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Abstract
We give the general solution of the n-dimensional mixed-type linear and quadratic functional equation,
n—2 & n—2\ < n
() + (L) rm= X (X)),
i=1 i=1 {it,s im}€Pm k=1

where P, ={A C{1,2,...,n}:|A| =m}, and 1 <m < n are integers.
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1. Introduction

In 1940 Ulam [6] proposed the famous Ulam stability problem of linear mappings.
In 1941 Hyers [2] considered the case of approximately additive mappings f : E — E’
where E and E’ are Banach spaces and f satisfies the inequality || f (x + y) — f(x) —
FO)| <e forall x, y e E. It was shown that the limit L(x) =lim,— o 27" f(2"x)
exists for all x € E and that L : E — E’ is the unique additive mapping satisfying
| f(x) — L(x)| <e. Rassias [5] generalized the result to the case when the inequality
is controlled by the sum of norms. Since then, the stability problem has been
investigated for various functional equations.

Rassias [4] established the Ulam stability of the following mixed-type functional

equation:
(Z ) Zf(x,)— Y. f@i+x).

1<i<j<3
The present author [3] generalized the above functional equation to the following
n-dimensional functional equation:

f(Zx,>+<n—2>Zf(x,)— Y fi+x).

i=1 1<i<j<n
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In this paper, we will further generalize the above equation to

(Z:i)f(ixi)+<2__2l)§f(xi)= Zepmf(im:xz‘k),

i=1 {i1emsim} k=1

where 1 < m < n, and we will investigate its generalized stability.

Throughout the paper, we denote the dimensionality of the problem by n, and
let P,,={AC{l,2,...,n}:|A|=m}. Moreover, we use subscripts ¢ and o to
denote the even part and the odd part of a function, respectively. The even part of
a function f is defined by

PYRSLC) +2f(—X)’
and the odd part of f is defined by
PR —2f(—x).

2. The general solution

THEOREM 1. Let 1 < m < n be integers, and let X and Y be vector spaces.
A function f : X — Y satisfies the functional equation

(,Z__zz)f(ixi)Jr(Z:zl)gf(xi): > f(i)(ik>, (1)

i=1 {i1,.cesim}EPm k=1
forall x1, xa, ..., x, € X ifand only if f, satisfies the quadratic functional equation
Fx+n+fx—y)=2fx)+2f(y) foralx,yeX, (2)

and f, satisfies the Cauchy functional equation

fx+y)=f&x)+ f(y) forallx,yeX. 3)

PROOF. To prove the necessity, suppose that a function f : X — Y satisfies (1). We
will show that f, satisfies (2) and f,, satisfies (3).
Putting (x1, x2, ..., x,) =(0,0, ..., 0)in (1), we obtain

n—2 n—2 n
( )f(0)+< )nf(0)=< )f(O). “4)
m—2 m—1 m

It can be verified that (;’;22) + n(,':;zl) > (") for all integers m and n with 1 <m <n.
Thus, f(0) = 0. Putting (x1, x2, ..., x3) =(x,y, —y,0,0,...,0)in (1) and taking
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into account the fact that f(0) = 0, we obtain
n—2 n—2
( >f(x)+( )(f(x)+f(y)+f(—y))
m—2 m—1
n—3 n—73
=( )f(x)+< )(f(x+y)+f(x—y))
m—3 m—2

+(Z:i>@@)+f@%#ﬂ—w%
which simplifies to
2f)+fM+f==fx+y+flx—y foralx, yeX. )
Replacing x and y in (5) with —x and —y, respectively, we obtain
2f(=)+ f=+fO=f(=x =+ fy—x) forallx,yeX. (6)
Taking half the sum of (5) and (6), we obtain

2fe(xX) +2fe(y) = fe(x +y) + fe(x —y) forallx, yeX, @)
which shows that f, satisfies (2). Taking half the difference of (5) and (6), we obtain
2fo(x) = fo(x +y) + folx —y) forallx,yelX, 3

which is recognized as the Jensen functional equation. Noting that f,(0) =0, we can
verify that f, satisfies (3).

