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Abstract. We consider the dynamics of a small trojan companion of a hypothetical giant
exoplanet under the secular perturbations of additional planets. By a suitable choice of action-
angle variables, the problem is amenable to the study of the slow modulation, induced by secular
perturbations, to the dynamics of an otherwise called ‘basic’ Hamiltonian model of two degrees
of freedom (planar case). We present this Hamiltonian decomposition, which implies that the
slow chaotic diffusion at resonances is best described by the paradigm of modulational diffusion.
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1. Introduction
Despite extensive search, no pairs of co-orbital exoplanets have been discovered so far.

Some reasons for the unlikeliness of the co-orbital configuration are discussed in Giuppone
et al. (2012), Haghighipour (2013), Dobrovolskis (2013) and Pierens and Raymond (2014).
Dynamical obstructions appear in the formation process as well as during the migration
and/or capture of the planets into resonance. Besides these constraints, however, there is
also the question of the long-term stability of co-orbital motions. This means the stability
of the orbits over timescales comparable to the age of the hosting system.

In a recent work (Páez and Efthymiopoulos 2014) we initiated a study of the long-term
stability in a hypothetical configuration in which a small (considered massless) planet
moves around the Lagrangian points of a giant primary. Numerical simulations have
shown that up to Earth-sized trojan planets can appear close to gaseous giants (Beaugé
et al. 2007, Lyra et al. 2009). This dynamical system is a case of the elliptic restricted
three body problem (ERTBP), or, with additional planets, the ‘restricted multi-body
problem’ (RMBP). Alternative applications of the RMBP encompass co-orbital satellites
of a planet, asteroids, and artificial trojan objects in a Sun-planet or planet-moon system.

In an accompanying poster (Páez and Efthymiopoulos, this volume) we outline one of
our so-far obtained numerical results, referring to the diffusion timescales in the case of
initial conditions taken close to some so-called secondary resonances within the co-orbital
domain. Several authors (e.g. Érdi et al. 2007, 2009, Schwarz et al. 2007) have stressed
the importance of secondary resonances in the problem of long-term stability. Related
numerical works, applied to Jupiter’s trojan asteroids, are Marzari et al. (2003), Robutel
and Gabern (2006), Robutel and Bodossian (2009). Our own numerical work compares
maps of the resonant structure, as depicted in a suitably defined domain of action vari-
ables (i.e. proper elements), with maps of the stability times for initial conditions within
the resonance web. We found evidence of a tight correlation between the two maps (see
Páez and Efthymiopoulos, this volume).
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In the sequel we briefly discuss how our Hamiltonian formulation in action-angle vari-
ables is introduced in the framework of the RMBP, as well as the consequences this
formulation leads to regarding the dynamical characterization of the problem.

2. Summary of the Hamiltonian formulation
A summary of our formulation is the following: assuming all perturbing planets far

from mean motion resonances, by a suitable sequence of canonical transformations we
arrive (in the planar case) at expressing the Hamiltonian of the RMBP as:

H = Hb(Js, φs, Yf , φf , Yp ; e0) + Hsec(Js, φs, Yf , φf , Yp , φ, P1 , φ1 , ..., PS , φS ). (2.1)

i) The pairs (Yf , φf ), (Js, φs), (Yp, φ) are action-angle conjugate variables corresponding
to the ‘short-period’, ‘synodic’ and ‘secular’ motions of the trojan body respectively. The
short-period terms correspond physically to epicyclic oscillations. The synodic oscillations
describe the ‘long period’ librations around the Lagrangian points L4 or L5. The action
variable Js determines the value of the ‘proper libration’ (see Milani (1993), or Beaugé
and Roig (2001) for the definition of trojan proper elements). The action Yp labels the
‘proper eccentricity’. The angle φ measures phase oscillations around an angle β (see
below) which expresses the relative difference between the arguments of perihelia of the
trojan body and the giant primary. We note that an analysis omitted here allows to see
that the form of the Hamiltonian (2.1) implies that the oscillations of β are bounded.
Finally, the pairs (φi, Pi), i = 1, ..., s are action-angle variables for the oscillations of the
eccentricity vectors of the S additional planets.

