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On the linear response theory of vortex
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Meandering designates the main manifestation of unsteady vortex dynamics observed
in experiments. This study has the twofold objective to (i) develop a theoretical model
describing vortex meandering and (ii) conduct a quantitative and objective evaluation
of the model against experimental data. Based on an analogy with Brownian motion,
we derive the theoretical model in the framework of linear response theory. Taking
the form of a Langevin equation, our model explains meandering as the competition
between external excitation by free-stream perturbations, counteracted by stabilising
intrinsic vortex dynamics. As such, it contains the previous approaches to explaining the
phenomenon as limiting cases, and clearly highlights their shortcomings. The statistical
identification of characteristic regularities in experimental data as well as the assessment of
their consistency with theoretical models are important problems in physics. For samples
obtained from finite-length records of correlated data, these statistical characteristics
are not unique and may show spurious behaviour merely induced by the finiteness of
the sample. Statistical inference provides a systematic and quantitative methodology to
objectively assess the reproducibility of statistical characteristics and to evaluate their
consistency with theoretical models. Their systematic application to the analysis of vortex
meandering has not been done before and provides statistical evidence for our proposed
Brownian-motion-like model. That is, experimental vortex meandering constitutes the
manifestation of a stationary Gauss–Markov random process, which implies that the
dynamics admits an ergodic probability measure.

Key words: low-dimensional models, vortex dynamics, vortex instability

† Email address for correspondence: tobias.boelle@dlr.de

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 997 A38-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:tobias.boelle@dlr.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.606&domain=pdf
https://doi.org/10.1017/jfm.2024.606


T. Bölle

1. Introduction

Vortex meandering is the prototype of the slow response dynamics of an isolated line
vortex evolving in an environment of weakly-structured disturbances. As such, it is
documented to affect a large variety of vortex-dominated flows from engineering to
geophysics. Prominent examples include experiments and simulations of trailing vortices
(Devenport et al. 1996; Jammy, Hills & Birch 2014; Bailey et al. 2018), inlet vortices
(Wang & Gursul 2012) and tornadoes (Karami et al. 2019; Zhang et al. 2023). Despite
its universal observation in experiments since the 1970s (Corsiglia, Schwind & Chigier
1973; Baker et al. 1974), the origin and mechanism of vortex meandering remain puzzling
(Edstrand et al. 2016; Qiu et al. 2021; Bölle 2023).

In essence, past approaches to explain vortex meandering approximately fall into
two families, seeking to attribute the meandering dynamics to extrinsic or intrinsic
mechanisms, respectively (Bölle 2021). In this regard, early studies seem to be influenced
mainly by classical statistical turbulence theory (Tennekes & Lumley 1972). The principal
picture that arose from these studies describes meandering as a stochastic error motion of
a dynamically passive vortex being perpetually ‘beaten’ by the surrounding free-stream
turbulence (e.g. Corsiglia et al. 1973; Baker et al. 1974; Devenport et al. 1996; Bailey &
Tavoularis 2008).

On the other hand, Bandyopadhyay, Stead & Ash (1991) emphasised that ‘the vortex
core is not a benign solid body of rotation but has a dynamic nature’, which was
followed by a general paradigm change towards attributing meandering to deterministic
dynamics intrinsic to the vortex – essentially as some form of an instability (e.g. Jacquin
et al. 2001; Fabre, Sipp & Jacquin 2006; Mao & Sherwin 2012). The identification of
vortex meandering with an instability mechanism basically relies on two characteristics
universally observed in experiments, namely, the monotonic downstream amplification of
the meandering amplitude, and the fact that the dominant vortex response spatial pattern
obtained from a proper orthogonal decomposition of the experimental fluctuation vorticity
qualitatively matches well with marginally stable vortex eigenmodes (Edstrand et al. 2016;
Qiu et al. 2021). However, to the best of the authors’ knowledge, experimental realisations
of line vortices systematically and consistently correspond to linearly stable conditions
(Edstrand et al. 2016; Bölle et al. 2023).

Recently, Bölle (2021) proposed that meandering corresponds to a Brownian motion of
the vortex. Based on this recognition, Bölle (2023) developed a theoretical, stochastic
model within the context of linear response theory (de Groot & Mazur 1984). Two
aspects of this theory have already been proposed in earlier phenomenological models,
namely the Gaussian distribution (Baker et al. 1974) and the downstream (z) amplitude
growth ∼√z (van Jaarsveld et al. 2011). Our approach explains these characteristics
and additionally predicts a vortex meandering spectral (correlation) structure that can
be compared with experiments. In relation to our previous discussion of the historical
development, a Brownian-motion-based model implies that vortex meandering must be
the consequence of a combined intrinsic–extrinsic dynamics. Figuratively speaking, the
vortex’s deterministic own dynamics contributes an intrinsic resistance to perpetual
stochastic external excitation (Chandrasekhar 1943).

Our first objective in this study is to provide evidence for the validity of this
hypothesis on a physical level. To this end, we propose an alternative derivation
of the Brownian-motion-like meandering model on the basis of vortex eigenmodes,
unlike the original model development in terms of a Karhunen–Loève expansion
of the dynamic flow fields (Holmes, Lumley & Berkooz 1996; Bölle 2023).
This more clearly allows a discussion of the relevant mechanisms and previously

997 A38-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.606


Linear response theory of vortex meandering

proposed models. A comparable model assessment does not seem to have been done
so far.

Our suggested model corresponds to the postulate that experimentally observed vortex
meandering is the manifestation of a stationary Gauss–Markov process. Relating theory
and experiment is highly non-trivial, in general. Thus, the second and main objective of
the present study is to introduce a rigorous, systematic and objective approach to assess
the validity of theoretical models from comparison with experiment. In particular, all
analyses should be fully reproducible on alternative datasets, and provide unambiguous
quantitative measures that allow an objective confirmation (or rejection) of the model.
Statistical inference constitutes the required methodological frame, providing several
well-established tools for our purpose (Cramér 1963; Fuller 1996). Of course, we can
never expect observations to fit any theoretical model exactly, all the more as we are
limited to finite samples to compute statistics. Given that deviations of the experiment
from the model are inevitable in practice, statistical inference allows us to assess their
significance and reproducibility on a statistical basis. These questions and the problem
of discriminating between deterministic dynamics and stochastic noise are very common
in signal processing (Yaglom 1962), economics (Abraham & Ledolter 1983; Hamilton
1994; Fuller 1996) and the atmospheric sciences (von Storch & Zwiers 2003; Wilks 2006).
However, as far as we know, systematic use of statistical inference in fluid dynamics
experiments is rather untypical and has never been applied to the problem of vortex
meandering. By means of a systematic application of these tools, we objectively relate
the experimental characteristics to a particular theoretical model for the first time. That is,
we show that the experimental dataset under consideration is statistically consistent with
the Brownian motion model proposed by Bölle (2023).

The paper is organised as follows. First, in § 2 we briefly review the experiment leading
to vortex meandering, and summarise the universal characteristics of the phenomenon.
We then develop and discuss a theoretical model in the framework of linear response
theory in § 3. This model allows the derivation of characteristics that are amenable to
statistical verification in experiments. To this end, we introduce the essential terminology
and concepts from statistical inference of importance for this study in § 4. Finally, we
discuss the application of these tools to the experimental data in § 5, and conclude the
main results in § 6.

