the power spectra of the velocity field. The first is still associated with the
travelling of azimuthal waves (as in the WVF regime), whereas the second is related to a
modulation of the amplitude and the frequency of such waves (Gorman & Swinney 1982).
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This configuration is generally referred to as modulated wavy vortex flow (MWVF). For
the first three regimes (i.e. TVF, WVF and MWVF), Koschmieder (1979) reported that the
axial wavelength increases with the rotating speed up to approximately Re = 10Recr (for an
apparatus with η = 0.896), after which λ is found to be independent of the rotating speed.
For Re > 10Recr the azimuthal waves progressively disappear and the flow transitions
towards a turbulent regime. This is the last state of TC flow and is generally referred to as
turbulent Taylor vortex flow (TTVF). From visual observations, the flow is still structured
into azimuthal cells, although the velocity field is no longer well-organised into a toroidal
pattern, due to the presence of strong velocity fluctuations.

When a soluble gas is introduced in a liquid solution, the system reaches an equilibrium
state where part of the gas is dissolved into the liquid according to the partial pressure
exerted by the gas on the interface between the phases. In the present work, the
interface is always assumed saturated and Henry’s law (see § 2.1) is used to compute the
concentration jump between the disperse phase (i.e. the gas) and the continuous phase
(i.e. the liquid). Whenever the dissolved concentration in the continuous phase (cbulk) is
below the interfacial saturated value (cc)Σ , i.e. the saturation ratio ζ = cbulk/(cc)Σ < 1,
a diffusion-driven process that depends on the local concentrations at the interface (Groß
& Pelz 2017) takes place and redistributes gas molecules from the disperse phase into
a concentration boundary layer δc on the liquid side of the interface, leading to bubble
dissolution. Assuming a uniform concentration within δc and no species initially dissolved
in the continuous domain (i.e. cbulk = 0), the concentration boundary layer thickness can
be estimated as δc = Db/Sh, where Db is the bubble diameter. In actual cases of dissolving
rising bubbles, δc is a local quantity that varies around the interface and is determined by an
advection–diffusion process. The relative importance of these two transport mechanisms
is estimated by the Péclet number, defined as Pe = RebSc. For large Reynolds number,
Levich (1962) used the potential flow theory to approximate the flow field around a moving
spherical particle and derived the well-known formula Sh = (2/

√
π)

√
Pe. A similar

functional relationship is also found in other theoretical formulations, such as Oellrich,
Schmidt-Traub & Brauer (1973), as well as experimental correlation models (Takemura &
Yabe 1998). By combining this relationship with the hydrodynamic boundary layer theory
δh ≈ Db/

√
2Reb (Levich 1962), the ratio of concentration to hydrodynamic boundary layer

thicknesses evolves as δc/δh ∝ 1/
√

Sc (Weiner & Bothe 2017).
One of the limiting factors of fully resolved numerical simulations of interfacial flows

with mass transfer is due to the small scales that occur at large Sc and Pe numbers;
additional challenges are given by the discontinuities that characterise the interface in
terms of velocity (whenever mass transfer between two phases with different density
occurs) and concentration of soluble species. Different approaches have been developed
in the past to address these points, such as neglecting volume changes for highly dilute
species (Bothe & Fleckenstein 2013; Farsoiya, Popinet & Deike 2021) or smearing
the interfacial mass transfer term to improve stability (Hardt & Wondra 2008). Other
methodologies adopt the ghost fluid method (Fedkiw et al. 1999) to deal with interfacial
velocity jumps (Nguyen, Fedkiw & Kang 2001; Sussman 2003; Tanguy, Ménard &
Berlemont 2007; Tanguy et al. 2014), whereas recent works have focused on techniques
to derive a divergence-free velocity formulation at the interface to advect the indicator
function in a VOF framework (Guo 2020; Scapin, Costa & Brandt 2020; Malan et al.
2021; Gennari, Jefferson-Loveday & Pickering 2022; Boyd & Ling 2023; Cipriano
et al. 2024). Specific numerical schemes have been developed to preserve the jump
between the concentration values at the interface and can be divided into two families,
namely one-scalar (one transport equation per species) and two-scalar (two equations per
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species) methods. One-scalar approaches include the work of Bothe et al. (2004) and are
further extended in (Haroun, Legendre & Raynal 2010; Marschall et al. 2012; Deising,
Marschall & Bothe 2016; Maes & Soulaine 2018); examples of these methods coupled
with algebraic VOF frameworks can be found in Maes & Soulaine (2020) for competing
mass transfer and in Zanutto et al. (2022a,b) for evaporating flows and non-ideal mixtures.
Two-scalar approaches are presented in Alke et al. (2009), Bothe & Fleckenstein (2013)
and used in Fleckenstein & Bothe (2015) with a geometric VOF for multicomponent
mass transfer with volume effects. A novel implementation is presented in Schulz et al.
(2022), where the mesh is split at the interface based on its geometrical reconstruction.
A combination of one- and two-scalar schemes is presented in Farsoiya et al. (2021);
the same authors have recently proposed an alternative approach that takes into account
volume effects (Farsoiya et al. 2023). In the present work, a geometric VOF scheme is
adopted and the piecewise linear reconstruction (PLIC) of the interface allows for a sharp
separation between the disperse and continuous domains. Under these circumstances, a
two-scalar method is the preferred choice to prevent any artificial mass transfer to occur
during the advection of the interface (Deising et al. 2016).

The rest of this article is organised as follows. The governing equations for two-phase
flows with soluble species are introduced in § 2.1, whereas the numerical methodology,
which is based on our previous work (Gennari et al. 2022), is briefly summarised in § 2.2.
The numerical framework is validated extensively in 3, whereas the results of bubble
dissolution in TC flows are discussed in § 4. It is finally recalled here that the terms
continuous (disperse) and liquid (gas) are used interchangeably in the rest of the work.

2. Governing equations and numerical framework

2.1. Governing equations
In this work, the three-dimensional (3-D) Navier–Stokes equations for a two-phase
incompressible flow with phase-change are solved in the one-fluid framework (see
Tryggvason, Scardovelli & Zaleski 2011 for a rigorous derivation):

∂tH + ∇ · (Hu) = − ṁ
ρc

δΣ, (2.1)

∇ · u = ṁ
(

1
ρd

− 1
ρc

)
δΣ, (2.2)

∂tu + ∇ · (u ⊗ u) = 1
ρ

[−∇p + ∇ · (2μS)] + g + σκnΣ

ρ
δΣ, (2.3)

where (2.1) represents the transport of the Heaviside function, which is used to mark the
location of the interface between the continuous and disperse domains,

H(x, t) =
{

1, if x ∈ Ωc,

0, if x ∈ Ωd.
(2.4)

Once H(x, t) is known everywhere, the values of density (ρ) and viscosity (μ) can be
computed as

ρ = ρcH + ρd(1 − H) (2.5)

and
μ = μcH + μd(1 − H), (2.6)

999 A39-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

88
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.886


G. Gennari and others

where the subscript c (d) is used to refer to the continuous (disperse) phase. In the
following we use the letter fc to refer to the volume fraction of the continuous phase in
a computational cell with volume V , i.e. fc = (1/V)

∫
V H dV . Equations (2.2)–(2.3) are

the balances of mass and momentum, respectively, where the term on the right-hand side
of the continuity equation takes into account volume effects when phases with different
densities exchange mass. In the system of (2.1)–(2.3), u is the velocity field, ṁ is the mass
transfer rate, δΣ is the interfacial Dirac function, p is the pressure, S is the deformation
tensor [∇u + (∇u)T]/2, g is the gravitational acceleration, σ is the surface tension, κ and
nΣ are the curvature and the normal vector of the interface.

Mass transfer at the interface of a two-phase system can occur for different physical
phenomena, such as evaporation, boiling, chemical reactions and gas solubility. In the
present work, the focus is on the solubility of gaseous species in liquid solutions,
where the mass transfer is driven by a diffusive process that occurs at the interface
(diffusion-driven phase-change) and depends on the species concentration around the
interface (Σ). Therefore, to close the system of governing equations, the conservation
law for soluble species in two-phase flows needs to be included. This takes the form of
a system of two transport equations for the molar concentration field (ck) of each soluble
component in the domain and, for the generic kth species, reads (see Bothe & Fleckenstein
2013)

∂tck
c + uc · ∇ck

c − ∇ · (Dk
c∇ck

c) = − ṁk

Mk δΣ in Ωc,

∂tck
d + ud · ∇ck

d − ∇ · (Dk
d∇ck

d) = ṁk

Mk δΣ in Ωd,

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

where the subscripts c, d emphasise that the equations of system (2.7) must be integrated
in the respective domain only, i.e. Ωc,d; Mk and Dk

c,d are the molar mass and diffusivity in
phase (c, d) of the species. The species mass transfer term that appears in the concentration
transport equations (2.7), is, by definition, the difference between the species and interface
velocities along the normal direction. For the generic kth component, it reads

‖ρk(uk − uΣ) · nΣ‖ = ‖ṁk‖ = 0 at Σ, (2.8)

where the jump notation has been introduced (i.e. ‖ρk‖ = ρk
c − ρk

d). Equation (2.8), also
known as the Rankine–Hugoniot condition, implies that no mass can be stored at the
interface. Here, a generic system of n components is considered, where the first n − 1
elements are soluble species (that can be transferred across the interface and appear as
dilute components in the liquid phase), and the nth component is the solvent, which is
assumed to be not volatile (i.e. no solvent species exists in the disperse phase). Under
these assumptions, the mass transfer rate of a single species can be rearranged into (see
Fleckenstein & Bothe 2015 for more details)

ṁk = ρk

ρ

n−1∑
l=1

ṁl − Dk∇ρk · nΣ, (2.9)

where (2.9) can be computed from either the continuous or disperse side of the interface.
A special case arises when the disperse phase is made of a single species only (i.e. no
mixtures). In this case, the system contains two components (n = 2): the pure gas (k = 1)
and the solvent (liquid phase, k = 2) and the overall mass transfer (ṁ) is entirely given
by the transfer rate of the single species which exists in the disperse phase, i.e. ṁ = ṁ1.
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The mass transfer rate for a pure disperse phase can be computed from (2.9) as

ṁ = − D1
c

1 − y1
c

∂ρ1
c

∂nΣ

, (2.10)

where y1
c = ρ1/ρc, whereas the subscript c has been added to denote that the mass transfer

rate must be computed from the liquid side of the interface (computing ṁ from (2.9) in Ωd
gives the identity ṁ = ṁ).

One more condition needs to be taken into account at the interface for the chemical
partitioning of species densities. In a generic two-phase flow, the species distribution at
the interface is discontinuous and, for a system at equilibrium (saturated interface), such
jump in the concentration profile can be predicted by Henry’s law, which states that the
kth species concentration on the liquid side of Σ is directly proportional to the partial
pressure of the same gaseous species on the liquid. By taking advantage of the perfect gas
law, Henry’s formula can be written in terms of a jump condition for the species densities
at the interface:

(ck
c)Σ = (ck

d)Σ

Hk
e

, (2.11)

where Hk
e is the Henry’s law coefficient for the kth species and it is a material property

of the system, which generally depends on the temperature and pressure fields near the
interface (see Bothe & Fleckenstein 2013 for a detailed discussion about the generalised
Henry’s law). For the applications considered in the present work, Hk

e is assumed to be
constant for each species and the interface is always treated as saturated.