ii) We call the first term Hb in (2.1) the ‘basic model’. The angle φ is ignorable in Hb ,
implying that Yp is a constant of motion under the dynamics of Hb alone. The parameter
e0 is the mean modulus of the eccentricity vector of the giant primary. Thus, Hb represents
a system of two degrees of freedom, wherein both e0 and Yp act as parameters, i.e. the
‘forced’ (e0) and ‘proper’ (ep =

√
−2Yp) eccentricity.

iii) The term Hsec contains only trigonometric terms depending on the slowly vary-
ing angles φ,φi , i = 1, ..., s. Hence, Hsec introduces only secular perturbations to the
dynamics under Hb . In particular, Hsec causes a slow pulsation of the chaotic separatrix-
like layers at the borders of the resonances arising under Hb . As shown in Páez and
Efthymiopoulos 2014, this phenomenon is best described by the paradigm of ‘modula-
tional diffusion’ (Chirikov et al. 1985).

iv) The form of the function Hb is identical in the ERTBP and the RMBP, setting
e0 = e′ and β = ω in the former, where e′ is the (constant) eccentricity of the primary,
and ω′ = 0 its pericentric position. This formal equivalence implies that the qualitative
features of the diffusion along resonances, as they appear in the plane of the action
variables Js, Yp , are similar in the RMPP and the ERTBP. Examples of the latter are
studied in Páez and Efthymiopoulos (2014).

We now summarize the derivation of the Hamiltonian (2.1). We assume that, far from
mean-motion resonances, the time evolution of the eccentricity vectors of all massive
bodies can be approximated by quasi-periodic formulae

e′ exp iω′ = e′0 exp i(ω′
0 + g′t) +

s∑
k=1

Ak exp i(ω′
k0 + gk t)

ej exp iωj = Bj0 exp i(ω0j + g′t) +
s∑

k=1

Bkj exp i(ω′
kj + gk t) (2.2)

setting, without loss of generality, ω′
0 = 0. The constants g′, and gj , j = 1, . . . s are
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secular frequencies associated with the primary and the S planets respectively. Also, we
assume that the condition e′0 >

∑S
k=1 Ak holds for the giant primary, implying an average

constant rate of precession of its perihelion with frequency g′. One has e′ = e′0 + F ,
ω′ = φ′ + G, where φ′ = g′t and F and G are of first order in the amplitudes Ak ,
k = 1, ..., s. Averaged over the mean longitudes λ1 , . . . , λS the Hamiltonian reads

H = − 1
2(1 + x)2 + I3 + g′I ′ +

S∑
j=1

gj Ij −μR(λ, ω, x, y, λ′, φ′; e′0)−μR2 −
S∑

j=1

μjRj (2.3)

where: i) x =
√

a − 1, y =
√

a
(√

1 − e2 − 1
)

are Delaunay action variables, (a, e) being
the major semi-axis and eccentricity of the trojan body (in units in which a′ = 1 for the
primary), and (λ, ω) the mean longitude and argument of the perihelion. The variables
I3 , I ′, Ij , j = 1, . . . , S are dummy actions congugate to the angles λ′, φ′ = g′t and
φj = gj t. ii) R is has the same form as the disturbing function in the ERTBP with
the substitution e0 → e′, φ′ → ω′, with μ equal to the primary’s mass parameter (all
functions and variables are considered in the heliocentric frame). iii) R2 , expressing the
indirect effects of the S additional planets, comes from replacing e′ = e′0 + F (φ′, φj ),
ω′ = φ′ + G(φ′, φj ) in the disturbing function of the ERTBP and Taylor-expanding
around e′0 and φ′, assuming F and G small quantities. R is of degree one or higher in the
mass parameters μj , j = 1, . . . , S. iv) Finally, Rj are the (averaged over mean longitudes)
direct terms of the S additional planets.