2. Review of the experimental basis of vortex meandering

In the first part of this section, we briefly present the experiment underlying this study. Our
discussion of the dynamical characteristics in § 1 suggests modelling vortex meandering
as a stochastic process. Therefore, we subsequently recall the relevant concepts and
terminology from the theory of stochastic processes. Finally, we propose a definition of
the phenomenon based on experimentally measurable quantities, and resume the universal
meandering characteristics.

2.1. Outline of the experiment
In the present study, we rely on a wind tunnel experiment that was conducted at ONERA,
the French Aerospace Lab. We only briefly recall the essential elements here, referring to
Bölle et al. (2023) for a detailed discussion of the set-up and instrumentation.

The vortex is generated by a rectangular wing model with NACA 0012 profile, chord
length c = 0.125 m and wing span b = 0.5 m, which is suspended from the wind tunnel
ceiling. The free-stream velocity is set at U∞ = 20 m s−1, yielding the chord-based
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ρ̂ii(τ)

φ̂i

φ̂i
xi(t) f̂ Xi(xi)

Figure 1. Smoke visualisation of vortex meandering in an experiment (image courtesy Thomas Leweke,
IRPHE-CNRS, Marseille, France) and the associated universal principal characteristics in a fixed measurement
plane. The variance of the streamwise vorticity component is progressively concentrated in a pair of dipolar
patterns (leading proper orthogonal decomposition modes φ̂i(r), i = 1, 2). A sample of the associated principal
component xi(t) over the measurement time t is shown by a black line (arbitrary scaling). These time series
are empirically Gaussian distributed f̂Xi (xi) and have approximately exponential autocorrelation ρ̂ii(τ ) ≈
exp(−λ̂iτ), where λ̂i denotes the estimated reciprocal vortex response time.

Reynolds number cU∞/ν ≈ 1.7× 105. The turbulence intensity in the empty wind
tunnel is less than 5× 10−3. High-speed stereoscopic particle image velocimetry (PIV)
measurements are taken in five transversal measurement planes at constant locations
between 2 and 26 chords downstream from the wing. As our interest here is in the temporal
dynamics at a fixed downstream position, we restrict to measurements taken in the last
plane at 26 chords behind the wing. We denote by r ∈ R

2 the Cartesian coordinates in this
plane centred in the mean vortex-centre position. Images are taken at a sampling frequency
fs = 3× 103 Hz, corresponding to a time step �t = 3.3× 10−4 s between subsequent
measurements. In each measurement run, N = 4096 snapshots are recorded, implying
a measurement time T = N �t ≈ 1.37 s. The experiment is repeated in ten identically
prepared runs.

A snapshot of the meandering vortex in a smoke visualisation realised in another
facility by T. Leweke (CNRS-IRPHE, Marseille, France) is shown in figure 1 for
illustration. In this perspective view, the vortex, corresponding to the light-grey tubular
structure, is generated on the left-hand side and propagates to the right, out of the plane.
Meandering denotes the clearly visible lateral displacement of the vortex, thus requiring
two independent variables for its characterisation in a fixed measurement plane. The erratic
nature of the vortex motion suggests modelling meandering as a bivariate random process,
which, provisionally, we refer to as xi(t), i = 1, 2, deferring the definition to § 2.3.

It is generally admitted that vortex meandering is associated with the energy-carrying,
slow scales of the vortex dynamics (Devenport et al. 1996; Jacquin et al. 2001; Roy &
Leweke 2008; Bailey et al. 2018; Bölle 2021). We therefore apply a low-pass filter to
xi(t) in order to restrict to the governing temporal scales and remove some measurement
noise at high frequencies. Inspection of the associated power spectra suggests applying a
low-pass filter at a cut-off frequency fc = 300 Hz, i.e. fc/fs = 0.1 compared with the PIV
sampling frequency. The corresponding cut-off period is �tc = 1/fc = 3.3× 10−3 s, or
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Linear response theory of vortex meandering

�tc/�t = 10 in terms of the PIV sampling period. By the Nyquist–Shannon sampling
theorem, this implies the highest resolved frequency fr ≤ 0.5fc = 1

20 fs = 150 Hz, or
equivalently, periods longer than �tr ≥ 2 �tc = 20 �t.

A characteristic statistical time scale associated with a random process is its integral
scale, defined as 𝓉I := ∫∞0 dτ ρ(τ), where ρ(τ) denotes the autocorrelation function
in (2.5) below (von Storch & Zwiers 2003). In turbulent flows, 𝓉I is understood to
characterise the energy-carrying, slow scales and should therefore be the pertinent scale for
vortex meandering (Tennekes & Lumley 1972). From the experimental data, we estimate
�̂�I/�t ≈ 102, i.e. the integral scale dynamics is probed about 100 times. In terms of
the low-pass filtered data, �̂�I/�tc ≈ 10, such that �̂�I/�tr ≈ 5. We conclude that the
energy-carrying processes of the order of the integral scale are resolved in the experiment.

2.2. Review of the relevant elements from the theory of stochastic processes
We recall here some relevant terminology from the theory of stochastic processes; refer to
Chandrasekhar (1943), Yaglom (1962) and de Groot & Mazur (1984) for details.

From our discussion of the experiment in § 2.1, we postulate that vortex meandering
is described by the bivariate random process t 	→ Xi(t) (i = 1, 2). If we further assume
that vortex meandering is Markovian (cf. §§ 1 and 5), then knowledge of the equilibrium
distribution f (x) and the transition probability f (x0 | x, t) fully characterises the random
process. Here, we anticipate that meandering is a stationary process in the measurement
time (cf. § 5.3) and assume the existence of an initial state x0 such that also the transition
probability is stationary (de Groot & Mazur 1984). This is, of course, consistent with the
expected dynamics of an experiment. We thus define the general stochastic moments

g(x)
eq =

∫
R

d2x f (x) g(x), (2.1)

g(x)
x0

(t) =
∫

R

d2x f (x0 | x, t) g(x). (2.2)

In particular, the expectation and variance are defined by

μi(t) = E(Xi(t)) = xi
x0(t) and σ 2

i (t) = V(Xi(t)) = (xi − xi
x0)2x0

(t). (2.3a,b)

We suppose that the process is stationary in any fixed measurement plane of § 2.1, and
introduce the joint distribution function FXiXj(xi, xj; τ), |τ | ≥ 0, where i, j denote any two
components of X (t) mutually separated by the lag τ . Supposing that the two component
processes Xi(t) and Xj(t) (i, j = 1, 2) have zero expectation, the covariance is defined as

Cij(τ ) = E(Xi(t) Xj(t + τ)) =
∫

R2
xixj dFXiXj(xi, xj; τ), |τ | ≥ 0, (2.4)

and the cross-correlation follows from normalisation:

[−1, 1] � ρij(τ ) = E(Xi(t) Xj(t + τ))

σiσj
. (2.5)

The Wiener–Khinchin theorem relates the covariance function (2.4) and the power
spectrum Gij(ω) in terms of the Fourier transform pair

Gij(ω) = 1
2π

∫
R

dτ e−iωτ Cij(τ ), Cij(τ ) =
∫

R

dω eiωτ Gij(ω). (2.6a,b)
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2.3. Definition of vortex meandering and kinematic–dynamic equivalence
Meandering denotes the lateral displacement of the vortex core, clearly visible in figure 1,
which readily suggests defining vortex meandering as the motion of the vortex centre. To
this end, let V be a subset of the measurement plane that contains the vortex core for all
times. Then the vortex centre is defined as (i = 1, 2)

rv,i(t, z) := 1
Γ

∫
V

d2r ri w(t, z, r), where Γ (t, z) :=
∫

V
d2r w(t, z, r) (2.7a,b)

denotes the circulation contained in V , and (t, z) 	→ w(t, z) is the spatiotemporal evolution
of the streamwise vorticity component along the measurement section. Equation (2.7a,b)
expresses vortex meandering as the kinematic motion of a geometrical point in space.