2.2. Numerical framework
The governing equations presented in § 2.1 are solved with the open-source solver Basilisk
(Popinet & collaborators 2013–2024). Basilisk is a finite-volume solver for the solution of
partial differential equations on adaptive Cartesian grids and implements a second-order
accurate (time and space discretisation) solver for direct numerical simulations (DNS)
of two-phase immiscible fluids (Popinet 2009). The interface position is tracked with a
geometric VOF method and state-of-the-art numerical techniques are implemented for
the computation of the interface curvature, which is particularly relevant to mitigate the
numerical effect of spurious currents (Popinet 2009). The Cartesian mesh is organised into
a hierarchical tree structure (Popinet 2015) and can be dynamically adapted (i.e. refined
and/or coarsened) by means of an adaptive mesh refinement (AMR) technique based on
a wavelet estimation of the spatial discretisation error for selected flow fields (van Hooft
et al. 2018). The ability of adapting the mesh at each iteration in regions where strong
gradients occur makes Basilisk an efficient solver for interfacial flows, where generally a
fine mesh is required around the gas–liquid interface and a coarser discretisation can be
employed for the remaining part of the domain. In this work, we adopt the phase-change
solver presented in Gennari et al. (2022) and implemented in Basilisk. In the following,
the main ingredients of the numerical algorithms are briefly summarised.

The integration of (2.1) is performed in two steps: first, the advection term is integrated
with the PLIC scheme presented in Weymouth & Yue (2010) (based on an operator-split
method), then the interface is shifted with a rigid displacement along the normal direction,
equivalent to hΣ = −(ṁ/ρc)(�t/�)nΣ . This last term corresponds to the integration
of the source term on the right-hand side of (2.1). The VOF scheme is designed to
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Figure 2. (a) Advection of species concentrations confined within the respective phases. The transport fluxes
across the cell boundary are based on the PLIC advection of the respective volume of fluids (red and green
volumes for the continuous and disperse phases, respectively); uf represents the face-centred velocity field.
(b) Unsplit scheme for the computation of the mass transfer term.

ensure mass conservation for incompressible flows without phase-change and relies on
the kinematic constraint ∇ · u = 0. In case of mass transfer occurring at the interface,
the non-divergence-free condition (2.2) introduces a velocity discontinuity that no longer
satisfies the conservation of mass. To address this problem, a novel algorithm was
proposed in Gennari et al. (2022), which consists of a redistribution of the mass transfer
term ṁ from the interfacial cells to a layer of pure gas cells next to the interface. The
redistributed term is then used for the numerical discretisation of the continuity equation
(2.2), which produces a divergence-free velocity field in both liquid and interfacial cells.

To prevent artificial mass transfer during the integration of the species transport
equations (2.7), both advection and diffusion terms must transport the molar concentration
in their respective phase only, i.e. no transfer of moles across the interface is allowed at this
stage. This is accomplished by advecting the molar concentration with the same geometric
fluxes (based on the PLIC reconstruction of the interface) used for the transport of the
Heaviside function. For the generic kth species, the flux reads (López-Herrera et al. 2015;
see also figure 2a)

Fadv,k
p,x(i−1/2,j) = �Vp

�t
ck

p(i−1/2,j), for p = c, d, (2.12)

where �Vp is the exact (in the sense of the PLIC reconstruction of the interface) amount
of volume of phase p that crosses the cell edge. The molar concentration on the face is
predicted using the upwind scheme of Bell, Colella & Glaz (1989), which performs an
extrapolation in time (half-time-step) and in space from the upwind cell centre to the cell
boundary. At this point, a correction for the advection of c in Ωd is required, since the
velocity field is no longer divergence-free in the disperse domain near the interface. This
is accomplished here using the same approach adopted in Fleckenstein & Bothe (2015),
where the global dilation term is subtracted after all the one-dimensional (1-D) advection
operations are performed.

The diffusion term is treated with the approach proposed in López-Herrera et al.
(2015) and Magdelaine-Guillot de Suduiraut (2019), which is equivalent to a standard
finite-volume scheme, where the fluxes across the boundaries are computed on all the
cell faces and the diffusion coefficient is multiplied by the face fraction (obtained from the
PLIC reconstruction) of the respective phase. For the generic kth species, the flux reads

Fdiff ,k
p,x(i−1/2,j) = ∂ck

p

∂n
(Dk

pff ,p)A, for p = c, d, (2.13)
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where ff ,p is the face fraction on the cell boundary of phase p, i.e. ff ,p = Ap/A, and A is
the area of the cell face (figure 2a). The gradients along the Cartesian axes are computed
with a central finite difference scheme.

Finally, the mass transfer term ṁ requires the evaluation of the gradient term
∇ck · nΣ (2.9). This is calculated here from the continuous side, by using the
unsplit scheme proposed by Bothe & Fleckenstein (2013) and it reads (see
figure 2b)

−
∂ck

c(i,j)

∂nΣ

= fc
ck

c(P1) − ck
c(P)

PP1
+ (1 − fc)

ck
c(P2) − ck

c(P)

PP2
, (2.14)

where the values of concentration in points P1 and P2 are obtained from quadratic
(bi-quadratic in three dimensions) interpolation, whereas the value at the centroid of the
interface ck

c(P) is computed by applying Henry’s law (2.11).

3. Validation of the numerical framework

3.1. Single-phase TC flow
In this section, the Basilisk code is validated for single-phase TC flows against available
data in the literature. The DNS of (3-D) incompressible flows are performed and wall
boundaries are treated with an embedded boundary method, where Dirichlet boundary
conditions are enforced with the approach proposed by Schwartz et al. (2006). The
tangential velocity Uin = rinωin is applied at the inner cylinder, whereas the outer one
is fixed (i.e. Uext = 0) and periodic boundary conditions are used for the top and bottom
ends of the computational domain (see figure 1). The choice of the axial length of the
domain (Lz) is particularly relevant when only a section of the apparatus is modelled,
since periodic boundaries force the flow to adapt to the available space and constrain
the number of Taylor vortices that form within the annulus. Results from linear stability
analysis for infinite cylinders (see the appendix by P.H. Roberts in Donnelly et al. 1965)
show that the wavelength, i.e. the axial extension of a pair of counter-rotating vortices (see
figure 1), is expected to be close to λ ≈ 2(rout − rin). However, the results collected in
the work of Chouippe et al. (2014) from different experimental investigations show that
a significant dispersion is observed in the measured wavelengths. The main reason is due
to the non-uniqueness feature of the TC flow for which the final observed state of the
system depends on the procedure used to reach such state (e.g. acceleration/deceleration
rates of the rotor) and not only on the geometrical configuration. Therefore, for the
validation of the numerical method, it is important to select an axial length that is
a multiple of the observed wavelength (i.e. Lz = nλ), so that a number of n vortex
pairs is modelled and a sensible comparison can be made against the reference data.
In the present work, three configurations are tested, namely η = 0.5, 0.73 and 0.91, at
different Reynolds numbers. Details on the main parameters, including the observed
wavelength and the critical Reynolds number (Recr) for the transition from planar
Couette flow to TVF, are summarised in table 1 (for a comprehensive summary on the
critical values for a range of radius ratios, the reader is referred to Childs 2011 and the
references therein). The selected choice of configurations allows for a comprehensive
validation of the single-phase numerical framework, since the main TC regimes are
represented (i.e. TVF, WVF and TTVF). For details on the mesh sensitivity study and
characteristics of the selected grids for fully resolved simulations, the reader is referred
to Appendix A.
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η λ/(rout − rin) Lz Recr Re Regime Reference

0.5 2.09 2λ 55.6 1000 WVF Dong (2007)
0.5 2.09 2λ 55.6 3000 TTVF Dong (2007), Chouippe et al. (2014)
0.5 2.09 2λ 55.6 5000 TTVF Chouippe et al. (2014)
0.73 1.716 5λ 84.5 338 TVF Wang et al. (2005)
0.73 1.716 5λ 84.5 1014 WVF Wang et al. (2005)
0.91 3.08 8λ 136.1 5000 TTVF Chouippe et al. (2014)

Table 1. Single-phase TC cases.

4.00

4.50

5.00

5.50

6.00

6.50

7.00

20 25 30 35 40 45 50 55 60

t/trev

|G
w

| ×
 1

0
–
5

Inner cylinder
Outer cylinder

Figure 3. Inner and outer cylinder (non-dimensional) torques vs time for the TC configuration with η = 0.5
and Re = 5000. The absolute value |Gw| is plotted here to compare between the two walls. The statistically
stationary regime is approximately reached after 50 revolutions.

The cases reported in table 1 are run until an equilibrium configuration is reached and
the flow statistics are stationary. This state occurs when the torque exerted by the fluid on
the walls is the same for both the inner and outer cylinders (Chouippe et al. 2014) and
an example of the plot of the non-dimensional torque (Gw) for the configuration η = 0.5,
Re = 5000 is reported in figure 3. The torque is made non-dimensional with the cylinders’
axial length and with the liquid density and viscosity:

Gin,out
w = Tin,out

w

ρcν2
c Lz

. (3.1)

The mean torque values for all the tested configurations at their equilibrium points are
compared against the experimental formula proposed by Wendt (1933), where Gw scales
as Re3/2:

GWendt
w = 1.45

[
η3/2

(1 − η)7/4

]
Re3/2 (3.2)

and the corresponding results are reported in figure 4, where, for all the simulated
cases, a good comparison against the experimental data is observed, confirming that
the statistically stationary regime is reached for all the tested radius ratios and Reynolds
numbers.
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η = 0.5 – Present work

η = 0.73 – Wendt (1933)
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η = 0.91 – Present work

Figure 4. Comparison of the (non-dimensional) torque exerted on the inner cylinder against the experimental
work of Wendt (1933) (3.2).

The mean azimuthal velocity 〈uθ 〉zθ t and fluctuation
√

〈u′
θ

2〉zθ t (see Appendix A for
their derivation) for the configurations with η = 0.5 and η = 0.91 are compared against
the available numerical data of Dong (2007) and Chouippe et al. (2014) and results are
reported in figures 5 and 6, respectively. A good comparison is observed for almost all
the selected configurations, for both the average azimuthal velocity and the corresponding
fluctuation. The profiles of velocity fluctuations show the characteristic shape with two
local peaks near the inner and outer walls and an (almost) uniform value in the bulk of the
liquid; similar profiles are observed for different turbulent channels configurations (Moser
& Moin 1987; Hoyas & Jiménez 2006). As the Reynolds number increases, the magnitude
of the (normalised) fluctuations decreases and the peaks move closer to the respective
walls. The configuration with η = 0.5, Re = 1000 shows a significant deviation for the
azimuthal fluctuation (but not for the main velocity component) from the work of Dong
(2007) (figures 5a and 6a). However, the same case compared to the results reported in
Chouippe et al. (2014) for u′

θ shows an excellent agreement at every distance from the
walls. Surprisingly, the radial profile of average azimuthal velocity for the configuration
with η = 0.5, Re = 3000 (figure 5b) does not match the reference data of Dong (2007)
within the bulk of the liquid, where the velocity is under-predicted, but a good agreement is
reached in the regions close to the inner and outer walls. However, the same configuration
agrees well with both the works of Chouippe et al. (2014) and Dong (2007) in terms of
velocity fluctuations (figure 6b), although some quantitative discrepancies with the latter
reference near the inner wall are observed.