To prove the sufficiency, suppose that the even part and the odd part of a function
f X — Y satisty (2) and (3), respectively. We need to show that f satisfies (1). It
should be noted that a linear combination of two solutions of (1) yields just another
solution; therefore, it is sufficient to prove that both f, and f, satisfy (1).

First consider the odd part, f,, and make use of the linearity of the Cauchy
functional equation. The left-hand side of (1) becomes

-2 n —2\ &
(o) () + (2 e
n—2\ < n—2\ <&
= (m . 2) ; fo(-xi) + (m _ 1> ; fo(xi)

I’l—l n
=Q_J;nw,

and the right-hand side of (1) becomes

) fo(zxik)z 3 S,
ePy, {i

{i] ..... im} k=1 [1yeens im}GPm k=1
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Expanding the sum on the right-hand side and collecting the terms,
n m(n\ <« n—1\ <
> fO(Z xik) = ;(m) D folxi) = (m ~ 1) pIRACH]
{itseesim }EPY k=1 i=1 i=1

Thus, we have established (1) on the odd part of f.
For the even part, it can be proved by mathematical induction (see, for example, [3])

that
fe(Zx,)Hn—z)Zfe(x,)— Y felxitx)) ©)

i=1 I<i<j<n

for all integers n. For any integers m and n with 1 < m < n, the m-dimensional case

of (9) with variables x;,, x;,, ..., x;, is
m
fe(z xlk) +(m—2) Z Je(xip) = Z Se(xip +xi)).
k=1 I<k<l<m
Summing the above equation for all {x;, x;,, ..., x;,,} C {x1, x2, ..., X5},
a n—1Y\ <
. Z fe(zxik>+(m_2)<m_1>Zfe(-xi)
{itsesim}C P k=1 i—1
= <m _ 2) Z fe(xi + x;). (10)
1<i<j<n

Finally, eliminating Zlii<]~§n f (i + xj) from (9) and (10),
B L 0 95 B i) D OTZCI R I O 9¢
m—2)7¢ 1 Xi m—1) elXj) = e Xig )
i= i=1 {i1y..es im}€Py k=1

which shows that f, satisfies (1).
Thus, f satisfies (1) and the proof is complete. O

3. The generalized stability

The following theorem provides a general condition for which a true solution
discussed in Theorem 1 exists near an approximate solution. For convenience, we
define

Dy f(x1, ..., xXn)

:(”;:22>f(2":x,~)+<:1__21>anf<x,~)— > f(fjxfk), an

i=1 i=1 {it,sim }C P k=1

for any integers m and n with 1 <m < n.
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THEOREM 2. Let 1 <m <n be integers, X be a real vector space, Y be a
Banach space and ¢ : X" — [0, 00) be an even function with respect to each variable.
Define p(x) = ¢(x, x, —x,0,...,0) forallx € X. If

o0

Z 27p2'x) converges forall x € X, and

i=0 (12)
lim 27%¢(2°x1,...,2°x,) =0 forallxy,...,x, €X,

§—>00

or
o.¢]
Z 4i<p(2_ix) converges for all x € X, and
i=1 (13)
lim ¢ 2 °x1,...,2%x,) =0 forallxy, ..., x, €X,
§—>00
and a function f : X — Y satisfies
D f(x15 ooy x| S (X1, ooy xn)  forallxy, ..., xp, €X, (14)
then there exists a unique function T : X — Y that satisfies (1) and, for all x € X,

ILf () 4+ pfO) =Tl

1 1
5 > 27p2'x) + 7 Y 47e@'x) if (12) holds
i =0 =0

IA

= . | & ' (15)
5 > e + 1 > 4p@7x) if (13) holds
i=1 i=1

where p = (((n — 1)(n — 2))/(Bm)) — 1. The function T is given by

lim 27 £,(2°x) + 475 £,(2°x) if (12) holds,
T(x)= """ _ _ . (16)
Yll)rglo 2° f,27%x) +4° £,(27%x) if (13) holds.

forall x € X.