In order to obtain a dynamic formulation of the problem, we assume that (t, z) 	→ w(t, z)
is a spatiotemporal random process and apply the Reynolds decomposition w(t, z, r) =
w̄eq(r)+ w′(t, z, r) (de Groot & Mazur 1984). Here, we assume that the mean vorticity
w̄eq(r) is stationary and homogeneous, and further expand the fluctuation vorticity as
w′(t, z) =∑∞k=1 xk(t, z) φk(r), where φk(r) are the spatial modes obtained from a proper
orthogonal decomposition (POD) of the streamwise component of the fluctuation vorticity
(details are given in § 5.1). In figure 1, the typical dipolar pattern of these POD modes is
shown by the red–blue contour plots, where φ1(r) and φ2(r) are mutually rotated by 90◦
(see also Roy & Leweke 2008; Edstrand et al. 2016; Karami et al. 2019). Recognising
the distinct symmetry of the integrals defined in (2.6a,b), we now use this expansion
to express the kinematic meandering motion in terms of the leading POD modes φk(r).
A similar approach was first applied by Bölle (2023) to the respective covariance operators,
where also an estimate of the approximation error is derived.

From (2.7b), we see that only vorticity distributions that are symmetric in the Cartesian
frame can have a contribution to the circulation, while any skew-symmetric vorticity
patterns integrate to zero. Since the mean vorticity field is essentially axisymmetric (Bölle
et al. 2023), to leading order,

Γ (t, z) =
∫

V
d2r

[
weq(r)+

∞∑
k=1

xk(t, z) φk(r)

]
≈
∫

V
d2r weq(r) = const. (2.8)

Analogously, the vortex-centre integral (2.7a) is such that only skew-symmetric
vorticity distributions can have a non-zero contribution. As recalled previously, we have
considerable experimental evidence that the dominant vortex response modes are indeed
skew-symmetric with the characteristic dipolar pattern shown in figure 1. We therefore
obtain, to leading order (i = 1, 2),

rv,i(t, z) = 1
Γ

∫
V

d2r ri

[
weq(r)+

∞∑
k=1

xk(t, z) φk(r)

]
≈
[

1
Γ

∫
V

d2r ri φi(r)
]

xi(t, z).

(2.9)

Without loss of generality, we can take the coordinates ri in (2.9) along the principal
axes e1, e2, which are aligned with the leading dipolar vortex response modes (see figure 3
below). Due to orthogonality of the POD modes, riφk ∼ δik, i, k = 1, 2, and evaluating the
last term in brackets in (2.9) gives a constant factor. This shows that rv,i(t, z) ∼ xi(t, z),
i = 1, 2, i.e. the experimentally visible meandering motion (cf. figure 1) is proportional
to an equivalent meandering motion in the phase space of the fluctuation dynamics.
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Linear response theory of vortex meandering

In particular, meandering is, to leading order, confined to the two-dimensional manifold
spanned by the leading two POD modes. We verified that this proportionality holds in the
experiment (not shown); see also Bölle (2023, figure 3).

We emphasise that this derivation shows that vortex meandering is indeed associated
with the variance-carrying modes (namely the leading POD modes). This was conjectured
previously (e.g. Roy & Leweke 2008; Edstrand et al. 2016; Dghim et al. 2021) and
already anticipated in § 2.1, but to the best of the authors’ knowledge, has never been
shown rigorously (part of the result has already been given in Bölle 2023). Thus, in what
follows, we consider the bivariate spatiotemporal random process xi(t, z) = (w′(t, z), φi)
of principal components. A typical record in a fixed measurement plane at z = const. is
shown in figure 1.

2.4. The universal vortex meandering characteristics
Before introducing our theoretical meandering model in § 3, it is instructive to recall the
principal meandering characteristics observed universally in experiments. Therewith, we
pursue the twofold objective to (i) motivate our modelling strategy and (ii) lay down the
minimum features that any candidate model must explain. For measurements taken in
a fixed plane, these universal meandering characteristics are superposed on the smoke
visualisation shown in figure 1 for the sake of illustration.

The identification of vortex meandering with a bivariate random process implies that a
full characterisation would, in principle, require knowledge of all finite joint probability
distributions (Yaglom 1962). In practice, we have considerable experimental evidence
that the second-order correlation structure already encodes all essential aspects of the
phenomenon. In particular, previous studies unanimously suggest the following.

(i) The empirical probability distribution of vortex meandering is close to Gaussian
(e.g. Baker et al. 1974; Devenport et al. 1996; Bailey & Tavoularis 2008; Dghim
et al. 2021).

(ii) The standard deviation of the vortex-centre position (referred to as meandering
amplitude) increases monotonically downstream (e.g. Devenport et al. 1996; van
Jaarsveld et al. 2011; Edstrand et al. 2016).

(iii) The associated leading-order vortex response corresponds to a dipolar fluctuation
vorticity pattern approximately confined to the vortex core (e.g. Roy & Leweke 2008;
Edstrand et al. 2016; Karami et al. 2019; Bölle et al. 2023).

(iv) The vortex response has a continuous power spectrum in each measurement
plane, with variance levels monotonically increasing towards low frequencies (e.g.
Devenport et al. 1996; Bailey & Tavoularis 2008; Bölle 2023). Equivalently, the
estimated autocorrelation functions ρ̂ii(τ ), shown in grey in figure 1, approximately
follow an exponential autocorrelation function ρii(τ ) = exp(−λiτ), where λi
denotes the reciprocal vortex response time.

While the importance of (some of) these features for the characterisation of vortex
meandering was realised repeatedly (Baker et al. 1974; Devenport et al. 1996; Jacquin et al.
2001; van Jaarsveld et al. 2011; Edstrand et al. 2016), it seems that Bölle (2021) was the first
to explicitly state that these characteristics are the typical signature of a Brownian motion
(Chandrasekhar 1943; de Groot & Mazur 1984). To the best of the authors’ knowledge, the
first attempt at formulating a closed theory on this recognition is due to Bölle (2023).
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3. Linear response theory of vortex meandering

In this section, we gradually introduce a linear stochastic model of vortex meandering.
First, § 3.1 reviews the basic elements of a linear model approach. While this model
still allows for very different mechanisms, we argue in § 3.2 that some can be precluded
on experimental facts. On account of the phenomenology, we propose a conceptual
meandering model in § 3.3, and derive characteristics that can be compared against
experiments in § 3.4.

3.1. Derivation of a linear model of vortex meandering
Principally, the entire state of the system (vortex) is described by the generic dynamical
variable q(t, z, r), for which the Reynolds decomposition q(t, z, r) = q̄eq(r)+ q′(t, z, r)
holds. As we are interested in only one particular aspect of the system dynamics
(namely that associated with the meandering motion), we implicitly restrict to the pertinent
submanifold of the dynamical variables. We then assume that, at least within this manifold,
the dynamical variables obey a linear evolution equation of the form

∂q′

∂t
+ U∞

∂q′

∂z
= Lq′ + ξ , (3.1)

subject to initial and boundary conditions. In (3.1), L = L[q̄eq, ∇, R] denotes the
symbolic linearised Navier–Stokes operator evaluated at the vortex mean state q̄eq and
parametrised by the Reynolds number R. The forcing ξ represents the integral effect of
the second-order nonlinear fluctuation dynamics, which is essentially localised in the free
stream surrounding the vortex.