A qualitative representation of the flow field and the effect of the Reynolds number for
the configurations with η = 0.5 and η = 0.91 is reported in figure 7, where the contours
of axial velocity (uz) on a cylindrical surface with constant r are compared in a (planar)
two-dimensional (2-D) plot on the corresponding z–θ plane. Figure 7(a–c) shows the
effect of the Reynolds number on the topology of Taylor vortices as the flow regime
evolves from WVF to TTVF (see table 1). For Re = 1000 (figure 7a) two organised
pairs of counter-rotating vortices develop within the annulus and a thin region of null
axial velocity separates each vortex from the adjacent (counter rotating) one. The axial
extension of the computational domain was set to twice the expected wavelength (see
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Dong (2007)
Chouippe et al. (2014)

Present work(b)(a)

(d )(c)

Figure 5. Average radial profiles of the azimuthal velocity component for the configurations with
(a) η = 0.5, Re = 1000, (b) η = 0.5, Re = 3000, (c) η = 0.5, Re = 5000 and (d) η = 0.91, Re = 5000.

table 1) and the qualitative results reported here (two pairs of vortices) confirm that the
axial length of Taylor cells matches the expected one. The travelling trajectory along the
azimuthal direction of each vortex is almost straight, but the onset of a wavy motion
is visible from the oscillating boundaries of the vortices, suggesting that the apparatus
is in a transitional state from TVF to WVF. As the Reynolds number is increased to
Re = 3000 (figure 7b), the flow is fully turbulent and the shape of the vortices is distorted.
However, two main regions of counter rotating velocities can still be identified, although
Taylor cells are not well-defined as in the case with Re = 1000. Finally, for Re = 5000
(figure 7c) the flow appears chaotic with many flow structures distributed in a random way
and Taylor vortices do not form into an organised and clear pattern; these observations
are qualitatively confirmed by the results reported in Dong (2007). The effect of the gap
size is clearly visible from the comparison between figure 7(c) (η = 0.5) and figure 7(d)
(η = 0.91), which both run at Re = 5000. For larger radius ratios, the small gap within
the cylinders represents a geometric constraint for the formation of Taylor vortices, whose
topology appears (even for large and fully turbulent Reynolds numbers) well organised
into stable and clearly recognisable pairs of alternating axial velocities.

The results presented in this section show that the numerical methodology used in the
present work to model single-phase TC flows is able to accurately reproduce the features
of the main flow regimes for different geometries (radius ratios) and rotating speeds
(Reynolds numbers).
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Figure 6. Average radial profiles of the azimuthal velocity fluctuation for the configurations with (a) η = 0.5,
Re = 1000, (b) η = 0.5, Re = 3000 and (c) η = 0.5, Re = 5000.

3.2. Phase-change solver
In this section the numerical framework presented in § 2.2 is validated for the generic
scenario of competing mass transfer of a mixture of soluble species. The concentration of
species is non-uniform in both phases and the direction of mass transfer, i.e. from Ωd to Ωc
or vice-versa, can be different for each component, depending on the local concentration
at the interface.

3.2.1. Mass transfer in an infinite cylinder
In this test case, a binary gaseous mixture made of two soluble components (species A
and B) is confined by a liquid annulus where Rin and Rext are the inner and outer radius,
respectively. The liquid phase is therefore confined within the region Rin < r < Rext,
whereas the gaseous phase exists for r < Rin. The axial length of the cylinder (Lz) is
infinite and the external radius is set to Rext = 1 mm. The inner radius of the liquid
annulus, which represents the interface between the phases, is free to move as some of
the species crosses the interface and is initially set to Rt=0

in = 0.5 mm. Due to the infinite
axial extension, the problem is independent of the axial coordinate and can be represented
by a 2-D model; a sketch of the computational domain is shown in figure 8.

The properties of the gas–liquid system are reported in table 2 and approximate an
air–water system. The case simulated in this section replicates one of the set-ups proposed
in Maes & Soulaine (2020), where the gaseous (disperse) phase is initially composed of
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Figure 7. Contours of axial velocity on the z - θ plane for the configurations with (a) η = 0.5, Re = 1000,
(b) η = 0.5, Re = 3000 and (c) η = 0.5, Re = 5000 and (d) η = 0.91, Re = 5000. These plots are obtained
from the corresponding cylindrical surface with radius rin + 0.1(rout − rin) for cases (a–c) and radius rin +
0.25(rout − rin) for case (d).

x

y
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Figure 8. Computational domain for an infinite gaseous cylinder (Ωd) confined by a liquid annulus (Ωc).

species B only, i.e. cB(t=0)
d = ρd/MB. Species A is assumed to be weakly soluble in the

liquid solvent, whereas species B is not soluble and the respective Henry’s law coefficients
are HA

e = 100 and HB
e → ∞. By setting Henry’s law coefficient to HB

e → ∞ for species
B, the equilibrium value on the liquid side of the interface is (cB

c )Σ = 0, regardless of the
amount of species within the gaseous domain. Since no species B exists initially in the
liquid domain, the mass transfer of B across the interface is prevented (i.e. the solution is
saturated with respect to species B), and the species is confined within the gaseous region.
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Phase Density (kg m−3) Viscosity (N s m−2) σ (N m−1)

Liquid 1000 1 × 10−3
0.06

Gas 1 1.8 × 10−5

Table 2. Gas–liquid properties for competing mass transfer in an infinite cylinder.

L0 (m)
cA(t=0)

d
(mol m−3)

cB(t=0)
d

(mol m−3)
cA(t=0)

c
(mol m−3)

cB(t=0)
c

(mol m−3) HA
e HB

e

0.005 0 1 (3.3) 0 100 ∞
Table 3. Numerical set-up for a cylinder of gas expanding in an infinite liquid annulus.

The liquid domain is therefore composed of the solvent (not soluble in the disperse phase)
and species A, which has a relatively (compared with a typical gas solubility) large Henry’s
law coefficient and, therefore, is weakly soluble in the liquid solvent; the concentration
of species A is kept constant at the external boundary (r = Rext) and set to cA

c (Rext, t) =
ρd/(MAHA

e ). Diffusivity is the same for both species and is set to DA
c = DB

c = 10−6 m2 s−1

and DA
d = DB

d = 10−4 m2 s−1 in the continuous and disperse phases, respectively.
Due to the symmetry of the problem, the velocity and concentration fields depend only

on the radial distance (and time), and the liquid moves along the radial direction only, i.e.
uc = uc(r, t)er. Under this assumption, the problem can be simplified significantly and the
following analytical model is derived (see Maes & Soulaine 2020 for the details):

cA
c (r, t) = ρd

MAHA
e

(
1 − R2(t=0)

in

R2
in(t)

ln(r/Rext)

ln(Rin(t)/Rext)

)
, for r > Rin(t), (3.3)

dRin

dt
= DA

c R2(t=0)
in

HA
e R3

in(t) ln(Rin(t)/Rext)
, for t > 0. (3.4)

A summary of the numerical set-up is given in table 3; the mesh size is set to Δ =
1.95 × 10−5 mm, whereas the molar masses are the same for both species and equal to
MA = MB = 1 kg mol−1. The concentration profile of species A in Ωc is initialised with
(3.3) at t = 0, coherently with the assumption of solution at equilibrium at every time
step. Results are made non-dimensional with the reference length Lref = Rext, time tref =
ρcR2

ext/μc and concentration cref = ρd/MA, whereas the reference velocity follows from
Uref = Lref /tref . The numerical simulation is run for a time of �t = 5 s and the result
in terms of interface position (Rin) is compared against the analytical solution (3.4) in
figure 9, where a good agreement is observed.

3.2.2. Competing mass transfer in a rising bubble
This benchmark is based on the test case proposed in Fleckenstein & Bothe (2015) and
consists of the study of competing mass transfer amongst three soluble species for a
bubble rising in a quiescent flow. The properties of the gas–liquid system used for the
present test case are reported in table 4. The soluble species that exist in the present
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Figure 9. Inner radius of the liquid annulus vs time.

Phase Density (kg m−3) Viscosity (N s m−2) σ (N m−1)

Liquid 997 8.9 × 10−4
0.072

Gas 1.962 1.445 × 10−5

Table 4. Gas–liquid properties for the competing mass transfer in a rising bubble.

Species
Diffusivity in
Ωc (m2 s−1)

Diffusivity in
Ωd (m2 s−1) M (kg mol−1) He Sc

CO2 1.9 × 10−8 1.9 × 10−6 0.044 1.20 46.98
N2 2.0 × 10−8 2.0 × 10−6 0.028 67.0 44.63
O2 2.3 × 10−8 2.3 × 10−6 0.032 31.5 38.81

Table 5. Species properties for the competing mass transfer in a rising bubble.

model are: CO2, N2 and O2; the respective properties are reported in table 5. The main
non-dimensional numbers used for the present analysis are the bubble Reynolds number

(Reb = ρcUbDb/μc), Galilei (

√
gD3

b/ν
2
c ), Bond (ρcgD2

b/σ), Schmidt (Sck = νc/Dk
c) and

Péclet (Pek = RebSck). In these groups, the index k refers to the generic kth component,
whereas Ub is the bubble rising velocity.

In order to speed up the volume change process and reduce the computational
time of the simulation, the diffusivity for all the species in the liquid domain (Dk

c)
has been increased by a factor of 10 with respect to the real physical property (the
same approach was used in the reference case of Fleckenstein & Bothe 2015); the
corresponding diffusivity in the disperse phase (Dk

d) is assumed to be 100 times larger
than the continuous one (i.e. Dk

d = Dk
c × 102). The solubility of CO2 is significantly larger

than the solubility of the other species (lower Henry’s law coefficient), which means
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Case A Case B Case C Case D

Δ (mm) 5.86 × 10−3 2.93 × 10−3 1.46 × 10−3 7.32 × 10−4

Cells/Dt=0
b 136 273 546 1092

Table 6. Grid convergence study for the competing mass transfer in a rising bubble. The mesh size Δ refers to
the maximum refinement around the interface, whereas the number of cells per diameter is computed assuming
a uniform resolution inside the bubble.

that, for the same concentrations in both phases, the mass transfer from the gaseous
region to the liquid (under-saturated solutions) occurs faster for CO2 than N2 and O2;
the opposite scenario occurs for super-saturated solutions, where the transfer from the
continuous phase to the liquid phase is quicker for N2 and O2 than CO2. In table 5,
the Schmidt numbers are computed with the liquid properties reported in table 4 and
are similar for all species, since the diffusivity of each component does not change
significantly.

The initial diameter of the bubble is set to Dt=0
b = 0.8 mm and the bubble is confined

in a large square domain with dimensions L0 × L0 = 48 mm × 48 mm, where it rises
under the effect of the gravitational field g = 9.81 m s−2. Due to the large dimension of
the domain compared to the bubble size, end walls effect do not affect the dynamics of
the bubble in the present case. The Galilei and Bond numbers are Ga = 79.39 and Bo =
0.0869, respectively, and, for these parameters, the bubble is expected to rise vertically,
keeping the original spherical shape. Therefore, a 2-D axisymmetric model is used here,
where only half of the bubble is considered, and the rising trajectory is the horizontal
x-axis, i.e. g = −gex. An outflow condition is applied to the right boundary to allow
the liquid to enter/leave the domain as the bubble volume changes, whereas symmetric
conditions are used for the other boundaries; AMR is used to keep the grid at the finest
level around the bubble and save computational cells far from the interface. Results are
made non-dimensional with the reference length Lref = Rt=0

b , time tref = √
Lref /g and

the gaseous concentration in Ωd when the bubble is composed of CO2 only, i.e. cref =
ρd/MCO2 . The bubble is initially composed of CO2 (i.e. cCO2(t=0)

d = 44.59 mol m−3),
whereas the liquid solution is composed of the solvent (not soluble in Ωd) and species
N2 and O2 with concentrations cN2(t=0)

c = 0.51 mol m−3 and cO2(t=0)
c = 0.27 mol m−3.

The solution is therefore under-saturated for CO2 and super-saturated for the other
species.

