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Abstract

We give the general solution of the n-dimensional mixed-type linear and quadratic functional equation,(
n − 2
m − 2

)
f

( n∑
i=1

xi

)
+

(
n − 2
m − 1

) n∑
i=1

f (xi ) =

∑
{i1,...,im }∈Pm

f

( m∑
k=1

xik

)
,

where Pm = {A ⊂ {1, 2, . . . , n} : |A| = m}, and 1 < m < n are integers.
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1. Introduction

In 1940 Ulam [6] proposed the famous Ulam stability problem of linear mappings.
In 1941 Hyers [2] considered the case of approximately additive mappings f : E → E ′

where E and E ′ are Banach spaces and f satisfies the inequality ‖ f (x + y) − f (x) −

f (y)‖ ≤ ε for all x, y ∈ E . It was shown that the limit L(x) = limn→∞ 2−n f (2nx)

exists for all x ∈ E and that L : E → E ′ is the unique additive mapping satisfying
‖ f (x) − L(x)‖ ≤ ε. Rassias [5] generalized the result to the case when the inequality
is controlled by the sum of norms. Since then, the stability problem has been
investigated for various functional equations.

Rassias [4] established the Ulam stability of the following mixed-type functional
equation:

f

( 3∑
i=1

xi

)
+

3∑
i=1

f (xi ) =

∑
1≤i< j≤3

f (xi + x j ).

The present author [3] generalized the above functional equation to the following
n-dimensional functional equation:

f

( n∑
i=1

xi

)
+ (n − 2)

n∑
i=1

f (xi ) =

∑
1≤i< j≤n

f (xi + x j ).
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In this paper, we will further generalize the above equation to(
n − 2
m − 2

)
f

( n∑
i=1

xi

)
+

(
n − 2
m − 1

) n∑
i=1

f (xi ) =

∑
{i1,...,im}∈Pm

f

( m∑
k=1

xik

)
,

where 1 < m < n, and we will investigate its generalized stability.
Throughout the paper, we denote the dimensionality of the problem by n, and

let Pm = {A ⊂ {1, 2, . . . , n} : |A| = m}. Moreover, we use subscripts e and o to
denote the even part and the odd part of a function, respectively. The even part of
a function f is defined by

fe(x) =
f (x) + f (−x)

2
,

and the odd part of f is defined by

fo(x) =
f (x) − f (−x)

2
.

2. The general solution

THEOREM 1. Let 1 < m < n be integers, and let X and Y be vector spaces.
A function f : X → Y satisfies the functional equation(

n − 2
m − 2

)
f

( n∑
i=1

xi

)
+

(
n − 2
m − 1

) n∑
i=1

f (xi ) =

∑
{i1,...,im}∈Pm

f

( m∑
k=1

xik

)
, (1)

for all x1, x2, . . . , xn ∈ X if and only if fe satisfies the quadratic functional equation

f (x + y) + f (x − y) = 2 f (x) + 2 f (y) for all x, y ∈ X, (2)

and fo satisfies the Cauchy functional equation

f (x + y) = f (x) + f (y) for all x, y ∈ X. (3)

PROOF. To prove the necessity, suppose that a function f : X → Y satisfies (1). We
will show that fe satisfies (2) and fo satisfies (3).

Putting (x1, x2, . . . , xn) = (0, 0, . . . , 0) in (1), we obtain(
n − 2
m − 2

)
f (0) +

(
n − 2
m − 1

)
n f (0) =

(
n

m

)
f (0). (4)

It can be verified that
(n−2

m−2

)
+ n

(n−2
m−1

)
>

(n
m

)
for all integers m and n with 1 < m < n.