In our discussion so far, we have argued that the meandering dynamics corresponds
to the spatiotemporal transport (t, z) 	→ xi(t, z), which suggests the separation ansatz
q′(t, z, r) = a(t, z) q̂(r) of the corresponding dynamical variables. Then xi[q̂](t, z) is a
function of the dynamical field q̂(r) in the measurement plane.

Equation (3.1) corresponds to a description of the dynamics in a lab-fixed frame of
reference. By the method of characteristics, we readily obtain the corresponding ordinary
differential equation

dq′

dt
= Lq′ + ξ , q′(0) = q0, (3.2a,b)

where the initial condition is supposed to be a sure event (Chandrasekhar 1943; de
Groot & Mazur 1984). Equations (3.2a,b) describe the vortex meandering dynamics as
seen by a co-moving observer along the ray z− U∞t = z0. This coordinate transform
is corroborated by the finding that Taylor’s hypothesis holds for vortex meandering
perturbations (Jacquin et al. 2001).

Equations (3.2a,b) forms a vector-valued Cauchy problem. Its solution t 	→ q′(t), q′(t) ∈
L2(M) for all t, traces a trajectory in the function space of spatial distributions of the
dynamical variable in the measurement plane M released from the definite initial state
q0. The space of square-integrable functions L2(M) is endowed with the inner product
( f , g) := ∫M d2r

∑
i fi(r) g∗i (r), with induced norm ‖ f ‖ := √( f , f ).

Denoting by L∗ the formal adjoint to L with respect to the inner product, the respective
eigenvalue problems read

Lui = λiui and L∗vi = λ∗i vi, (3.3a,b)

where bi-orthogonality (vi, uj) = (vi, ui) δij holds. While principally we expect
the eigenmodes to form a complete set to expand the linear vortex dynamics
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(Fabre et al. 2006; Roy & Subramanian 2014), we assume that the meandering motion is
represented by n relevant eigenmodes, in particular. Thus, we introduce the eigenvalue and
eigenmode matrices Λij = λiδij and U = [u1, u2, . . . , un], V = [v1, v2, . . . , vn]. Using
the eigenmode expansion q′(t) =∑n

j=1 aj(t) uj in (3.3a,b) yields

da
dt
= Λa+ f , a(0) = a0, (3.4a,b)

upon projection onto the corresponding adjoint eigenmodes, where fj(t) := (vj, ξ(t)) and
a0,j = (vj, q0). The general solution of (3.4a,b) reads

a(t)− etΛ a0 = etΛ
∫ t

0
ds e−sΛ f (s), (3.5)

describing the dynamics in the manifold spanned by the n relevant eigenmodes. The
corresponding evolution in physical space readily follows from expansion in the respective
eigenmodes,

q′(t)− U etΛ a0 = U etΛ
∫ t

0
ds e−sΛ f (s). (3.6)

Unlike this description of the dynamics in terms of eigenmodes, its characterisation in
experiments is in terms of POD modes (see § 2). Alternative modal descriptions, e.g. by
dynamic mode decomposition (Gutierrez-Castillo et al. 2022), are only recent to the best
of the authors’ knowledge. We notice that the combined analysis in terms of POD and
eigenmodes is a common approach (de Groot & Mazur 1984). Projection of (3.6) onto the
ith POD mode φi yields

(φi, q′(t)) = φ∗i U etΛ
[

a0 +
∫ t

0
ds e−sΛ f (s)

]
(3.7)

⇐⇒ xi(t) =
n∑

j=1

(φi, uj) etλj

[
(vj, q0)+

∫ t

0
ds e−sλj (vj, ξ(s))

]
. (3.8)

Equation (3.8) identifies two general processes that contribute, in principle, to
experimentally observed vortex meandering xi(t), namely (i) the amplification of initial
perturbations and (ii) sustained forcing. Furthermore, since the eigenmodes uj are not
orthogonal, there will, in general, be several with non-null projection onto the ith POD
mode. Thus, principally very different mechanisms may result in a practically identical,
experimentally indistinguishable vortex response. Analyses of the different modal and
non-modal growth mechanisms have been the subject of numerous previous studies (e.g.
Antkowiak & Brancher 2004; Fabre et al. 2006; Fontane, Brancher & Fabre 2008; Hussain,
Pradeep & Stout 2011; Mao & Sherwin 2012; Edstrand et al. 2016; Viola, Arratia &
Gallaire 2016; Bölle et al. 2021; Qiu et al. 2021). The important point to be made here
is that all these different approaches identify the same dipolar response pattern observed
experimentally, yet by different physical mechanisms. Hence, which mechanism was
operational in a particular experiment cannot be decided principally by solely inspecting
the vortex response expanded in POD modes.

To the best of the authors’ knowledge, which interaction pair {ui, vi} is the most relevant
in the experiment cannot be decided at present. Optimal forcing structures found in theory
typically carry several orders of magnitude less energy than the associated response
patterns, which makes their detection with standard tools focusing on variance-governing
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modes (such as POD) difficult. Furthermore, they usually have a fine-grained, filament-like
spatial structure that is not resolved in experiments, and even if it were, there is no reason
to expect actually realised forcing to resemble the theoretical optimal. In fact, this is not
even needed, since already a non-zero projection suffices. It is, however, possible to reject
some mechanisms a posteriori, since the dynamical consequences are experimentally not
observed.

At this point, it is convenient to pause our development of the meandering model to
discuss the possible mechanisms. This will provide orientation about the next steps, as we
can exclude some mechanisms on the basis of experimental evidence.

3.2. Discussion of the candidate mechanisms
In retrospect, it appears that previous attempts at explaining vortex meandering
concentrated on only some of the universal characteristics identified in § 2.4. Early studies,
emphasising the Gaussian distribution and broadband spectral signature, concluded that
meandering is essentially the consequence of an ‘inactive vortex being beaten by the
surrounding turbulence’ (e.g. Baker et al. 1974; Devenport et al. 1996), much like a
‘passive tracer’ (van Jaarsveld et al. 2011). On the other hand, already Bandyopadhyay
et al. (1991) emphasised the ‘dynamic nature’ of the vortex, suggesting that meandering
is not ‘purely an artefact of the wind-tunnel environment’ (Edstrand et al. 2016). Rather, it
was suggested that meandering should be the consequence of an instability (e.g. Jacquin
et al. 2001; Edstrand et al. 2016; Qiu et al. 2021). This shift in modelling paradigm was
accompanied (or caused) by a change of the emphasised meandering characteristics to
an exclusive consideration of the downstream amplitude growth and the dipolar vortex
response pattern (cf. § 2.4).

The basic argument in favour of an instability mechanism is founded on the recognition
that the leading POD mode pair, the fractional variance of which grows monotonically
downstream, closely resembles eigenmodes found in stability analyses (Edstrand et al.
2016). Our above derivation (cf. (3.8)) implies that this conclusion cannot actually be
drawn from the mere comparison of POD and eigenmodes. Even more, we are not aware
of any vortex meandering experiment providing convincing evidence for the existence
of an instability (Jacquin et al. 2001; Fabre & Jacquin 2004; Bailey & Tavoularis 2008;
Edstrand et al. 2016; Bölle et al. 2023). This provides strong evidence that experimentally
realised, isolated line vortices are in fact stable, and that we have to reject instability sensu
stricto as the underlying mechanism.