A mesh sensitivity study is first performed to evaluate the level of grid refinement that is
necessary to reach a mesh-independent solution. Four grids are tested (cases A, B, C and
D) and the mesh size around the interface, along with the number of cells per diameter
of the bubble, is summarised in table 6. The simulations are run for a time interval of
�t = 0.25 s and results in terms of volume change for the bubble are shown in figure 10.
The grid convergence analysis shows that a mesh independent solution is reached for case
C, which corresponds to approximately 546 cells per diameter at t = 0. For the selected
chemical composition of the liquid and gaseous phases, CO2 is transferred from the
bubble to the liquid (under-saturation), whereas N2 and O2 flow in the opposite direction
(super-saturation). Due to the larger solubility of CO2 compared with the other species and
the weak super-saturation ratios for N2 and O2, the competing mass transfer is dominated
by CO2 and results in a net flow of mass out of the bubble; the phase volume decreases
accordingly. The volume reduces almost linearly in the first part of the simulation (until
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Figure 10. Grid convergence for the competing mass transfer in a rising bubble. Plot of bubble volume vs
time.

t∗ ≈ 10), where the mass transfer is driven by CO2 and the concentration of N2 and O2
are still marginal. As the chemical composition inside the bubble changes and the mass
fractions of N2 and O2 become more relevant, the volume change rate decreases and
becomes almost negligible for t∗ > 30. Since the solution does not change significantly
between grids C and D, case C is used in the following part of the analysis.

The maximum Péclet number is observed at t∗ ≈ 5 for CO2 and is approximately
PeCO2 ≈ 7800. The results in terms of grid sensitivity are consistent with the analysis
performed in Gennari et al. (2022) (see § 4.6) for pure bubbles rising at different
Péclet numbers in an under-saturated solution, where a resolution of 456 cells/Db was
required to reach a mesh-independent solution at Pe = 4650. Results in terms of chemical
composition of the bubble are shown in figure 11 for case C (case A is discussed later in
the text). The bubble is initially composed of CO2 only, therefore the mass fractions are
mCO2(t=0)

d = 1 and mN2(t=0)
d = mO2(t=0)

d = 0. As the phase-change process occurs, CO2 is
transferred to the liquid, whereas the other species flow across the interface in opposite
directions; the mass fraction of CO2 decreases, whereas the fractions of the other species
increase accordingly. Due to the lower solubility of N2 compared with O2 and larger
initial concentration in the liquid phase, the mass fraction of N2 grows faster than O2 and
reaches the same value of the fraction of CO2 at t∗ ≈ 34.8 and becomes the most relevant
component of the bubble for t∗ > 34.8. The fraction of O2 equals CO2 at t∗ ≈ 37.7 and
CO2 becomes the most marginal species at the end of the simulation. The sum of the mass
fractions is reported in figure 11, which shows that the method is mass conservative since
the global mass fraction is always mtot

d = mCO2
d + mN2

d + mO2
d = 1 for t > 0.

To validate the accuracy of the numerical methodology, results are compared with the
work of Fleckenstein & Bothe (2015), where the set-up for this case was taken from. In
the reference work, the mesh density corresponds to approximately 102 cells per (initial)
diameter, which is similar to the grid refinement used for case A in the present work (see
table 6). Case A is therefore used for the comparison against the reference case and results
in terms of volume and mass fractions of the bubble are reported in figure 11, where a
good agreement is observed for all the plotted quantities.

999 A39-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

88
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.886


Bubble dissolution in Taylor–Couette flow

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

md
CO2

md
O2

md
N2

md
tot

G
as

m
as

s
fr

ac
ti

o
n

V∗
bV∗

b

Fleckenstein & Bothe (2015)
Case A
Case C

t∗

Figure 11. Species mass fractions and bubble volume vs time. Results from case A are compared against the
work of Fleckenstein & Bothe (2015), where a similar mesh resolution is adopted.

Phase
Density

(kg m−3)
Viscosity
(N s m−2)

Diffusivity
(m2 s−1) M (kg mol−1) σ (N m−1) He

Liquid 998 1.05 × 10−3 — — 0.072 1.2
Gas 1.3 2.01 × 10−5 2.3 × 10−6 0.032

Table 7. Gas–liquid properties for a dissolving bubble in a TC flow.

4. Bubble dissolution in TC flow

4.1. Simulation set-up and governing parameters
In this section, a single (pure) gas bubble is injected at the bottom of a TC device and is let
free to exchange mass with the surrounding liquid. The selected apparatus for this study
is that with radius ratio of η = 0.5 for Reynolds numbers in the range 0 ≤ Re ≤ 5000,
which was validated extensively for the single-phase case in § 3.1. The properties of the
gas–liquid system are reported in table 7. The initial bubble diameter is set to Dt=0

b =
(rout − rin)/3 = 5 mm and the centre of the bubble is placed in the middle of the gap at
zt=0

b = rout/3 from the bottom of the device (it is recalled here that the axis of the apparatus
is aligned to the z direction), whereas the solution is assumed initially under-saturated,
with no concentration of gas at t = 0 in the continuous phase (i.e. ct=0

c = 0 mol m−3). The
cylinders are oriented vertically and standard gravitational acceleration is assumed here,
i.e. g = −9.81 m s−2 ez. Overall, the problem is defined by 13 dimensional parameters:
apparatus radii (rin, rout), rotor angular speed (ωin), gravitational acceleration (g), densities
(ρc, ρd), viscosities (μc, μd), initial bubble diameter (Dt=0

b ), surface tension (σ ), diffusion
coefficient of the gaseous species in the liquid phase (Dc) and initial species concentrations
(ct=0

c , ct=0
d ). Given the four units involved (i.e. length, time, mass and amount of substance

(mole)), the system can be described by nine independent non-dimensional numbers,
reported, along with their definition and values, in table 8.

999 A39-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

88
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.886


G. Gennari and others

Non-dimensional number Symbol Definition Value

Radius ratio η rin/rout 0.5
TC Reynolds Re ρcUin(rout − rin)/μc 0, 1000, 3000, 5000
Liquid–gas density ratio ρr ρc/ρd 767.7
Liquid–gas viscosity ratio μr μc/μd 74.6

Galilei number Ga
√

gD3
b/ν

2
c 1050.7

Bond number Bo ρcgD2
b/σ 3.4

Schmidt number Sc νc/Dc 0.458
Saturation ratio ζ cbulk/(cc)Σ 0
Henry’s law coefficient He (cd)Σ/(cc)Σ 1.2

Table 8. Independent non-dimensional numbers for a dissolving bubble in a TC flow.

Mass transfer is characterised by the analysis of the (time-dependent) Sherwood number,
the definition of which follows as

Sh = km(t)Lref (t)
Dc

(4.1)

and it depends on a reference length, computed here as the equivalent (time-dependent)
diameter of a sphere with the same volume as the bubble, i.e. Lref (t) = 2(3Vb/(4π))1/3.
The mass transfer coefficient is based on the reference concentration difference �c
between the continuous and disperse phases:

km = −

∫
Σ

ṁ dS

AΣM�c
, (4.2)

where the reference area AΣ is the effective area of the interface. Other useful
non-dimensional parameters can be derived from those reported in table 8, such as the
bubble Morton number Mo = Bo3/Ga4 = 3.22 × 10−11 and Péclet number Pe = RebSc,
where Reb is the rising bubble Reynolds number. Finally, we introduce here the Froude
number that will be used later to compare the effects of the inertial features of TC flows
and gravity:

Fr = uTC
√

gDb
, (4.3)

where uTC is a characteristic velocity of TC flow.
Simulations are first started from rest (null liquid velocity) and the bubble is kept

fixed until a (statistically) stationary regime is reached (see § 3.1) and Taylor vortices are
completely formed. During this initialisation stage, the transport of species and volume
change are not computed, i.e. the bubble volume remains constant. After the TC regime
is established, the bubble is set free to move within the device and the full phase-change
solver is run. As the volume of the bubble decreases, more liquid needs to be introduced
within the apparatus for the conservation of mass. However, the considered domain is a
closed system in the sense that the boundaries of the fluid domain consist of two solid
walls (inner and outer cylinders) and two periodic boundaries (top and bottom), which do
not allow for any net flow of liquid towards the apparatus. This issue is solved by making a
small circular hole where the reference pressure value is set and a homogeneous Neumann
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rout/12
rin

rout

Open channel

Figure 12. Opening of the outer cylinder for the passage of liquid (section taken at z = Lz/2). This
modification is necessary to ensure the continuity of mass when the volume of the gas fraction decreases.

boundary condition is applied for the velocity field. The hole has a diameter rout/12 and is
placed halfway along the axial length (i.e. at Lz/2) on the external cylinder, thus allowing
the liquid to enter the domain as the bubble dissolves (see figure 12).

Simulations are run in a non-dimensional form, where the selected reference quantities
for the four units involved are Lref = Db/10, ρref = ρc, Uref = Uin and cref = ρd/M. The
simulations are run for a (physical) time interval �t = 0.12 s. To facilitate the comparison
between different TC Reynolds numbers, the time scales and mass transfer coefficients are
presented in the following in the corresponding dimensional form.

4.2. Mesh sensitivity
A different physical process (i.e. the mass transfer at the interface) requires a new mesh
sensitivity study to find a suitable grid for mesh-independent solutions. The selected
configuration for this analysis is that with a steady rotor (i.e. Re = 0), which consists of
a bubble rising in a quiescent flow bounded by cylindrical walls. The advantage of this
configuration is that the finest mesh resolution is only needed around the bubble (with an
AMR technique) and it is therefore significantly cheaper to run compared with the cases
with Taylor vortices. The selected fields for grid refinement (see the brief introduction to
AMR in § 2.2 and the references therein) are the volume fraction, species concentration
and velocity field, with a threshold tolerance of 0.01 (made non-dimensional with cd and
Uin for concentration and velocity, respectively). The resulting mesh has the maximum
level of refinement near the interface and in the wake region (as well as around the
cylindrical walls), thus providing a suitable grid to capture both mass transfer in thin
concentration boundary layers and the dynamics of highly deformed bubbles. At this
point, it is important to remind here that the requirements in terms of grid density for
the mass transfer depend on the Péclet number and this can obviously be affected by the
rotor speed. However, for the considered bubble size (Dt=0

b = 5 mm), the bubble Reynolds
number (Reb) is mainly determined by the rising velocity and, therefore, the Pe number
is weakly dependent on the rotor speed (see the results in the following). Three different
mesh refinements are compared here and the list of cases for the grid sensitivity study is
reported in table 9. Results in terms of volume dissolution rates for the three considered
meshes are reported in figure 13. Mesh M1 over-predicts the volume ratio as a result
of the under-resolved concentration boundary layer at the gas–liquid interface, whereas
meshes M2 and M3 are indistinguishable until t ≈ 0.05 s and produce similar results for
t < 0.08 s. As the bubble volume is further reduced, mesh M2 deviates from mesh M3
because not enough cells are distributed around the interface. This is a common issue
for dissolving bubbles, since no mesh can be fine enough to capture the mass transfer
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Case Δ (mm) Cells/Dt=0
b

M1 6.10 × 10−2 ≈ 82
M2 3.05 × 10−2 ≈ 164
M3 1.53 × 10−2 ≈ 328

Table 9. List of cases for the grid convergence analysis of a dissolving bubble in a TC device with no rotation.
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Mesh M3

Figure 13. Grid convergence for a dissolving bubble in a TC device with no rotation. Plot of bubble volume
ratio vs time.

until complete dissolution. However, given the mesh-independent solution obtained for a
volume reduction of up to 80 % (i.e. Vb(t)/Vt=0

b = 0.2) and the cheaper computational
cost compared with case M3, mesh M2 is selected for all the other cases presented in this
section.