Thus, f (0) = 0. Putting (x1, x2, . . . , xn) = (x, y, −y, 0, 0, . . . , 0) in (1) and taking
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into account the fact that f (0) = 0, we obtain(
n − 2
m − 2

)
f (x) +

(
n − 2
m − 1

)
( f (x) + f (y) + f (−y))

=

(
n − 3
m − 3

)
f (x) +

(
n − 3
m − 2

)
( f (x + y) + f (x − y))

+

(
n − 3
m − 1

)
( f (x) + f (y) + f (−y)),

which simplifies to

2 f (x) + f (y) + f (−y) = f (x + y) + f (x − y) for all x, y ∈ X. (5)

Replacing x and y in (5) with −x and −y, respectively, we obtain

2 f (−x) + f (−y) + f (y) = f (−x − y) + f (y − x) for all x, y ∈ X. (6)

Taking half the sum of (5) and (6), we obtain

2 fe(x) + 2 fe(y) = fe(x + y) + fe(x − y) for all x, y ∈ X, (7)

which shows that fe satisfies (2). Taking half the difference of (5) and (6), we obtain

2 fo(x) = fo(x + y) + fo(x − y) for all x, y ∈ X, (8)

which is recognized as the Jensen functional equation. Noting that fo(0) = 0, we can
verify that fo satisfies (3).

To prove the sufficiency, suppose that the even part and the odd part of a function
f : X → Y satisfy (2) and (3), respectively. We need to show that f satisfies (1). It
should be noted that a linear combination of two solutions of (1) yields just another
solution; therefore, it is sufficient to prove that both fe and fo satisfy (1).

First consider the odd part, fo, and make use of the linearity of the Cauchy
functional equation. The left-hand side of (1) becomes(

n − 2
m − 2

)
fo

( n∑
i=1

xi

)
+

(
n − 2
m − 1

) n∑
i=1

fo(xi )

=

(
n − 2
m − 2

) n∑
i=1

fo(xi ) +

(
n − 2
m − 1

) n∑
i=1

fo(xi )

=

(
n − 1
m − 1

) n∑
i=1

fo(xi ),

and the right-hand side of (1) becomes∑
{i1,...,im}∈Pm

fo

( m∑
k=1

xik

)
=

∑
{i1,...,im}∈Pm

m∑
k=1

fo(xik ).
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Expanding the sum on the right-hand side and collecting the terms,∑
{i1,...,im}∈Pm

fo

( m∑
k=1

xik

)
=

m

n

(
n

m

) n∑
i=1

fo(xi ) =

(
n − 1
m − 1

) n∑
i=1

fo(xi ).

Thus, we have established (1) on the odd part of f .
For the even part, it can be proved by mathematical induction (see, for example, [3])

that

fe

( n∑
i=1

xi

)
+ (n − 2)

n∑
i=1

fe(xi ) =

∑
1≤i< j≤n

fe(xi + x j ) (9)

for all integers n. For any integers m and n with 1 < m < n, the m-dimensional case
of (9) with variables xi1, xi2, . . . , xim is

fe

( m∑
k=1

xik

)
+ (m − 2)

m∑
k=1

fe(xik ) =

∑
1≤k<l≤m

fe(xik + xil ).

Summing the above equation for all {xi1, xi2, . . . , xim } ⊂ {x1, x2, . . . , xn},∑
{i1,...,im}⊂Pm

fe

( m∑
k=1

xik

)
+ (m − 2)

(
n − 1
m − 1

) n∑
i=1

fe(xi )

=

(
n − 2
m − 2

) ∑
1≤i< j≤n

fe(xi + x j ). (10)

Finally, eliminating
∑

1≤i< j≤n f (xi + x j ) from (9) and (10),(
n − 2
m − 2

)
fe

( n∑
i=1

xi

)
+

(
n − 2
m − 1

) n∑
i=1

fe(xi ) =

∑
{i1,...,im}∈Pm

fe

( m∑
k=1

xik

)
,

which shows that fe satisfies (1).
Thus, f satisfies (1) and the proof is complete. 2

3. The generalized stability

The following theorem provides a general condition for which a true solution
discussed in Theorem 1 exists near an approximate solution. For convenience, we
define

Dm f (x1, . . . , xn)

=

(
n − 2
m − 2

)
f

( n∑
i=1

xi

)
+

(
n − 2
m − 1

) n∑
i=1

f (xi ) −

∑
{i1,...,im}⊂Pm

f

( m∑
k=1

xik

)
, (11)

for any integers m and n with 1 < m < n.
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THEOREM 2. Let 1 < m < n be integers, X be a real vector space, Y be a
Banach space and φ : Xn