Staying with the homogeneous solution in (3.8), it was conjectured that vortex
meandering may be the consequence of transient growth (e.g. Fabre & Jacquin 2004; Roy
& Leweke 2008; Mao & Sherwin 2012; Lee & Marcus 2024). Largely independent of
the Reynolds number, Antkowiak & Brancher (2004) show that the time 𝓉opt required
to reach the optimal amplification by a transient-growth mechanism is of the order of
ten rotation periods. That is, 𝓉opt/𝓉r ∼ 10, where 𝓉r := 2π𝓁2Γ −1∞ denotes the rotation
time scale. Further defining the advection time scale 𝓉a := cU−1∞ , we readily estimate
𝓉opt/𝓉a ∼ 1 with the estimated ratio 𝓉r/𝓉a ∼ 10−1. This estimation suggests that transient
growth operates over a downstream distance of the order of one chord length, contrary to
the monotonic amplitude growth over downstream ranges of the order of at least ten chord
lengths in experiments (Devenport et al. 1996; Bailey & Tavoularis 2008; van Jaarsveld
et al. 2011; Bölle et al. 2023).

Eventually, we note that this estimation is consistent with the experiment of Bailey et al.
(2018), who speculated that the vortex response may have contributions from transient
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Linear response theory of vortex meandering

growth in their first measurement plane, albeit their experiment suggests that transient
growth, even if it persisted afterwards, seemed overwhelmed by other mechanisms and
was not clearly discernible for increased free-stream turbulence intensity. Therefore, while
transient growth is likely not the governing mechanism of vortex meandering, the results
nevertheless suggest that the underlying mechanism plays a role in experimental vortex
dynamics.

We have considerable experimental evidence that changes in the intensity of the
free-stream turbulence (e.g. grid turbulence) affect vortex meandering quantitatively rather
than qualitatively (van Jaarsveld et al. 2011; Bailey et al. 2018). That is, enhanced
free-stream turbulence intensities increase the meandering strength, but seem not to affect
the principal characteristics. This suggests that meandering may be the result of some
resonance mechanism, in which the vortex constitutes a self-stabilising entity that is
continuously excited by the surrounding free-stream turbulence. The stabilising intrinsic
vortex dynamics is associated with (Kelvin) waves propagating along the vortex core
(Jacquin et al. 2001; Fabre & Jacquin 2004). In fact, very likely both aspects – sustained
external forcing and intrinsic, stabilising vortex dynamics – are relevant (Bandyopadhyay
et al. 1991; Fontane et al. 2008; Bailey et al. 2018).

Generally, the most important contribution to (3.8) will be from those perturbations that
together maximise the different projections and are not too strongly damped. Theoretical
studies indicate the existence of two near-neutral eigenmode families, referred to as D and
L1 by Fabre et al. (2006), for which the vortex response pattern visually resembles the
leading POD mode. While the displacement (D) waves are associated with an effectively
normal linear operator, critical-layer (L1) waves are at the heart of the non-normal
dynamics (Antkowiak & Brancher 2004; Fontane et al. 2008; Bölle et al. 2021). On
account of our discussion, we assume that vortex meandering is essentially governed
by a critical-layer dynamics. Thence, supposing a single governing mode j, introducing
the shorthand identifications x0,i ← (φi, uj)(vj, q0) and fi(t)← (φi, uj)(vj, f (t)), (3.8)
simplifies to

xi(t)− etλi x0,i = etλi

∫ t

0
ds e−sλi fi(s) (i = 1, 2), (3.9)

where we have used the experimental evidence that meandering is associated with the
leading two POD modes (§ 2.3).

From the stability analysis of Fabre et al. (2006), we estimate that a characteristic vortex
response time scale 𝓉s = λ−1

i should to be of the order of 𝓉s/𝓉r ∼ 102. With our above
scale estimates, we readily obtain 𝓉s/𝓉a ∼ 10, in agreement with our previous conclusions.

3.3. Phenomenology and conceptual vortex meandering model
In order to frame vortex meandering in the concepts of statistical mechanics, we start from
an abstraction of the general experimental set-up outlined in § 2.1. To a first approximation,
we may consider the experimental configuration as consisting of an isolated vortex
evolving in a (weakly) turbulent free stream. In the language of statistical mechanics, we
identify the vortex with our system, and refer to the free-stream turbulence as a heat bath.
The intensity of the heat bath will be given by the free-stream turbulence intensity 𝓊 of
the empty facility.

As a qualitative model of the heat bath, we may imagine the free-stream turbulence
filling the wind tunnel to be an assembly of a very large number of small-scale vortices,
evolving rapidly over a very short time scale 𝓉f . We therefore assume that the free-stream
turbulence has no particular spatial or temporal structure, thus being characterised by
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stationary and homogeneous statistics. Putting the large-scale vortex in the heat bath,
we think of the small-scale vortices exerting minute excitations in very rapid succession.
While we do not know the details of each elementary excitation, slow (scale 𝓉s) reactions
of the large-scale vortex integrate over time. This essentially corresponds to a Brownian
motion – where each elementary excitation is highly complicated and unobserved, the
integral effect of very many minute events accumulates to a macroscopic and visible effect,
manifest in figure 1.

On account of this phenomenology, we assume that the time scale separation 𝓉s � 𝓉f
holds between the characteristic scales of the large-scale vortex and the surrounding
small-scale turbulence. Then on the slow time scale 𝓉s, the forcing approximately
corresponds to a white noise process, with

f̄ x0
i (t) = 0, fi(s) fj(t)

x0 = 2Bij δ(t − s) (i, j = 1, 2), (3.10a,b)

where Bij determines the strength and mutual correlation of the forcing. With this
additional assumption on the forcing statistics, (3.4a,b) corresponds to a Langevin
equation, while its solution (3.5) (or (3.9)) is known as an Ornstein–Uhlenbeck process,
describing a Brownian motion (Chandrasekhar 1943; Yaglom 1962; de Groot & Mazur
1984). We emphasise that consequently, framing vortex meandering as a problem in
stochastic mechanics contains both previous explanation families (cf. § 1) as limiting
cases. Linear deterministic dynamics results as the external fluctuations asymptotically
tend to zero, while a purely externally driven dynamics would be the consequence of a
vanishing intrinsic vortex resistance.

3.4. Non-equilibrium dynamics of the Langevin system
Equations (3.9)–(3.10) summarise our final vortex meandering model, taking the form of
a Langevin equation. In the following, we derive characteristic model properties that can
be evaluated statistically in experiments. The relevant methodology for this purpose will
be introduced in § 4.

3.4.1. Gaussian probability distribution
Our assumption of time scale separation implies the existence of an intermediate time
increment �t such that 𝓉f � �t � 𝓉s. We can then expand the particular solution as

x(t)− etΛ x0 = etΛ
∫ t

0
ds e−sΛ f (s) = etΛ

K−1∑
k=0

∫ (k+1) �t

k �t
ds e−sΛ f (s)

≈
K−1∑
k=0

e(t−k �t)Λ
∫ (k+1) �t

k �t
ds f (s) =

K−1∑
k=0

e(t−k �t)Λ W (�t). (3.11)

Here, we have used that due to time scale separation, the exponential function is practically
constant over the time increment. Formally, (3.11) expresses meandering as a random walk,
where each ‘step’ W (�t) of the vortex is the integral over a succession of a great many
minute excitations,

∫ (k+1) �t
k �t ds f (s). Thus, the slow vortex fluctuation dynamics is the

sum over a large number K � 1 of independent, identically distributed excitation events.
By the central limit theorem, we therefore conclude that the vortex dynamics must have a
Gaussian distribution (Chandrasekhar 1943, Lemma I on p. 23).
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Linear response theory of vortex meandering

3.4.2. Two-point statistics in evolution time
If meandering corresponds to a Markov process, we further need to specify the correlation
structure to obtain a complete classification of the stochastic dynamics.