4.3. Effect of inner cylinder rotating speed
The effect of the Reynolds number is investigated by comparing the cases with Re = 0
(no rotation) and Re = 1000, 3000 and 5000, where the TC flow regime moves from
WVF to TTVF (see table 1). The complete list of cases presented in the rest of this
section is summarised in table 10, along with four cases for the study of wake effects
for two bubbles. Cases A–D represent a realistic configuration, where the motion of the
bubble is determined by two major components: the gravitational acceleration and the
transport induced by the carrier liquid (TC flow). Although the effects on the distribution
of the dissolved species within the device are clearly dependent on the rotor speed (as
is shown later), for the selected bubble dimension (Dt=0

b = 5 mm) the motion is mainly
dominated by the gravitational force. Therefore, for a better understanding on the role of
Taylor vortices on the mass transfer of bubbles, gravity has been neglected in cases E–G
and the bubble motion is made completely dependent on the carrier flow. Results are first
presented for the cases with gravity (cases A–D, § 4.3.1) and subsequently the removal
of the buoyancy force is discussed in cases E–G (§ 4.3.2). A study into the flow scales
that control mass transfer is proposed in § 4.3.3, whereas wake effects are investigated in
§ 4.3.4.
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Case Re TC regime g (m s−2) Number of bubbles

A 0 N/A 9.81 1
B 1000 WVF 9.81 1
C 3000 TTVF 9.81 1
D 5000 TTVF 9.81 1
E 1000 WVF 0 1
F 3000 TTVF 0 1
G 5000 TTVF 0 1
H 0 N/A 9.81 2
I 1000 WVF 9.81 2
J 3000 TTVF 9.81 2
K 5000 TTVF 9.81 2

Table 10. List of cases for the study of dissolving bubbles in a TC device at different rotating speeds and
gravitational accelerations.
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Figure 14. Volume ratio vs time for a dissolving bubble in a TC device at different rotating speeds. For the
selected configuration, gravity is dominant and the TC flow plays a marginal role in the dissolution rate.

4.3.1. Single bubble with gravity
Results for cases A–D in terms of volume ratio against time are reported in figure 14.
As was anticipated before, the velocity magnitude of the bubble is basically determined
by the rising component and the volume dissolution rate for these cases is not affected
significantly by the rotation of the inner cylinder (minor differences are observed at the
start and at the end of the simulation, where cases C and D dissolve slightly faster
than cases A and B, coherently with the larger rotating speed). The plot of the volume
ratio shows a linear trend until Vb(t)/Vt=0

b ≈ 0.4 and, after that, the slope progressively
decreases as the bubble dissolves; a similar behaviour was observed for the mass transfer
of a rising bubble in a quiescent flow (figure 11).

The (time-dependent) Sherwood number is monitored during the simulation and results
are plotted in figure 15. The plots of the Sherwood number show a similar profile until t ≈
0.06 s, where the size of the bubble is larger and the buoyancy effects are more relevant.
However, for t > 0.06 s, two different patterns that characterise cases A and B and cases C
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Figure 15. Sherwood number vs time for a dissolving bubble in a TC device at different rotating speeds. The
Sherwood number Sh is based on the diameter of the equivalent sphere (4.1).

and D, respectively, are clearly observable. In the higher rotating speed cases (Re = 3000
and 5000), the Sherwood number Sh is enhanced by the turbulent TC flow structures that
develop within the apparatus, whereas almost no difference is observed between the steady
case (Re = 0) and the wavy vortex regime (Re = 1000). However, such differences occur
when the bubble volume is already reduced significantly (Vb/Vt=0

b < 0.3) and no relevant
effects in terms of dissolution rates can be observed afterwards. Cases A and B show a
local peak around t ≈ 0.08 s that is larger than the values of Sh for cases C and D; as will
be shown later, this effect is due to the corresponding rising speed of the bubble.

When the rotating speed of the inner cylinder is increased, the magnitude of the main
(azimuthal) velocity component of the carrier fluid grows and the motion of the bubble is
affected accordingly. Figure 16 compares the trajectory of the bubble centre on different
planes for cases A–D (it is recalled here that the axis of the cylinders is aligned with the
z direction). When no rotation is applied, the bubble rises following an almost perfect
rectilinear trajectory (figure 16a,b). As the Reynolds number is increased, the liquid
velocity (combined with gravity) induces an irregular motion of the bubble, which results
in a net anticlockwise displacement on the xy plane (coherently with the rotation of the
rotor) and in a more developed trajectory in the azimuthal direction for the most turbulent
case (figure 16c). The rising trajectory of a bubble is the result of the interaction among
several factors, such as the vorticity shed into the liquid phase, the shape deformation and
the topology of the carrier flow. In the present cases, a very complex interaction of the
aforementioned parameters is observed, where the bubble experiences shear rates on both
the azimuthal (rθ ) and rz planes as well as chaotic fluctuations for the turbulent cases.
Studies that have investigated the rising trajectory of bubbles in simple (planar) shear
flows (e.g. Ervin & Tryggvason 1997; Hidman et al. 2022) have shown that a change in the
sign of the lift force (i.e. the component acting perpendicular to the main rising direction)
occurs when the shear rate increases. The bubble considered in the present work (with
Ga = 1050.7, Bo = 3.4) belongs to a region in the Ga–Bo plane where such a change
is observed. The case with Re = 1000 does not deviate significantly from a rectilinear
trajectory for most of the simulated time (figure 16a,b), leading to the conclusion that
the TC flow pattern is not strong enough to perturb the buoyancy-dominated dynamics.
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Figure 16. Bubbles rising trajectories projected on the (a) xz, (b) yz and (c) xy planes at different rotating
speeds. Bubbles are initialised at x = 0, y = −(3/2)rin and z = (2/3)rin.

On the other hand, when the volume of the bubble decreases and buoyancy is less
predominant, a clear effect of the carrier flow is observed. When the rotating speed is
increased (Re = 3000 and 5000), a deviation from the straight rising path is induced by
the combination of azimuthal and TC vortical flow patterns. Interestingly, the lift direction
is opposite (figure 16b), with the case Re = 3000 initially attracted towards the inner
cylinder and subsequently towards the outer one, whereas the Re = 5000 case starts to rise
vertically in the yz plane before moving towards the rotating wall. A similar mechanism
to that observed for lift forces that change sign with increasing shear rates and interfacial
deformation could be at work in these cases. However, it is important to recall here that the
present configuration (3-D and fully turbulent flow with phase-change) differs significantly
from planar shear flows investigated in the literature. The first instances of the bubble
motion are also affected by the relative position between the bubble centre and the Taylor
vortices when the bubble is released into the flow. As was shown in § 3.1, TC flow changes
from a well-organised and steady pattern of alternating vortices for Re = 1000 to a fully
turbulent and time-dependent configuration for Re = 3000 and 5000. The initial position
of the bubble is always the same for all the cases considered in this work (we recall here
that the initial axial location of the bubble centre is zt=0

b = rout/3). Based on the flow
visualisations shown in figure 7, for Re = 3000 the bubble is initially located within a
vortex (closer to the lower part of the vortical cell), whereas for Re = 5000, the centre lies
at the boundary between two adjacent vortices. In the Re = 3000 case, the bubble initially
experiences a negative net radial velocity, which results in a displacement towards the inner
wall. In the most turbulent case, the flow around the bubble at t = 0 s has a positive radial
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component, although its initial displacement occurs mainly along the azimuthal direction.
This effect can be explained with the strong unsteadiness that characterises the chaotic
flow at Re = 5000, where the vortices are not steady but move considerably inside the
reactor.

In order to compare the effects of the TC flow features and buoyancy on the dynamics of
the rising bubble, we define two different Froude numbers. The first definition takes into
account only the main azimuthal component of the liquid medium and reads

Frθ = 〈uθ 〉zθ t(rb)√
gDb

, (4.4)

where rb is the radial position of the bubble centre. The velocity is averaged along the
axial and azimuthal direction as well as in time and is evaluated from the single-phase
cases (§ 3.1). The effect of the vertical component of Taylor vortices (which can enhance
or reduce the rising speed of the bubbles) is quantified by the following Froude number:

FrTV = |uTV(rb)|√
gDb

, (4.5)

where uTV is the characteristic (axial) velocity component of Taylor vortices from the
undisturbed flow (Chouippe et al. 2014). Taylor cells are assumed to be squared (of the
size of the reactor gap) and the velocity profile is varied linearly between the two walls.
The profiles of Frθ and FrTV against time for the configurations with Re = 1000, 3000 and
5000 are reported in figures 17(a) and 17(b), respectively. The laminar case (Re = 1000)
shows almost no influence of TC features (for both the main azimuthal and axial Taylor
vortices components), consistently with the observed dynamics of the rising bubble that
resembles the case without rotation very closely (e.g. rectilinear trajectory and Sherwood
profile). The azimuthal component of TC flows becomes stronger as Re increases and Frθ

follows accordingly for Re = 3000 and 5000, with Frθ ≈ 1 for Re = 5000 at the end of
the simulation. The axial component of Taylor vortices (figure 17b) is more effective for
the intermediate case Re = 3000 rather than for the most turbulent one. In the first part
of the simulation (t < 0.04 s), the Re = 5000 case moves exclusively along the azimuthal
direction, with almost no deviation on the yz plane (figure 16b). Therefore, the bubble stays
at the centre of one of the Taylor cells and experiences no significant axial velocity field.
On the other hand, the Re = 3000 case deviates almost immediately from the centre of the
reactor gap and moves towards a region with non-negligible axial flow. For t > 0.06 s the
case with Re = 3000 (5000) approaches the outer (inner) walls and the corresponding
FrTV increases accordingly. The Froude number for Re = 3000 is still larger than the
corresponding one for Re = 5000 because the former approaches the wall region faster.
It is also important to recall here that the ratio uTV/Uin is not constant, but decreases for
increasing Reynolds numbers (Chouippe et al. 2014). Both Froude numbers ((4.4)–(4.5))
are below one for all the selected cases, leading to the conclusion that the presence of TC
flow features introduces perturbations into the system (e.g. trajectory), but the dynamics
of the dissolving bubbles is mainly driven by buoyancy.

Although the volume dissolution rates are basically the same for cases A–D, such
different trajectories provide some useful information for the operation of TC devices
as chemical reactors. Indeed, when the gas extracted from the disperse phase is needed
to perform a chemical reaction within the liquid phase, the more the distribution of
the dissolved species is spread in a wide area the more likely is that the reagents react
and produce the desired product. The case with Re = 5000 results in a more extended
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Figure 17. Froude number based on (a) the main TC azimuthal flow and (b) the axial Taylor vortex
component vs time for a dissolving bubble in a TC device at different rotating speeds.

trajectory compared with the other cases, which helps distribute the gas in a wider
region within the reaction vessel and, eventually, promote reactions. The effects of the
trajectory and Taylor vortices on the distribution of species are shown in figure 18, where
the concentration contours of the gas released into the liquid on a generic rz plane that
intersects the bubble and the corresponding isosurfaces are compared for cases A–D. The
figure clearly shows the increasing complexity of the wake region and species distribution
as the rotor speed increases. When the rotor is steady (figure 18a), a symmetric isosurface
develops around the bubble and inside the wake. As the rotor is accelerated, the topology
of the isosurface becomes more distorted and, in the fully turbulent case at Re = 5000
(figure 18d), the distribution of species becomes well-mixed within a wide region below
the bubble. As explained earlier, this is the most desirable scenario for the enhancement
of the yield of a chemical reaction when the dissolved gas is one of the reactant species.
Therefore, it can be concluded that, although no major differences are observed in these
cases for the dissolution rates, the promotion of turbulent (chaotic) Taylor vortices is a
desirable feature for the enhancement of species mixing within the reactor and, eventually,
the production of chemical compounds.