The canonical transformation τ = λ − λ′, β = ω − φ′, J3 = I3 + x, P ′ = I ′ + y allows
to re-express the hamiltonian in terms of the resonant angle τ and the relative argument
of pericenter difference β. The Hamiltonian can be recast as H = 〈H〉 + H1 , where

〈H〉=− 1
2(1 + x)2 − x + J3 − g′y − μ〈R〉(τ, β, x, y; e′0)

H1 = g′P ′ +
S∑

j=1

gj Ij − μR̃(τ, β, x, y, λ′, φ′; e′0)

−
S∑

j=1

μjRj (x, y, β, φ′, φ1 , ..., φs) − μR2(x, y, τ, β, φ′, φ1 , ..., φs)

with 〈R〉 = 1
2π

∫ 2π

0 Rdλ′, R̃ = R − 〈R〉. The Hamiltonian 〈H〉 allows to determine the
forced equilibrium by the solution to the system of equations ∂〈H〉/∂x = ∂〈H〉/∂y =
∂〈H〉/∂τ = ∂〈H〉/∂β = 0. One finds that

(τ0 , β0 , x0 , y0) =
(

π/3, π/3, 0,
√

1 − e′20 − 1
)

+ O(g′). (2.4)

Note that the forced equilibrium represents a relative configuration, i.e., the eccentricity
vector of the trojan body has the same modulus e0 and a constant relative angle with
respect to the mean eccentricity vector of the primary. This result follows also by a careful
inspection of the formulae provided in Morais (2001).

Expanding around the forced equilibrium, we introduce new variables

v = x − x0 , u = τ − τ0 , Y = −(W 2 + V 2)/2, φ = arctan(V/W ) (2.5)

V =
√
−2y sin β −

√
−2y0 sin β0 , W =

√
−2y cos β −

√
−2y0 cos β0 .

The variables (v, u) describe the motion in the synodic plane, while the action variable
Y measures the distance of an orbit from the forced equilibrium position in the secular
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plane (
√
−2y cos β,

√
−2y sinβ). Finally, we introduce the canonical transformations Yp =

Y + J3 , φf = λ′ − φ, and

Js =
1
2π

∫
C

(v − v0)d(u − u0) (2.6)

where the integration is over a closed invariant curve C around (u0 , v0), with conjugate
angle φs . Substituting these transformations yields the form (2.1) of the Hamiltonian.

The study of the basic model allows to identify the most important secondary reso-
nances, which are commensurabilities between the fast and synodic frequencies ωf = φ̇f ,
ωs = φ̇s . The fast frequency is related to the secular frequency g = φ̇ by ωf = 1 − g, in
units in which the mean motion of the giant primary is equal to 1. The general form of
a resonance is

mf ωf + msωs + mg + m′g′ + m1g1 + . . . + mS gS = 0 (2.7)

with mf ,ms,m,m′,mj (with j = 1, . . . , S) integers. The resonances of the basic model
exist in the complete hierarchy of problems, from the planar circular restricted three
body problem (s = 0, g′ = 0, e′0 = 0) up to the complete multi-body problem. For
the mass parameters of giant exoplanets the most important resonances are of the form
ωf −nωs = 0, with n in the range 4 � n � 12 for typical mass parameters of the gaseous
primary. In the frequency space (ωf , ωs, g), these resonances define planes normal to the
plane (ωf , ωs) which intersect each other along the g–axis. All other resonances with
|m|+ |m′|+ |m1 |+ . . . + |mS | > 0 intersect transversally one or more planes of the main
resonances. We refer to such resonances as ‘transverse’ if |mf | + |n| > 0, or ‘secular’ if
|mf | + |n| = 0. In Efthymiopoulos and Páez (2014), we show that the diffusion along
transverse or secular resonances is of the Arnold type, hence very slow. On the other
hand, there are transverse resonances which accumulate to multiplets around the main
ones, thus producing a faster (modulational) diffusion.
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