Taking the mean of (3.9) for a trajectory started from a definite initial perturbation yields

x̄x0(t) = etΛ x0 (3.12)

on account of the forcing statistics (3.10). Equation (3.12) is formally identical to the
homogeneous solution of the associated deterministic problem, and as such, subject to the
linear-stability and transient-growth studies discussed in § 3.2. That is, in a systematically
stochastic theory, practically deterministic dynamics is an approximation valid in the limit
of a sharp transition probability density f (x0 | x, t) (de Groot & Mazur 1984).

The leading-order variability around the mean trajectory (3.12) is given by the
covariance

C(t) = (x− x̄x0)(x− x̄x0)∗x0
(t) = 2

∫ t

0
ds e(t−s)Λ B e(t−s)Λ∗ . (3.13)

Further, let Ceq be the covariance associated with the equilibrium probability distribution.
Then the competition between sustained stochastic excitation by the surrounding free
stream and the intrinsically stabilising vortex dynamics (cf. § 3.2) implies asymptotic
convergence, Ceq = C(t→∞). The fluctuation–dissipation theorem (de Groot & Mazur
1984)

ΛCeq + CeqΛ∗ = 2B (3.14)

uniquely relates the equilibrium covariance of the vortex response to the intensity of the
exciting turbulence. A POD of the fluctuation–dissipation theorem (3.14) is the subject of
stochastic forcing analyses (Farrell & Ioannou 1996; Fontane et al. 2008).

For the particular case of modal dynamics (3.9), the components of (3.13) uncouple and
we obtain the variance evolution

σ 2
i (t) = (xi − x̄x0

i )2
x0

(t) ∼ 𝓊2
(

1− e2λit
)

(i = 1, 2) (3.15)

upon setting Bij ∼ 𝓊2 δij (Bölle 2023). For t of the order of the vortex response time 𝓉s =
λ−1

i , we approximate (3.15) by its leading-order expansion (Bölle 2023)

σ 2
i (t) ∼ 2𝓊2λit ∼ 2𝓊2 t

𝓉s
. (3.16)

This law of variance growth was proposed on phenomenological reasoning by van
Jaarsveld et al. (2011), and found to hold for other experiments (Bailey et al. 2018; Bölle
2021, 2023).

3.4.3. Two-point statistics in measurement time
By design, we expect experiments to have reached stationarity when performing
measurements (cf. § 5.3). Measurement sequences in fixed planes (at z = const.) are
then amenable to Fourier analysis. For the Langevin model (3.9)–(3.10), the equilibrium
autocovariance function and power spectrum read (Yaglom 1962; von Storch & Zwiers
2003)

Cii(τ ) = σ 2
i e−λi |τ | and Gii(ω) = σ 2

i λi

π

1
λ2

i + ω2
i

(i = 1, 2). (3.17)

We recall that our Brownian motion vortex meandering model is essentially
parametrised by two variables, 𝓊 and 𝓉s, measuring the strength of the surrounding
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turbulence and the vortex response time scale, respectively. This is in agreement with
the findings of van Jaarsveld et al. (2011) and Bailey et al. (2018), who assumed that 𝓉s
was given by the vortex rotation time scale 𝓉r. In § 3.1, we show that 𝓉s is related to the
eigenvalues of the linearised vortex dynamics, and more specifically, argue in § 3.2 that
vortex meandering may likely be associated with critical-layer vortex waves. Hence, in
principle, 𝓉s can be determined if the vortex mean flow and the external flow parameters
(e.g. Reynolds number) are known. We have considerable experimental evidence that
vortex meandering is directly proportional to the intensity of the surrounding turbulence
but not affected by its spectral signature (Bailey & Tavoularis 2008; van Jaarsveld et al.
2011; Bailey et al. 2018; Dghim et al. 2021). This is reflected in the model proposed
here. Thus, the formulae of this section could in principle also be used to predict vortex
meandering, provided that the vortex mean flow, the Reynolds number and the turbulence
intensity are known. These predictions should capture the right qualitative behaviour;
however, a quantitatively correct prediction of the meandering motion would require
scaling terms of order unity omitted here (cf. §§ 3.1–3.2 and Bölle 2023).

4. Statistical inference: relating theory and experiment

So far in this study, we have disposed of two descriptive elements for the phenomenon
of vortex meandering, namely (i) the mathematical model introduced in § 3, and (ii) an
experiment relative to the phenomenon in question (cf. § 2). While at the outset these
two elements pertain to entirely different spheres (Cramér 1963), we derived model
characteristics in § 3.4 that can be estimated in experiments. Statistical inference provides
the theoretical frame and tools to assess given statistical data in the context of the adopted
model. This, principally, gives us the possibility of confirming or rejecting our model on
an objective and reproducible statistical basis.

4.1. Sampling
For the purpose of this study, we formally identify the wind tunnel experiment with a
random experiment 𝔈. One realisation of 𝔈 corresponds to a spatial meandering trajectory
z 	→ X(t)(z), drawn at random from the totality of all admissible meandering paths (called
the population). In this sense, the snapshot shown in figure 1 for some time instant
t represents one such realisation of 𝔈. Keeping the experimental conditions fixed and
running the wind tunnel experiment over a certain time T , while recording the outcomes
at the rate �t, corresponds conceptually to the repetition of 𝔈 N = T/�t times. The result
of one measurement run will be a sequence of particular realisations, all drawn at random
from the same probability distribution. This subset of the entire population is called the
sample (Cramér 1963). Current experiments do not resolve the downstream meandering
trajectory; rather, only samples gathered in a small number of measurement planes at
fixed z (cf. § 2.1) are experimentally available. Thus, while principally 𝔈 corresponds to a
function-valued random process, our further analysis is limited to scalar-valued samples.
Let us formalise these notions.

Consider a random experiment 𝔈 connected with a random variable X taking values
from some parent population, R say, according to the distribution function FX(x). Suppose
that we repeat 𝔈 N times; then the outcome of the nth trial is the actual realisation
X(n) = xn, where n = 1, 2, . . . , N. The set of realisations x(k)

N = {x(k)
1 , x(k)

2 , . . . , x(k)
N } ⊂ R

is called a random sample. Of course, we could, in theory, repeat the sampling process,
i.e. drawing N times anew from 𝔈, which leads to another equally possible random sample
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κ̂(1) κ̂(2) κ̂(3)κ0
κp̃
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κp̃

+ κ

κ̂p̃
U(1)

κ̂p̃
U(2)
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κ̂p̃
L(2)

κ̂p̃
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(2) = { x

1
(2), x

2
(2) ,..., xN

(2)}

N
(2)

N
(3)

N
(1)

Reject Non-reject Reject(a) (b)

Figure 2. Basic elements of the theory of estimation and hypothesis testing. (a) Schematic of the sampling
process for the random variable X having probability density fX(x) (empirical density f̂X(x)). Repetition of the
sampling yields a priori different samples x(k)

N of the population. (b) The kth point estimator κ̂ (k) and confidence
interval (κ̂L

p̃ , κ̂U
p̃ )(k) of the statistical characteristic κ with true population value κ0. The sampling distribution

(density fκ̂ (κ)) determines the variability of the estimator and interval width. The non-rejection region Θ( p̃) =
(κ−p̃ , κ+p̃ ) of the null hypothesis H0 : κ = κ0 at the (1− p̃)× 100 % significance level is indicated. Schematic

test statistics 𝔡(k)
N for different samples illustrate the duality with the confidence intervals.