Many attempts have been made in the literature to provide formulae for the prediction of
Sherwood numbers in rising bubbly flows and, although no formula can be generic enough
to be independent of the specific flow configuration, most of the available correlations
relate Sherwood with Reynolds or Péclet numbers in a proportionality law. To the best
of the authors’ knowledge, no specific relationships have been investigated for the mass
transfer of a single bubble in a TC flow at different rotating speeds (and TC flow regimes).
Here, the correlation between Sherwood and Reynolds numbers is first investigated for
cases A–D and the results are reported in figure 19, where the reference length used

999 A39-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

88
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.886


G. Gennari and others

0 0.2 0.4 0.6 0.8 1.0

ccM/ρd

(b)(a)

(c) (d )

Figure 18. Contours of dissolved gas concentration on a rz plane (left) and corresponding isosurfaces with
cc = 0.1ρd/M (right) in a TC device at (a) Re = 0, (b) Re = 1000, (c) Re = 3000 and (d) Re = 5000. The
outer cylinder has been removed to improve the clarity of the figure. Snapshots taken at t = 0.1 s.

for Reb is the equivalent diameter of a sphere (as is done for Sh). In all the tested
configurations, the plots of the Reynolds numbers exhibit a similar trend until t ≈ 0.07 s,
where a maximum peak is observed. In the first part of the simulation, the buoyancy force
makes the bubble less sensitive to the carrier flow, which explains why the plots have a
similar shape. Interestingly, the magnitude of the maximum Re is larger for the no-rotation
(figure 19a) and Re = 1000 (figure 19b) cases than for the high-speed configurations
(Re = 3000 and 5000 in figure 19c,d respectively), meaning that the presence of turbulent
Taylor vortices induces a strong downwards (liquid) motion that limits the upwards (rising)
bubble velocity component as induced by gravity. This effect is significantly stronger as
the strength of Taylor vortices increases and explains why the maximum observed peak
of Reynolds number is larger in cases A and B than the fully turbulent cases C and D.
For t > 0.07 s, cases A and B have a similar trend with a strong fluctuating profile and
an almost constant mean value, whereas cases C and D have weaker oscillations but an
average decreasing value of Re over time. Interestingly, the Re = 3000 case has a larger
Sh compared with the most-turbulent case for 0.08 s < t < 0.095 s, meaning that the local
TC pattern (i.e. the upwards and downwards velocity regions) has a stronger effect than
the magnitude of the rotating speed, coherently with the results reported in figure 17.
The plots of Sherwood numbers in figure 19 clearly show that Sh and Re are intrinsically
related, since both profiles appear similar and the peaks occur approximately at the same
time (with a small delay in the Sherwood plot) for all the tested configurations. Given this
correlation, it is not surprising that cases A and B show a larger Sh number than cases C
and D at t ≈ 0.07 s, as was observed (but not explained) in figure 15.

Following the qualitative results presented in figure 19, a conceptually equivalent
proportionality law between Sh and Re to those proposed in the literature for a rising
bubble is expected to be valid also for cases A–D. Here the corresponding Sherwood
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Figure 19. Plots of Sh and Re numbers vs time for a dissolving bubble in a TC device at (a) Re = 0,
(b) Re = 1000, (c) Re = 3000 and (d) Re = 5000. The similarity of the profiles suggests a functional
relationship between Sh and Re, as found for rising bubbles in (unbounded) quiescent flows.

profiles are compared against the theoretical formulae proposed by Oellrich et al. (1973)
for small bubbles,

Sh = 2 + 0.651
Pe1.72

1 + Pe1.22 , for Reb → 0, Sc → ∞, (4.6)

and for large bubbles,

Sh = 2 + 0.232Pe1.72

1 + 0.205Pe1.22 , for Reb → ∞, Sc → 0. (4.7)

Equations (4.6)–(4.7) provide two boundary curves for Sh and are generally used to
predict the mass transfer of a single rising bubble in a steady-state regime, i.e. when Pe is
time-independent (Deising, Bothe & Marschall 2018). Oellrich et al. (1973) showed that
the Sherwood number of spherical bubbles rising at constant speed is a function of both
Pe and Sc and approaches equation (4.6) (equation (4.7)) for small (large) Péclet numbers.
The Schmidt number affects how quickly a rising bubble migrates from (4.6) to 4.7 as
Pe increases: the larger the Schmidt value, the later such transition occurs. It is finally
noted that (4.7) approaches the well-known potential flow solution Sh = (2/

√
π)

√
Pe,

for Pe → ∞ (Levich 1962). For the considered application, the Péclet number (= RebSc)
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Figure 20. Comparison of the corrected Sherwood number against the theoretical formulae proposed by
Oellrich et al. (1973) for (a) Re = 0, (b) Re = 1000, (c) Re = 3000 and (d) Re = 5000.

changes over time and formulae (4.6)–(4.7) are compared against the numerical results by
replacing Pe with Pe(t) in figure 20. Since correlation formulae for Sh are generally based
on the surface of the equivalent sphere (Asphere), a correction factor (Sr) is needed for the
numerical results (which are based on the effective surface AΣ ) to compare against the
theoretical equations:

Sr = AΣ

Asphere
. (4.8)

Here Sr, which is always ≥1, is also known as a shape factor and provides a parameter
for the estimation of the bubble deformation. As the bubble dissolves, the surface tension
becomes more relevant (larger curvature) and the bubble approaches the spherical shape,
i.e. Sr → 1. The results reported in figure 20 show that the qualitative trend of the
corrected Sherwood number (i.e. Sh × Sr) is reproduced correctly by the theoretical
formulae of Oellrich et al. (1973), where the solution is closer to (4.7) in the first part
of the simulation (where Pe is larger due to the buoyancy-induced rising speed and larger
size of the bubble) and progressively approaches equation (4.6) as the bubble dissolves
(and Pe decreases), coherently with the range of validity of these formulae. The trend
of a decreasing Sherwood when the Reynolds number reduces (e.g. in the last part of
the simulation, for t > 0.08 s) is also reproduced correctly. Similar conclusions were
obtained in Maes & Soulaine (2020) for a dissolving bubble rising in a quiescent flow
and the present results confirm that volume change effects can be qualitatively taken into
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Figure 21. Shape factor and bubble shapes vs time for a dissolving bubble in a TC device at (a) Re = 0,
(b) Re = 1000, (c) Re = 3000 and (d) Re = 5000.

account by replacing the steady-state non-dimensional numbers with the corresponding
time-dependent values in the appropriate correlation formulae.

As shown in figure 20, (4.6)–(4.7) can be used as qualitative references for the expected
Sherwood number of a rising bubble in a Taylor–Couette reactor. However, a quantitative
accurate match between the present results and these correlations cannot be obtained,
as the theoretical formulae are derived assuming a spherical shape of the bubbles and
a rectilinear rising trajectory. For the analysed configurations, the combined effect of
gravity, TC flow and phase-change induce strong deformations (Sr > 1) in the bubble
shape, which are compared in figure 21 for cases A–D, along with the corresponding
shape factors. Bubbles are initialised as perfect spheres (i.e. Srt=0 = 1) and, as soon as
the buoyancy force makes the bubble rise, the interface assumes the typical dimple shape
that can be observed at t ≈ 0.02 s. The shape factor increases accordingly until t ≈ 0.06 s
for cases A and B (figure 21a,b) and t ≈ 0.055 s for cases C and D (figure 21c,d), where a
local maximum peak is reached. The corresponding deformations are different between
the first two cases (ellipsoidal shape) and the fully turbulent cases (reverse dimple);
the relative shape factors also differ and are stronger for cases A and B (Sr ≈ 1.65)
than for configurations C and D (Sr ≈ 1.56). After this peak, two different behaviours
can be observed: for the no-rotation and Re = 1000 cases, a second maximum peak is
reached slightly after t = 0.08 s of approximately Sr ≈ 1.75, where the bubbles approach
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Figure 22. Volume ratio vs time for a dissolving bubble in a TC device at different rotating speeds. Gravity is
not taken into account.

a (less-pronounced) dimple shape, whereas for cases Re = 3000 and 5000 the profiles do
not have such a significant peak and irregular shapes can be observed. As the volume
of the bubble decreases, the surface tension force becomes dominant and all the bubbles
move towards a spherical shape (Sr → 1). The time evolution of the shapes represented
in figure 21 suggests that the bubble interface experiences a very complex dynamics due
to a combination of wobbling effects (initial Morton number Mo = 3.2 × 10−11; see Clift,
Grace & Weber 2005) and volume dissolution driven by mass transfer. Such irregular
interfacial deformations result in the primary cause of the fluctuations that characterise
the Sherwood plots for the steady case (Re = 0), where the carrier flow is at rest and does
not exhibit any other time-dependent feature. However, as the bubble reduces its size, the
perturbations induced by the TC flow (particularly the toroidal vortices) result in a larger
effect and change the bubble dynamics significantly (e.g. rising trajectory, bubble shape,
Sh and Re fluctuations).

4.3.2. Single bubble without gravity
The motion induced by the buoyancy force is the most relevant component for the
configurations analysed so far, i.e. cases A–D. In this section, the focus is on cases E–G
(see table 10), where the initial bubble size is kept the same (i.e. Dt=0

b = 0.005 m) and
gravity is neglected. The effect of the rotor speed is first investigated by comparing the
bubble volume dissolution rates in figure 22. The bubble dissolves now significantly faster
as the inner cylinder is accelerated, in contrast to the cases with gravity (see figure 14)
where the dissolution rates were independent of the rotor speed. This is the expected
behaviour, since the bubble velocity is now entirely given by the carrier liquid, whose
main velocity component (uθ ) increases with the rotating speed of the apparatus.

The effect on the Sherwood number is shown in figure 23. As expected, Sh increases
as the rotor is accelerated and, after a transient regime where Sh decreases whilst a
concentration boundary layer develops around the bubble interface, the profiles approach
a quasi-steady-state solution. Case G exhibits a constant value over time, whereas cases
E and F have a slightly decreasing trend. Some qualitative differences between the
low-Reynolds-number case (Re = 1000) and the fully turbulent cases (Re = 3000 and
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Figure 23. Sherwood number vs time for a dissolving bubble in a TC device at different rotating speeds.
Gravity is not taken into account.

5000) can be observed in the plots of figure 23. The presence of unstable and chaotic
Taylor vortices induce some fluctuations in the Sherwood profiles for the turbulent cases,
whereas the well-organised and steady flow structures that develop in the WVF regime do
not introduce analogous perturbations in case E.