→ [0, ∞) be an even function with respect to each variable.
Define ϕ(x) = φ(x, x, −x, 0, . . . , 0) for all x ∈ X. If

∞∑
i=0

2−iϕ(2i x) converges for all x ∈ X, and

lim
s→∞

2−sφ(2s x1, . . . , 2s xn) = 0 for all x1, . . . , xn ∈ X,

(12)

or 
∞∑

i=1

4iϕ(2−i x) converges for all x ∈ X, and

lim
s→∞

4sφ(2−s x1, . . . , 2−s xn) = 0 for all x1, . . . , xn ∈ X,

(13)

and a function f : X → Y satisfies

‖Dm f (x1, . . . , xn)‖ ≤ φ(x1, . . . , xn) for all x1, . . . , xn ∈ X, (14)

then there exists a unique function T : X → Y that satisfies (1) and, for all x ∈ X,

‖ f (x) + p f (0) − T (x)‖

≤


1
2

∞∑
i=0

2−iϕ(2i x) +
1
4

∞∑
i=0

4−iϕ(2i x) if (12) holds

1
2

∞∑
i=1

2iϕ(2−i x) +
1
4

∞∑
i=1

4iϕ(2−i x) if (13) holds
(15)

where p = (((n − 1)(n − 2))/(3m)) − 1. The function T is given by

T (x) =

 lim
s→∞

2−s fo(2s x) + 4−s fe(2s x) if (12) holds,

lim
s→∞

2s fo(2−s x) + 4s fe(2−s x) if (13) holds.
(16)

for all x ∈ X.

PROOF. We will first prove the theorem for a function φ satisfying (12). Putting
(x1, x2, . . . , xn) = (x, x, −x, 0, 0, . . . , 0) in (14) and simplifying,

‖3p f (0) + 3 f (x) + f (−x) − f (2x)‖ ≤ ϕ(x), (17)

where p is defined as in the theorem. Replacing x in the above equation by −x ,

‖3p f (0) + 3 f (−x) + f (x) − f (−2x)‖ ≤ ϕ(−x) = ϕ(x). (18)

From (17) and (18), we infer that, for all x ∈ X ,

‖3p f (0) + 4 fe(x) − fe(2x)‖ ≤ ϕ(x), (19)
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and
‖2 fo(x) − fo(2x)‖ ≤ ϕ(x).

Define a function ge : X → Y by

ge(x) = fe(x) + p f (0) for all x ∈ X. (20)

Then (19) becomes
‖4ge(x) − ge(2x)‖ ≤ ϕ(x),

which can be rewritten as

‖ge(x) − 4−1ge(2x)‖ ≤ 4−1ϕ(x).

For each positive integer s,

‖ge(x) − 4−s ge(2s x)‖ =

∥∥∥∥s−1∑
i=0

(4−i ge(2i x) − 4−(i+1)ge(2i+1x))

∥∥∥∥
≤

s−1∑
i=0

4−i
‖(ge(2i x) − 4−1ge(2 · 2i x))‖

≤
1
4

s−1∑
i=0

4−iϕ(2i x).

Similarly, we can show that, for every integer s,

‖ fo(x) − 2−s fo(2s x)‖ ≤
1
2

s−1∑
i=0

2−iϕ(2i x).

The convergence of the sequence {4−s ge(2s x)} can be settled as follows. For every
positive integer t ,

‖4−s ge(2s x) − 4−(s+t)ge(2s+t x)‖ = 4−s
‖ge(2s x) − 4−t ge(2t

· 2s x)‖

≤ 4−s
·

1
4

t−1∑
i=0

4−iϕ(2i
· 2s x)

≤
1
4

∞∑
i=0

4−(i+s)ϕ(2i+s x).

From (12), we know that
∑

∞

i=0 4−(i+s)ϕ(2i+s x) ≤
∑

∞

i=0 4−iϕ(2i x) converges; so, it
follows that lims→∞(1/4)

∑
∞

i=0 4−(i+s)ϕ(2i+s x) = 0. Therefore, we have a Cauchy
sequence in a Banach space. Let

Te(x) = lim
s→∞

4−s ge(2s x) = lim
s→∞

4−s fe(2s x) for all x ∈ X.
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Thus,

‖ge(x) − Te(x)‖ ≤
1
4

∞∑
i=0

4−iϕ(2i x).