PROOF. We will first prove the theorem for a function ¢ satisfying (12). Putting
(X1, x2, ..., xp) =(x,x, —x, 0,0, ...,0)in (14) and simplifying,

13pf(0) +3f(x) + f(=x) — fEO] = @(x), a7

where p is defined as in the theorem. Replacing x in the above equation by —x,

13pf(0) +3f(—=x) + f(x) = f(=2x%)|| < p(—x) = p(x). (18)
From (17) and (18), we infer that, for all x € X,
13pf(0) +4fe(x) — fe2O)|| < @(x), (19)
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and

12fo0(x) = fo20)Il < @(x).
Define a function g, : X — Y by

ge(x) = fe(x)+ pf(0) forall x € X. (20)

Then (19) becomes
48 (x) — e (2x) || < 9(x),

which can be rewritten as
lge(x) — 47 go(20) | <47 p(x).

For each positive integer s,

s—1

lge(x) —4 g (2°x)|| = Z(4fige(2iX) _ 4Dy (il 1))

i=0
s—1 ) ) )
<Y 4782 x) — 47 g (2 2'0))|
i=0
s—1
<- 24 f9(2x).
=0

Similarly, we can show that, for every integer s,

—1

Ifolx) =27 fo(ZSx)||<—ZZ fp2'x).

i=0

The convergence of the sequence {47 °g,(2°x)} can be settled as follows. For every
positive integer ¢,

[475ge(2°x) — 476D g, (25 x)|| = 47| g (2°x) — 47 g, (2" - 2x)||

1 t—1 . X
Z Z4*l<p(zl - 2°x)

N

1 &
_Z —(i+s) 2l+S)
i=0

From (12), we know that > 72 4_("J'rs)<p(2"fsx) < 3,47 p(2'x) converges; so, it
follows that limy_, oo (1/4) Y20 4= (215x) = 0. Therefore, we have a Cauchy
sequence in a Banach space. Let

T.(x) = Y11)1{.10 475g,(2°x) = Y1_1)1{)1O 475 f,(2°x) forallx € X.
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Thus,
1 & : :
lge() = Te)ll < 3 D 47925,
i=0

Similarly, the inequality on f, leads us to

T,(x) = sl_l)l’rolo 275 f,(2°x) forallx € X,

and

Il fox) — T,(0)|| < % ; 27 (2" x).

If we define a function 7 : X — Y by
Tx)=T,(x)+ T.(x) forallx e X,
then

1f )+ pfO) =T < 1fox) = To(x)l| + 8 (x) = Te (x|

=N I
—1 4 —1 l
=522 (p(2x)+ZZ4 9(2'x).
i=0 i=0
In order to show that T satisfies (1), we will prove that the even part and the odd
part of T satisfy (1). Define the even part and the odd part of D,, f by

Dy f(x1, - X0) + D f(=x1, ..., —Xn)
Dy fo(x1, ..., xp) = m f (X1 n sz 1 "
Dy f(x1, ..., xn) — Dy f(=x1, ..., —Xn)
Dmf(](-x],...,_xn): mf 1 n 2mf 1 n '

For a positive integer s and for all xq, x2, ..., x, € X,

I D fe(2x1, .o, 251 < 31D f 25 x1, ..., 2°x) |
+ 2D f (—=2x1, ., =25x0)|
<dp2x1,...,2°x,).

If we divide the above inequality by 4° and take the limit as s — oo, then the right-
hand side vanishes according to (12) and we obtain from the definition of 7, that

(Z:Z)T@j x,-) + (”:;21) ; L= Y T(i‘ xik>,

i=1 {i1,ecsim}€Pm k=1

for all xy, x2,...,x, € X. We can similarly show that 7, satisfies (1). Hence,
T =T, + T, satisfies (1).
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To prove the uniqueness of T, suppose there exists another function 77 : X — Y
such that T’ satisfies (1) and (15). We have proved in Theorem 1 that 7, satisfies the
quadratic functional equation (2) and 7, satisfies the Cauchy functional equation (3);
therefore, T, (rx) = r2T,(x) and T,(rx) = r T, (x) for every rational number r and for
every x € X. Thus,

IT) = T' O < N1Te(x) = T, + I1T5(x) + T, (0.
For any positive integer s and for each x € X,
ITe(x) = T, ()l = 4| T (2°x) = T,2°0)||
< 47ge(2'x) = T.2"0)|| + 477 |ge(2°x) — T, (2°)|

1
<2.475. 3 > 4Tip@ - 2'x)
i=0

1S :
=3 > 49ty
i=0

Taking the limit as s — oo, we have || T, (x) — T, (x)|| < 0. Thus T, (x) = T, (x) for all
x € X. Similarly, we can show that 7,(x) = T, (x) for all x € X. Hence, T'(x) = T'(x)
for all x € X.