The volume ratio and Sherwood number are integral parameters that are mainly affected
in these cases by the main component of the TC flow and do not provide insights into the
effects of the different TC regimes that characterise the apparatus at different Reynolds
numbers. To look into the effects of Taylor vortices on the distribution of the dissolved
species in the liquid phase, the contours of species concentration for cases E–G are
compared in figure 24. The concentration for case E (figure 24a,b) appears uniform
around the interface of the bubble and quite similar to the symmetric distribution that
characterises a suspended bubble in a stagnant flow, meaning that the effect of Taylor
vortices is marginal at Re = 1000. On the other hand, in cases F (figure 24c,d) and G
(figure 24e, f ), the effect of the turbulent Taylor cells is clearly visible in the spatial
distributions of species concentration, which now assume irregular and non-symmetric
shapes around the bubble. The position of the bubble centre in the vertical plane can
be tracked by looking at the wake left by the dissolution of species (figure 24b,d, f ),
and it can be observed that the bubble stays at a constant axial position for Re = 1000,
whereas in the turbulent cases (Re = 3000 and 5000) it moves upwards, transported by the
upward velocity induced by the vortices. These results confirm that, in case E, Taylor cells
play a marginal role and the bubble behaves as a particle transported by the azimuthal
velocity component, whereas for the TTVF regime (cases F and G) Taylor vortices
actively contribute to the dynamics of the bubble and distribute the concentration of the
dissolved species in a wider region around the interface, which is a desirable scenario for
a good mixing of species. It is finally observed that the concentration patterns shown in
figure 24 have a significantly different structure compared with the case of a rising bubble.
Indeed, for rising bubbles, the concentration boundary layer is thinner on top (where
advection counteracts the effect of diffusion) and becomes thicker towards the rear of the
bubble. For the case of a bubble transported by a TC flow without gravity, the convective
transport induced by the azimuthal velocity component has the same magnitude on both
the top and bottom sides of the bubble and its effect is uniform around the interface
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Figure 24. Contours of species concentration and bubble interface in a TC device without gravity at (a,b)
Re = 1000, (c,d) Re = 3000 and (e, f ) Re = 5000. Top view (left) and side view (right). The outer cylinder has
been removed to improve the clarity of the figure. Snapshots taken at t = 0.1 s.

(figure 24a,c,e), in contrast to the convective component induced by Taylor vortices, which
acts on the radial–axial plane and depends on the bubble position and flow configuration.

Figure 24 also shows the shape of the bubbles, which appears almost spherical (Sr ≈ 1)
for all the tested configurations. This happens because the shear rate induced by the
TC flow is not strong enough to overcome the surface tension and induce significant
deformations of the interface, in contrast to cases A–D where gravity was responsible
for strong deviations from the spherical shape (see figure 21).

4.3.3. Mass transfer models
In order to gain insights into the underlying physics of the problem and discern the
relevant flow scales that control mass transfer, the surface-renewal theory (Danckwerts
1951) is applied to the cases under investigation. The fundamental interphase mass transfer
mechanism of the surface-renewal theory follows from the penetration model of Higbie
(1935) and assumes that the species-absorbing fluid next to the interface is continuously
refreshed with new elements from the bulk liquid. The corresponding mass transfer
coefficient is

km ∼
√

Dc

Θ
, (4.9)

where Θ is a characteristic residence time of a fluid element adjacent to the interface. The
characteristic time Θ is not known a priori and some assumptions regarding the scales
controlling mass transfer are required. In the following, we present two approaches for the
prediction of Θ .
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The first approach is based on the assumption that mass transfer is driven by the
macroscopic flow pattern, i.e. the combination of buoyancy and TC flow that transports
the interface. At this point, a distinction between the cases with (cases A–D) and without
(cases E–G) gravity is required. As shown in the analysis of the Froude number (figure 17)
for the cases with gravity, the TC flow introduces small perturbations to the dynamics of
the bubble and mass transfer is mainly affected by the rising speed induced by buoyancy.
Under this circumstance, the relative velocity between the phases can be assumed equal to
the bubble velocity Ub and the residence time follows as

Θ ∝ Db

Ub
. (4.10)

By replacing equation (4.10) into (4.9) and using the definition of bubble Reynolds (Reb =
ρcUbDb/μc) and Sherwood numbers, it follows that

Sh√
Sc

∝
√

Reb. (4.11)

In (4.11), Sh is a function of the solely bubble Reynolds and Schmidt numbers and
corresponds to the well-known functional relationship Sh ∝ √

Pe. This is indeed the case
for the configurations with gravity considered in the present work (figure 20) and it further
confirms that mass transfer is controlled by buoyancy in those cases. In the following, the
focus is on the cases without gravity in order to discern the relevant scales involved in the
mass transfer process for configurations entirely driven by TC flows.

In cases E–G (i.e. without gravity) the bubble is subject to a shear rate in the azimuthal
direction, which depends on the radial distance from the inner wall and increases with the
TC Reynolds number. In contrast to the gravity-driven cases, the liquid (shear) flow moves
with the bubble (i.e. the whole fluid domain is rotating). A relative motion still exists due
to the varying velocity field induced by the shear rate, which results in a flow direction
(relative to the bubble centre) towards increasing θ around the bubble side exposed to
the inner cylinder (it is recalled here that the rotor rotates towards increasing θ ); the
opposite scenario occurs for the side that faces the outer wall. Such relative motion can be
observed in figure 24(a) (anticlockwise rotation), where the species distribution tends to
move towards increasing θ faster than the centre of the bubble on the side that faces the
inner wall, whereas the opposite trend is observed for the other side. However, the average
shear-rate within the TC device is not particularly strong for the cases considered in this
work, except for the two regions near the walls (see figure 5). Given the initial size of
the bubbles modelled in the present work, the surface-renewal mechanism related to the
macroscopic (shear) flow is not expected to be at work in the cases under consideration
and is not discussed further.

The second approach is based on the small-eddy model of Lamont & Scott (1970),
where the smallest turbulent eddies are expected to control the exchange of mass at the
interface. In this scenario, the characteristic turbulent length (lK) and velocity (uK) scales
are computed as

lK =
(

ν3
c

ε

)1/4

and uK = (νcε)
1/4, (4.12a,b)

where ε is the rate of turbulent dissipation. The turbulent time scale tK follows from
the corresponding length and velocity quantities and the residence time is assumed to
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be (Theofanous, Houze & Brumfield 1976; Herlina & Wissink 2016)

Θ ∝ tK = lK
uK

=
√

νc

ε
. (4.13)

Finally, the mass transfer coefficient can be formulated as (4.9):

km ∝
√

Dc

(
ε

νc

)1/4

. (4.14)

The average turbulent dissipation rate can be obtained as a function of the TC Reynolds
number and geometry when the flow statistics are stationary, i.e. when the inner/outer
torques balance out (Tin = Tout = T; see figure 3). Since the mechanical power applied to
the internal cylinder must be dissipated by the fluid viscosity, the average dissipation rate
follows as (Tokgoz et al. 2012)

ε̄ = Tωin

ρcV
, (4.15)

where V is the volume of liquid contained inside the reactor. By replacing the torque T
with the corresponding non-dimensional one (G) and applying Wendt’s formula to predict
its value (3.2), ε̄ can be re-formulated as

ε̄ = Gν2
c ωin

π(r2
out − r2

in)
. (4.16)

Finally, the average ε̄ is substituted in (4.14) and the prediction of the mass transfer
coefficient of the small-eddy model follows as

km ∝
√

Dc

(
Gνcωin

π(r2
out − r2

in)

)1/4

. (4.17)

The results of the small-eddy model are reported in figure 25. The analytical prediction
of (4.14) shows an increasing trend of mass transfer coefficient for increasing Reynolds
(coherently with the dissolution rates reported in figure 22) and shows a good agreement
with the computed values of km for cases Re = 3000 and 5000. The Re = 1000 case is
reported here for reference, but it is not surprising that it is significantly off compared
with the analytical model, since this configuration is laminar and no turbulent eddies can
be at work in this case. The good agreement offered by the small-eddy model suggests that,
for fully turbulent cases, mass transfer is controlled by the dissipative turbulent structures,
as recently found for bubbles dissolving in homogeneous isotropic turbulence (Farsoiya
et al. 2023). Coherently with this result, the Re = 5000 case is independent of the bubble
size and approaches a steady-state solution, whereas the case with Re = 3000 exhibits a
quasi-steady solution with a slight decreasing trend over time.

It is finally recalled here that the initial position of the bubbles is always the same for
cases A–G, i.e. the centre at t = 0 is placed halfway between the inner and outer walls.
For cases without gravity, where bubbles are entirely transported by the carrier liquid flow
field, there might be a dependency on the initial position. This is expected to be particularly
important for small bubbles that can be entirely trapped within the velocity boundary layer
near the cylindrical walls. These regions show steep velocity gradients and fluctuations
(figures 5 and 6) and the resulting mass transfer rate can be affected.
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Figure 25. Comparison of the small-eddy model (4.17) against the quasi-steady-state mass transfer coefficients
of cases E–G. The proportionality coefficient is 0.51. Here km values are averaged over time for 0.08 s < t <

0.1 s.

4.3.4. Wake effect
In this section, the interaction between two (identical) bubbles in a TC flow at different
Reynolds number is investigated in terms of volume dissolution rates. The set-up of the
apparatus is the same as the one presented in § 4.1 (i.e. η = 0.5 and Re = 0, 1000, 3000 and
5000), but two bubbles (referred to as b1 and b2) with diameter Dt=0

b1 = Dt=0
b2 = (rout −

rin)/3 = 5 mm are initially placed at zt=0
b1 = rout/3 and zt=0

b2 = 7rout/12, respectively, and
the same (x, y) coordinates (i.e. the minimum distance between the interfaces is equal
to Db1,b2/2). Bubble b1 is placed at the same initial axial location as the single-bubble
cases presented in §§ 4.3.1–4.3.2, so that a straightforward quantification of the wake effect
induced by bubble b2 can be achieved by simply monitoring the evolution of volume over
time. A summary of the cases for the wake effect study is reported in table 10 (cases H–K).

A qualitative representation is shown in figure 26, where the 3-D shape of the bubbles is
plotted, along with contours of species concentration in the continuous phase on a rz plane.
In the case with no rotation of the inner cylinder (figure 26a), the solution is axisymmetric
and the bubbles approach a similar shape, whilst rising along a vertical trajectory. In this
scenario, the top bubble (b2) rises in a clean environment (i.e. no concentration of species
is distributed in the continuous phase around the upstream side of the interface). On the
other hand, the bottom bubble (b1) is affected by the wake of the top one, which modifies
both the velocity and concentration fields around the interface. In particular, b1 rises in
a contaminated environment, where the species released from b2 as it dissolves increases
(locally) the saturation ratio of the liquid solvent. As a consequence, the difference in
species concentration (�c) between the (saturated) interface and the surrounding liquid
at the top side of bubble b1 (which drives the transport of molecules across the interface)
decreases and a lower dissolution rate is expected, according to (2.9).

As the rotating speed of the inner cylinder increases, the development of
counter-rotating toroidal vortices induces non-null velocity components along the axial
and radial directions that break the symmetry of the problem (figure 26b–d). The
deviation from the symmetrical solution becomes larger as the Reynolds number of
the apparatus increases from Re = 1000 (figure 26b, where the bubbles follow slightly
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Figure 26. Two dissolving bubbles and contours of species concentration on a rz plane at (a) Re = 0,
(b) Re = 1000, (c) Re = 3000 and (d) Re = 5000. The outer cylinder has been removed to improve the clarity
of the figure. Snapshots taken at t = 0.057 s.

different trajectories but keep a similar shape) to fully turbulent (figure 26c,d), where the
rising path and shapes of b1 and b2 are strongly decoupled. Therefore, for increasing Re,
it is expected that the dissolution rate of the downstream bubble becomes less affected by
the wake of the upstream one, as both bubbles follow different trajectories and rise in a
clean environment.