Similarly, the inequality on fe leads us to

To(x) = lim
s→∞

2−s fo(2s x) for all x ∈ X,

and

‖ fo(x) − To(x)‖ ≤
1
2

∞∑
i=0

2−iϕ(2i x).

If we define a function T : X → Y by

T (x) = To(x) + Te(x) for all x ∈ X,

then

‖ f (x) + p f (0) − T (x)‖ ≤ ‖ fo(x) − To(x)‖ + ‖ge(x) − Te(x)‖

≤
1
2

∞∑
i=0

2−iϕ(2i x) +
1
4

∞∑
i=0

4−iϕ(2i x).

In order to show that T satisfies (1), we will prove that the even part and the odd
part of T satisfy (1). Define the even part and the odd part of Dm f by

Dm fe(x1, . . . , xn) =
Dm f (x1, . . . , xn) + Dm f (−x1, . . . , −xn)

2
,

Dm fo(x1, . . . , xn) =
Dm f (x1, . . . , xn) − Dm f (−x1, . . . , −xn)

2
.

For a positive integer s and for all x1, x2, . . . , xn ∈ X ,

‖Dm fe(2s x1, . . . , 2s xn)‖ ≤
1
2‖Dm f (2s x1, . . . , 2s xn)‖

+
1
2‖Dm f (−2s x1, . . . , −2s xn)‖

≤ φ(2s x1, . . . , 2s xn).

If we divide the above inequality by 4s and take the limit as s → ∞, then the right-
hand side vanishes according to (12) and we obtain from the definition of Te that(

n − 2
m − 2

)
Te

( n∑
i=1

xi

)
+

(
n − 2
m − 1

) n∑
i=1

Te(xi ) =

∑
{i1,...,im}∈Pm

Te

( m∑
k=1

xik

)
,

for all x1, x2, . . . , xn ∈ X . We can similarly show that To satisfies (1). Hence,
T = Te + To satisfies (1).
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To prove the uniqueness of T , suppose there exists another function T ′
: X → Y

such that T ′ satisfies (1) and (15). We have proved in Theorem 1 that Te satisfies the
quadratic functional equation (2) and To satisfies the Cauchy functional equation (3);
therefore, Te(r x) = r2Te(x) and To(r x) = rTo(x) for every rational number r and for
every x ∈ X . Thus,

‖T (x) − T ′(x)‖ ≤ ‖Te(x) − T ′
e(x)‖ + ‖To(x) + T ′

o(x)‖.

For any positive integer s and for each x ∈ X ,

‖Te(x) − T ′
e(x)‖ = 4−s

‖Te(2s x) − T ′
e(2

s x)‖

≤ 4−s
‖ge(2s x) − Te(2s x)‖ + 4−s

‖ge(2s x) − T ′
e(2

s x)‖

≤ 2 · 4−s
·

1
4

∞∑
i=0

4−iϕ(2i
· 2s x)

=
1
2

∞∑
i=0

4−(i+s)ϕ(2i+s x).

Taking the limit as s → ∞, we have ‖Te(x) − T ′
e(x)‖ ≤ 0. Thus Te(x) = T ′

e(x) for all
x ∈ X . Similarly, we can show that To(x) = T ′

o(x) for all x ∈ X . Hence, T (x) = T ′(x)

for all x ∈ X .
The proof for the case when (13) holds can be done in a similar manner. 2

In the next few corollaries, we will give the stability of (1) in various senses. The
following corollary proves the Hyers–Ulam stability.

COROLLARY 3. If a function f : X → Y satisfies

‖Dm f (x1, x2, . . . , xn)‖ ≤ ε for all x1, x2, . . . , xn ∈ X

for some ε > 0, then there exists a unique function T : X → Y that satisfies (1) and

‖ f (x) + p f (0) − T (x)‖ ≤
4ε

3
for all x ∈ X.