The proof for the case when (13) holds can be done in a similar manner. O

In the next few corollaries, we will give the stability of (1) in various senses. The
following corollary proves the Hyers—Ulam stability.

COROLLARY 3. Ifa function f : X — Y satisfies
D f(x1, %2, ..., xp)ll <€ forallxy, xz, ..., xp €X

for some € > 0, then there exists a unique function T : X — Y that satisfies (1) and

| f(x)+ pf(0) —Tx)| S% forall x € X.

PROOF. Let ¢(x1, x2,...,x,) =¢ for all x1,x2,...,x, € X in Theorem 2.
Hence, ¢(x) = ¢ for all x € X. We can see that (12) holds. Therefore, it follows
from the theorem that there exists a unique function 7 : X — Y such that

1 & . 1 & . 4e
||f(x)+Pf(O)—T(x)||55227'8—#1247’8:? forallx e X. O
i=0 i=0

The following corollary proves the Hyers—Ulam—Rassias stability of (1).

COROLLARY 4. Let p be a real number with 0 < p <1 or p > 2. If a function
f: X = Y satisfies

n
1D f (1, %2, - x| <& ) lxll? forallxi,xa, ..., xa € X (21)
i=1
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for some € > 0, then f(0) =0 and there exists a unique function T : X — Y that

satisfies (1) and
6¢e|3 — 27| »
lfx) —=TX)| < (2—2P)(4_2p)||x|| forall x € X.
PROOF. Substituting x; =x, =---=x, = 0into (21), we obtain

(” B 2)f<0) + (" B 2)nfm) = (”)f(O),
m—2 m—1 m

as in (4). Thus, f(0)=0. Let ¢(x1,x2,...,x,)=¢ Z?zl |lx;||? for all
X1, X2, ..., X, € X. Then ¢(x) = 3¢||x||” forall x € X. If 0 < p < 1, then (12) holds
and it follows from Theorem 2 that

1 & : : 1 & : :
If @) =Tl =3 @32k |1P) + 7 D@32k 17)
i=0 i=0

3¢
_ p p
= 5o I+ =
6e(3 — 27)

lx]|? forall x € X.

T @-2n@E-2)
If p > 1, then (13) holds, and we get a similar result. O

For the generalized stability in the sense of Gavruta [1], we get a superstability
of (1) when n > 3 as stated in the following corollary.

COROLLARY 5. Let p1, p2, ..., pn =0andr =3"7_, piwithO <r <lorr>2.
If a function f : X — Y satisfies

n
1D f ety x2, o x)ll <& [ [ Ilxll? forallxi, xa, ..., xq € X.
i=1

for some ¢ > 0, then:

(1) ifn > 3, then f satisfies equation (1); and
(2) ifn =3, then there exists a unique function T : X — Y that satisfies equation (1)
and
£ =Tl = 2 2L poraitx e x.
T Q2-=-24-=-2"
PROOF. We can show that f(0) =0 by the same substitution used in the proof
of Corollary 4. Let ¢p(x1, x2,...,xX,) =¢ ]_[?:1 |lx; [P for all xi, x2, ..., x, € X.

Then, for all x € X,
0 ifn >3,
p(x) = {

ellx|” ifn=3.
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If n >3, then we can see that f satisfies (1). If n =3, then we consider two
cases: 0<r<1land r>2. If 0<r <1, then (12) holds and for all x € X, by
Theorem 2,

Ifx) =T < % ;@—” e)27x ") + i ;(4—" el 2x|")

[ g —
T2 4 —2r

26(3 —27) .
= "
(2 —2)(4 —2p)

[l 11"

If r > 2, then (13) holds and we get a similar result. O
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