The above qualitative observations are confirmed, from a quantitative point of view,
in figure 27, where the time-evolving volumes of bubbles b1 and b2 are plotted and
compared against the single-bubble case. For all the selected Reynolds numbers, the
top bubble behaves in the same way as the corresponding single-bubble simulation,
confirming that b2 rises in a clean environment and is not affected by the presence of
the second bubble (nor by a different initial position within the reactor). The plot of the
downstream bubble exhibits two different regimes. For t < 0.04 s, the volume changes
with the same dissolution rate as b2 (and the single-bubble case), whereas for t > 0.04 s
the bubble dissolves with a slower rate. In the first part of the simulation, the wake of
the top bubble is not fully developed yet and the species released into the liquid (due
to its dissolution) does not affect the concentration field around the downstream bubble.
Therefore, in the first part of the simulation, both b1 and b2 rise in a clean environment and
exchange moles at the same rate. For t > 0.04 s, the wake of b2 is extended sufficiently to
interact with the mass transfer process of the downstream bubble. In particular, the local
concentration gradient at the upstream side of the interface decreases, due to the increase
in the bulk concentration in b2’s wake region, and the diffusive transfer of moles becomes
slower accordingly. The effect of the apparatus Reynolds number on the dissolution rate
of b1 can be easily understood by comparing figure 27(a,b) against figure 27(c,d). For
no rotation of the inner cylinder or low rotating speeds, the wake effect is stronger as
the downstream bubble clearly dissolves more slowly than the upstream one; however,
for the fully turbulent cases, such difference is much less relevant. This is due to the
chaotic motion induced by the strong vortices at Re = 3000 and 5000 that decouple the
trajectories of the two bubbles. Figure 26(c,d) shows that the part of the interface of bubble
b1 that is affected by the upstream wake is minimal (compared with the other two cases),
making the mass transfer dynamics almost identical to the case of a bubble rising in a clean
environment. The decoupling of the trajectories is mainly due to the presence of strong TC
vortices in the turbulent cases, since for the configurations with Re = 0 and 1000 the wake
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Figure 27. Volume ratio vs time for two dissolving bubbles in a TC device at (a) Re = 0, (b) Re = 1000,
(c) Re = 3000 and (d) Re = 5000. The top bubble is not affected by the bottom bubble and is equivalent to
the single-bubble case. The bottom bubble dissolves slower and the wake effect becomes less relevant as the
rotating speed increases.

interaction has a significant effect on the dissolution rate of the bottom bubble. Bubbles
are initially exposed to concurrent upwards and downwards velocity fields and experience
(with different ratios) the influence of two adjacent TC cells. However, a different local
flow topology between the two bubbles is not sufficient to decouple the trajectories (see,
for example, the case with Re = 1000), which happens only when the flow induced by the
vortices is strong enough to change the sign of the lift force acting on each bubble.

5. Conclusions

In this work we adopted our recent numerical framework (Gennari et al. 2022) to
investigate bubble dissolution in a wide range of TC flows. The methodology is first
validated for single-phase TC flows (with radius ratios varying between 0.5 < η < 0.91)
at Reynolds numbers in the range 338 < Re < 5000, where the main regimes (TVF,
WVF and TTVF) are all reproduced and good agreement is observed against previous
investigations.

Bubble dissolution in TC flows is first studied for a single bubble with a 5 mm diameter
in a reactor with a radius ratio of η = 0.5 and a gap size of 15 mm. For this configuration,
the buoyancy force is predominant over the velocity induced by the rotating wall and the
global dissolution rate is almost unaltered in the range 0 < Re < 5000. However, the
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concentration of species released from the bubble is affected significantly by the TC
regime, as a fully turbulent and chaotic flow distributes the dissolved species in a wider
region and enhances the mixing within the reactor. A clear correlation between Sh and
Re numbers is observed for all the modelled TC regimes where the bubble is rising. The
theoretical predictions proposed by Oellrich et al. (1973) for the Sh number of spherical
bubbles rising along a straight trajectory are modified by replacing the constant Péclet
number with the corresponding time-dependent version and by introducing a correction
factor to take into account shape deformations. The results show that large bubbles tend to
agree with the predictions for Reb → ∞, whereas small bubbles are close to the expected
behaviour for Reb → 0, even in the case of large interfacial deformations. The modelling
of a bubble in absence of gravity provides useful information to quantify the effect of the
different TC regimes for the cases in which the buoyancy force is marginal (e.g. small
bubbles). In this specific case, volume dissolution occurs significantly faster for increasing
rotating speeds, and all the simulated TC Reynolds numbers approach a quasi-steady-state
solution.

The mass transfer mechanism is investigated by applying the surface-renewal theory
of Danckwerts (1951). The characteristic time and length scales of the macroscopic flow
field control the mass transfer process for the cases where buoyancy is predominant. This
theory produces the well-known functional relationship Sh ∝ √

Pe, which is consistent
with the formulae of Oellrich et al. (1973) for Pe → ∞. For the cases without gravity,
the small-eddy theory of Lamont & Scott (1970) is combined with the surface-renewal
approach and a simple analytical model for the prediction of the mass transfer coefficient
is proposed. Our results show that the smallest turbulent scales control the exchange of
mass between the phases in fully turbulent TC flows.

The wake effects are studied by placing two bubbles (aligned vertically) in the
reactor. It is shown that the top bubble is unaffected by the presence of the second
bubble and dissolves as in the single-bubble case. However, the bottom bubble rises
into a contaminated flow and for null (Re = 0) or low rotating speeds (Re = 1000) the
dissolution rate decreases significantly (at t = 0.1 s, the bottom bubble has a volume 41 %
and 52 % bigger than the top bubble for Re = 0 and 1000, respectively). On the other
hand, for turbulent TC flows, the trajectories of the bubbles are decoupled and similar
global mass transfer rates are observed.
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Appendix A. Mesh sensitivity and grid selection for fully resolved simulations of TC
flows

A mesh sensitivity study is carried out for one of the most-demanding cases in terms of
mesh resolution (i.e. η = 0.5 and Re = 5000), where the flow regime is fully turbulent
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�hin
�hout

Bulk

Figure 28. Mesh refinements within two cylindrical regions (dashed lines) around the inner and outer walls.

Mesh Nb
z Nin

z Nout
z Nb

r Nin
r Nout

r Nrin
θ Nrout

θ Cells count

M1 256 256 256 55 3 3 385 770 9.95 × 106

M2 256 1024 512 55 12 6 1539 1539 5.64 × 107

M3 512 1024 512 110 12 6 1539 1539 1.13 × 108

Table 11. Mesh sensitivity study for the configuration η = 0.5 and Re = 5000. Here Nz, Nr and Nθ are the
number of cells along the axial, radial and azimuthal directions, respectively. The superscripts Nb, Nin and
Nout refer to the bulk, inner and outer regions within the domain (see figure 28).

and strong velocity fluctuations are expected near the walls. The octree grid structure
of Basilisk is used for the discretisation of the domain and two cylindrical regions with
thickness �hin = �hout = 0.05(rout − rin) are used to set different mesh refinements near
the walls (see figure 28). Therefore, three different subdomains can be identified within
the annulus, i.e. the inner, outer and bulk regions. Three meshes are tested for the selected
configuration and the corresponding parameters are reported in table 11. Mesh M1 has
a uniform resolution within the gap, whereas meshes M2 and M3 take advantage of the
two refinement regions to increase the grid density near the cylindrical walls (M2 and M3
have the same resolution near the walls, but a different mesh density in the bulk region).
Numerical modelling of TC flows requires that enough grid points are distributed within
the gap between the cylinders, in order to capture the complex flow features that develop as
the rotating speed is increased. Meshes M1 and M2 have a similar number of radial points
(i.e. Nr = 61 and Nr = 73 respectively), where Nr is computed as Nr = Nb

r + Nin
r + Nout

r .
However, the cost in terms of total number of cells for this marginal increment of resolution
along the radial direction is significantly large (see table 11). This is a limitation of the
octree Cartesian grid structure, where mesh stretching is not allowed, i.e. the aspect ratio
of each cell is fixed to one. Results from the selected meshes are compared for the average
azimuthal velocity 〈uθ 〉zθ t (where the operator 〈 〉zθ t refers to the average in time and along
the axial z and azimuthal θ directions) and for the corresponding fluctuating component,

u′
θ = uθ − 〈uθ 〉t, (A1)

which can be averaged in time in the following way:

〈u′
θ

2〉t = 〈u2
θ 〉t − 〈uθ 〉2

t . (A2)

The time interval used for the computation of the average and fluctuating quantities
corresponds to five revolutions, i.e. �t = 5trev , where trev = 2πrin/Uin. Results for 〈uθ 〉zθ t

and
√

〈u′
θ

2〉zθ t are plotted in figure 29(a,b), respectively, and compared against the
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Figure 29. Mesh sensitivity study for the configuration with η = 0.5 and Re = 5000. The radial profiles of
(a) the average azimuthal velocity and (b) fluctuations are compared against the work of Chouippe et al.
(2014).

Mesh Δin
r+ Δout

r+ Cellsr+
in<5 Cellsr+

out<5

M1 2.54 1.31 1 2
M2 0.598 0.610 4 4
M3 0.598 0.619 4 4

Table 12. Mesh characteristics in terms of wall units and number of cells in the viscous sublayer for the
configuration η = 0.5, Re = 5000.

numerical study of Chouippe et al. (2014). The results reported in figure 29 show that the
average radial profiles of the plotted quantities are not significantly affected by an increase
in the mesh resolution. Mesh M1 tends to slightly over-predict the velocity fluctuations
near the inner wall and the coarser resolution around the cylinders, combined with the
embedded boundary method, results in a underestimation of the tangential velocity at the
inner rotor; meshes M2 and M3 provide almost the same results. The grids are compared
in terms of wall unit resolutions in table 12, where the average viscous length scales δ∗,in

and δ∗,out at the inner and outer cylinders, respectively, are computed as

δ∗
in,out = νc

u∗
in,out

, (A3)

where the friction velocity u∗ is obtained from the shear stress τw:

u∗
in,out =

√
|τ in,out

w |
ρc

. (A4)
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η Re Nb
r Nin

r Nout
r Δin

r+ Δout
r+ Cellsr+

in<5 Cellsr+
out<5

0.5 1000 55 3 3 0.733 0.389 3 6
0.5 3000 110 6 6 0.800 0.415 3 6
0.5 5000 55 12 6 0.598 0.610 4 4
0.73 338 26 4 2 0.301 0.464 6 5
0.73 1014 26 4 2 0.965 1.05 3 2
0.91 5000 16 9 9 1.36 1.25 2 2

Table 13. Selected mesh characteristics for the single-phase TC cases.

The shear stress in (A4) is the average value on the cylinders and follows from the integral
torque Tw:

τ in,out
w = Tin,out

w

2πr2
in,outLz

. (A5)

The values of Δ
in,out
r+ reported in table 12 are computed with the average wall shear stress

(A5) and, due to the Cartesian structure of the mesh, the non-dimensional quantities Δ
in,out
z+

and rin,outΔθ+ are the same as Δ
in,out
r+ . Meshes M2 and M3 have the same refinement near

the walls and both have at least four cells within the viscous sublayer region, i.e. r+ < 5.
Given the results reported in figure 29 and the requirements in terms of mesh resolution
for DNS (i.e. Δr+ < 1), mesh M2 is selected as the reference grid for the modelling
of TC flows; the grids used for the other configurations have similar characteristics and
their details are reported in table 13. All the meshes have the first cell centre within
the non-dimensional distance Δ

in,out
r+ < 1 from the walls and have at least three cells

within the regions r+
in,out < 5. Exceptions are the configurations with η = 0.73, Re = 1014

and η = 0.91, Re = 5000, where Δr+ is slightly above one at the wall. In the last case
(η = 0.91), this is due to the small gap within the cylinders, where the maximum number
of cells is limited by the Cartesian topology of the grid and a further level of refinement
would generate too many cells along the axial and azimuthal directions that cannot be
handled with the available computational resources.
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