(von Storch & Zwiers 2003). To emphasise the random nature of the sample, we denote
the kth realisation by x(k)

N . The process of sampling is shown schematically in figure 2(a).

4.2. Theory of estimation and hypothesis testing

4.2.1. Estimation
Typically, random variables are characterised in terms of statistical characteristics κ

(e.g. expectation and variance) taking fixed non-random values κ0, say. On the other hand,
the corresponding sample characteristics (e.g. sample mean and variance) are computed
by (nonlinearly) combining the random sample elements x(k)

n , n = 1, 2, . . . , N. Therefore,
unlike the non-random population characteristics, sample characteristics are again random
variables. To discriminate between population and sample characteristics, we adopt the
usual convention to denote the kth estimator of the true characteristic κ = κ0, computed
from the kth sample x(k)

N , by κ̂
(k)
N = κ̂(x(k)

N ).
Since κ̂N is a random variable, a full characterisation requires knowledge of its

probability distribution. This sampling distribution Fκ̂ (κ) is specific to each sample
characteristic κ̂N , and uniquely determined by the distribution function FX(x) (Cramér
1963). In particular, the sampling distribution determines the variability of the associated
sample characteristic. This is displayed schematically in figure 2(b), showing the sampling
probability density fκ̂ (κ) of some arbitrary characteristic along with possible estimates
κ̂

(k)
N computed from three different samples x(k)

N , k = 1, 2, 3. This example illustrates that
point estimators κ̂

(k)
N will generally be different for each sample and different from the true

characteristic κ0.
We emphasise that the above definition of a sample characteristic as a function of the

sample, in principle, allows for an infinite number of candidate estimators. Each estimator
is fully determined by its unique sampling distribution, the statistical characteristics of
which define the estimator properties and usefulness. In practice, the assessment of the
quality of any given estimator is essentially based on the expectation and variance of
the estimator. An estimator is called unbiased if its expectation equals the population
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characteristic, i.e. E(κ̂N) = κ0 for all N. It is further desirable that estimators are in
an as close neighbourhood of the true value as possible. This leads to a definition of
the efficiency of an estimator E((κ̂N − κ0)

2) = (E(κ̂N)− κ0)
2 + V(κ̂N) as the sum of

its squared bias and variance. The objective is to find unbiased and minimum-variance
estimators. A systematic approach to obtain estimators is by the maximum likelihood
method (Cramér 1963; von Storch & Zwiers 2003).

Our discussion so far makes clear that point estimators are random functions that map
given samples on random values. As such, one particular value of the characteristic κ̂

(k)
N ,

realised in the experiment x(k)
N , is of limited significance. Rather, reliable statements

require robust estimates of the characteristic that, although obtained from only one
sample, have value for all experiments that could have been conducted alternatively.
This is the purpose of interval estimators (von Storch & Zwiers 2003). The confidence
interval indicates the uncertainty in the estimate that is unavoidable since we are working
with a finite sample of the total population. If we were to draw samples again and
again ad infinitum, then the confidence intervals would cover the non-random population
characteristic κ0 with a certain a priori percentage p̃. In other words, the confidence
interval is obtained for the specific sample, and the confidence level p̃ indicates its validity
for the totality of all samples that could have been obtained alternatively. We see that as
with point estimators, confidence intervals (having random endpoints) are again random
functions of the sample. This is shown schematically in the lower part of figure 2(b).

4.2.2. Hypothesis testing
Given a set of measurements, namely a sample, we would like to decide if it is consistent
with some theoretical model defined a priori. In order to approve or reject agreement, we
define representative characteristics κ that we know to take the value κ0 in the model, and
suppose this to be true. That is, we conjecture the null hypothesis H0 : κ = κ0. We then
estimate κ by the corresponding sample characteristic κ̂N , and compare the result with
the postulated true value. Our previous discussion implies that, in general, equality will
never hold exactly, even if H0 is true, and since κ̂N is a random variable, the agreement
will be different for each sample that we test for. We therefore have to specify difference
thresholds beyond which we reject the model, because the difference between κ̂ and κ0
is very unlikely to be due to random variability. This suggests the following practical
implementation, the essential elements being shown schematically in figure 2(b).

Define a test statistic 𝔡N = 𝔡(xN) in the form of a distance measure 𝔡(xN) =
dist(κ̂N, κ0). This will, in general, be a nonlinear function of the sample xN , therefore
the test statistic is itself a random variable with a specific sampling distribution. Fix
a non-rejection region, i.e. an interval Θ( p̃) = (κ−p̃ , κ+p̃ ) (around the hypothesised true
value κ0) containing p̃× 100 % of the realisations of 𝔡(xN) when H0 is true. The interval
is determined by the sampling distribution of the test statistic 𝔡N (Wilks 2006). The risk
(1− p̃)× 100 % of falsely rejecting the true null hypothesis is called the significance level,
usually set to 5 %–10 % (von Storch & Zwiers 2003). If the actual realisation of the test
statistic 𝔡(xN) falls outside the interval Θ( p̃), then H0 is rejected at the (1− p̃)× 100 %
significance level (Cramér 1963; von Storch & Zwiers 2003; Bendat & Piersol 2010).

4.3. The equivalent sample size
In mathematical statistics, sampling means drawing a collection of independent and
identically distributed random variables, yielding a set of realisations. Often, in practice,

997 A38-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.606


Linear response theory of vortex meandering

sampling means discretely recording data from a time series. In general, the elements of
samples obtained in this way will be correlated, hence the independence assumption fails.
In order to be able to use the theoretical results, we assume the sample to be drawn from a
stationary, ergodic process (von Storch & Zwiers 2003).

Usually encountered time series have finite correlation (Yaglom 1962), suggesting that
the full sample contains subsets of independent observations (Tennekes & Lumley 1972).
Sub-sampling, i.e. considering only sample elements separated by some multiple of the
correlation length, therefore would seem to be a simple and straightforward approach to
obtain an independent sample from serially correlated data. However, it is known that by
this approach, information is lost without improving the estimate (von Storch & Zwiers
2003). Thus, rather than throwing away ‘intermediate’ observations between any two
independent elements, we use the full sample and introduce an equivalent sample size
based on the autocorrelation structure of the time series (Leith 1973; Trenberth 1984;
Thiébaux & Zwiers 1984; Zwiers & Von Storch 1995).

The equivalent sample size is defined as the number of independent random variables
needed to provide the same amount of information about the population characteristic as
contained in the full sample of dependent variables. As such, the equivalent sample size
depends on the characteristic to be tested and how information is measured (Trenberth
1984; von Storch & Zwiers 2003; Wilks 2006). Letting κ be this characteristic, the number
of independent elements in a sample (relative to κ) is defined as

N′(κ) := T
2 𝓉I(κ)

= N

2
𝓉I(κ)

�t

, T = N �t. (4.1)

Here, T denotes the total measurement time of the time series, equal to N �t if the N
sample elements are recorded at the constant time step �t (cf. § 2.1), and 𝓉I(κ) is the
integral time scale relative to κ . As usual, we refer to twice the integral time scale as the
decorrelation time, and write 𝓉D = 2𝓉I (Leith 1973; Trenberth 1984; von Storch & Zwiers
2003).