PROOF. Let φ(x1, x2, . . . , xn) = ε for all x1, x2, . . . , xn ∈ X in Theorem 2.
Hence, ϕ(x) = ε for all x ∈ X . We can see that (12) holds. Therefore, it follows
from the theorem that there exists a unique function T : X → Y such that

‖ f (x) + p f (0) − T (x)‖ ≤
1
2

∞∑
i=0

2−iε +
1
4

∞∑
i=0

4−iε =
4ε

3
for all x ∈ X. 2

The following corollary proves the Hyers–Ulam–Rassias stability of (1).

COROLLARY 4. Let p be a real number with 0 < p < 1 or p > 2. If a function
f : X → Y satisfies

‖Dm f (x1, x2, . . . , xn)‖ ≤ ε

n∑
i=1

‖xi‖
p for all x1, x2, . . . , xn ∈ X (21)
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for some ε > 0, then f (0) = 0 and there exists a unique function T : X → Y that
satisfies (1) and

‖ f (x) − T (x)‖ ≤
6ε|3 − 2p

|

(2 − 2p)(4 − 2p)
‖x‖

p for all x ∈ X.

PROOF. Substituting x1 = x2 = · · · = xn = 0 into (21), we obtain(
n − 2
m − 2

)
f (0) +

(
n − 2
m − 1

)
n f (0) =

(
n

m

)
f (0),

as in (4). Thus, f (0) = 0. Let φ(x1, x2, . . . , xn) = ε
∑n

i=1 ‖xi‖
p for all

x1, x2, . . . , xn ∈ X . Then ϕ(x) = 3ε‖x‖
p for all x ∈ X . If 0 < p < 1, then (12) holds

and it follows from Theorem 2 that

‖ f (x) − T (x)‖ ≤
1
2

∞∑
i=0

(2−i
· 3ε‖2i x‖

p) +
1
4

∞∑
i=0

(4−i
· 3ε‖2i x‖

p)

=
3ε

2 − 2p ‖x‖
p

+
3ε

4 − 2p ‖x‖
p

=
6ε(3 − 2p)

(2 − 2p)(4 − 2p)
‖x‖

p for all x ∈ X.

If p > 1, then (13) holds, and we get a similar result. 2

For the generalized stability in the sense of Gavruta [1], we get a superstability
of (1) when n > 3 as stated in the following corollary.

COROLLARY 5. Let p1, p2, . . . , pn ≥ 0 and r =
∑n

i=1 pi with 0 < r < 1 or r > 2.
If a function f : X → Y satisfies

‖Dm f (x1, x2, . . . , xn)‖ ≤ ε

n∏
i=1

‖xi‖
pi for all x1, x2, . . . , xn ∈ X.

for some ε > 0, then:

(1) if n > 3, then f satisfies equation (1); and
(2) if n = 3, then there exists a unique function T : X → Y that satisfies equation (1)

and

‖ f (x) − T (x)‖ ≤
ε|3 − 2r

|

(2 − 2r )(4 − 2r )
‖x‖

r for all x ∈ X.

PROOF. We can show that f (0) = 0 by the same substitution used in the proof
of Corollary 4. Let φ(x1, x2, . . . , xn) = ε

∏n
i=1 ‖xi‖

pi for all x1, x2, . . . , xn ∈ X .
Then, for all x ∈ X ,

ϕ(x) =

{
0 if n > 3,

ε‖x‖
r if n = 3.
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If n > 3, then we can see that f satisfies (1). If n = 3, then we consider two
cases: 0 < r < 1 and r > 2. If 0 < r < 1, then (12) holds and for all x ∈ X , by
Theorem 2,

‖ f (x) − T (x)‖ ≤
1
2

∞∑
i=0

(2−i
· ε‖2i x‖

r ) +
1
4

∞∑
i=0

(4−i
· ε‖2i x‖

r )

=
ε

2 − 2r ‖x‖
r
+

ε

4 − 2r ‖x‖
r

=
2ε(3 − 2r )

(2 − 2r )(4 − 2p)
‖x‖

r .

If r > 2, then (13) holds and we get a similar result. 2
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