The decorrelation time for the mean can be estimated in a finite, discrete sample of
length N by (Thiébaux & Zwiers 1984; von Storch & Zwiers 2003)

𝓉D ≈
[

1+ 2
N−1∑
ν=1

(
1− ν

N

)
ρ(ν)

]
�t ≈

[
1+ 2

N−1∑
ν=1

ρ(ν)

]
�t, (4.2)

where we assume that T � 𝓉I and that the autocorrelation ρ(ν) decays to zero sufficiently
fast as the lag ν = τ/�t→∞, �t /= 0 (Tennekes & Lumley 1972). Analogously,
estimates of the decorrelation time are obtained for other characteristics; in particular,

𝓉D ≈
[

1+ 2
N−1∑
ν=1

ρ2(ν)

]
�t for the variance, (4.3)

𝓉D ≈
[

1+ 2
N−1∑
ν=1

ρX(ν)ρY(ν)

]
�t for the correlation (4.4)

(see also Bartlett 1935; Bayley & Hammersley 1946; Trenberth 1984; von Storch & Zwiers
2003). From (4.2)–(4.4), we see immediately that 𝓉D → �t as ρ(ν)→ 0, thus N′ → N by
(4.1a,b). That is, if it happens that the time series is uncorrelated (i.e. white noise), then the
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equivalent sample size degenerates to the full sample size. If the time series comes from a
first-order autoregressive process, then all the decorrelation – or equivalently, persistence
information – is contained in the lag-1 correlation ρ1 := ρ(ν = �t) = exp(−�t/𝓉I)
(Wilks 2006), which can be used to derive simplified estimates for the decorrelation times.

Eventually, we note that the autocorrelation functions ρ(ν) in (4.2)–(4.4) are not known
a priori in general, and have to be estimated; that is, we take ρ̂(ν) in (4.2)–(4.4), in
practice. It is known that estimates of N′ that are computed directly from the estimators of
the autocorrelation or power spectrum perform poorly (Thiébaux & Zwiers 1984). Rather,
the best option is to estimate N′ from a fit to an autoregressive-model (Thiébaux & Zwiers
1984; Trenberth 1984; von Storch & Zwiers 2003).

5. Results and discussion

In this section, we use the statistical inference tools introduced in § 4 to provide evidence
that the given experiment of § 2 is consistent with the theoretical model proposed in § 3.
We provide quantitative measures of this agreement that are significant and transferable
at precisely given levels. In particular, we show that experimentally observed vortex
meandering is conveniently described by a stationary, ergodic Gauss–Markov process.

5.1. Proper orthogonal decomposition
Suppose that the streamwise component of the fluctuation vorticity field in the
measurement plane M is a vector-valued random process t 	→ w′(t, r) such that w′(t) ∈
L2(M) for all t. This distinction between temporal and spatial coordinates suggests the
separation ansatz

w′(t, r) =
∞∑

i=1

xi(t) φi(r), xi(t) = (φi, w′(t)), (5.1a,b)

where (·, ·) denotes the L2-inner product (§ 3.1). From the above, (5.1a,b) corresponds
to an expansion of the fluctuation vorticity in terms of deterministic spatial modes φi ∈
L2(M) superposed at random according to the time series of random expansion coefficients
xi(t).

While principally any set of spatial modes φi that spans L2(M) can be used in (5.1a,b),
the fact that vortex meandering is associated with the energy-carrying, slow scales of the
vortex fluctuation dynamics can be used to reduce the degrees of freedom considerably.
The POD relies on those modes maximising the variance content in a truncated expansion
(Holmes et al. 1996), hence a restriction to the variance-carrying scales is realised
optimally by working in the linear manifold spanned by the leading d POD modes. The
optimality condition of POD translates into the eigenvalue problem

Cφi = σ 2
i φi, (5.2)

where C denotes the vorticity covariance integral operator. Following standard
terminology, we refer to φi as the ith POD mode, and the associated expansion coefficient
xi(t) as the ith principal component time series. It is always possible to order the
eigenvalues in the non-increasing, non-negative sequence σ 2

1 ≥ σ 2
2 ≥ · · · ≥ 0. In this way,

the associated POD modes are ranked in terms of their contribution σ 2
i to the total vorticity

variance contained in M.
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Linear response theory of vortex meandering

For practically finite samples, we have to estimate the covariance operator in (5.2). The
maximum likelihood estimator reads (von Storch & Zwiers 2003)

Ĉ = 1
N

N∑
n=1

(wn − w̄)(wn − w̄)∗, (5.3)

where wn ∈ R
P, n = 1, 2, . . . , N, are the spatially discrete vorticity measurements, w̄ is

their sample mean (see § 5.2), and an asterisk denotes the matrix transpose. Solving the
eigenvalue problem (5.2) with an estimated covariance operator (5.3) yields only estimates
φ̂i ∈ R

P and σ̂ 2
i . In order to assess the uncertainty in the ith estimate, North et al. (1982)

propose

�σ 2
i ≈ σ 2

i

√
2
N′

and �φi ≈
�σ 2

i

σ 2
i − σ 2

j
φj (5.4a,b)

as a ‘rule of thumb’, where σ 2
j denotes the eigenvalue closest to σ 2

i . Since the eigenvalues
can be arranged in a non-increasing sequence, the modal uncertainty is non-negative, with
�σ 2

i /(σ 2
i − σ 2

j )→∞ as σ 2
j → σ 2

i , i.e. as the ith eigenvalue degenerates. In this case, the
corresponding eigenmodes span an eigenspace having the dimension of the degeneracy.
Consequently, the individual eigenmodes are completely undetermined as long as together
they span the eigenspace. Hence, we refer to �σ 2

i /(σ 2
i − σ 2

j ) as the indiscernibility factor
measuring the modal uncertainty due to eigenvalue degeneracy. Of course, as the POD
eigenvalues are not known a priori, we have to use the estimates σ̂ 2

i in place of σ 2
i .

In order to account for serial correlation in the data, we use the equivalent sample size
N′ in (5.4a,b). However, unlike Hannachi, Jolliffe & Stephenson (2007), who use the
decorrelation time for the mean (4.2), the proper choice would be to compute N′ with
𝓉D for the variance (4.3), as also emphasised by Wilks (2006).

Contour plots of the leading POD mode pair are shown in figure 3 together with
the respective uncertainties according to (5.4a,b). Figure 4(b) further displays the
indiscernibility factors for the first ten POD modes, showing that the uncertainty in the
leading pair is O(10−1). The dashed line indicates the threshold for which �σ 2

i = (σ 2
i −

σ 2
j ), that is, the difference between neighbouring eigenvalues equals their uncertainty.

Thus, POD modes are mutually discernible only below the dashed line, while all modes
above are practically indiscernible. Figure 4(a) shows the estimated eigenvalue spectrum
together with the respective uncertainties (5.4a,b). In particular, we see that the leading
POD mode pair of interest here is not degenerate.

Henceforth, confining to the manifold spanned by the leading POD mode pair
(figure 3), the meandering dynamics corresponds to the principal component time series
xi(t), i = 1, 2.

5.2. Sample variance in the vortex meandering manifold
Given the definition of the expectation and variance, we define the corresponding sample
mean and sample variance by replacing F(x) with the empirical distribution F̂(x) in
(2.3a,b):

μ̂ =
∫ +∞
−∞

x dF̂(x) = 1
N

N∑
n=1

xn (5.5)
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0.1

Figure 3. Estimate and uncertainty of the leading POD modes in the last measurement plane: (a) first mode
φ̂1(r), (b) second mode φ̂2(r). Contours display POD mode estimates with solid (dashed) contours indicating
positive (negative) values. Uncertainties from the North et al. (1982) rule of thumb (5.4a,b) are shown as
colour shading, with red (blue) indicating positive (negative) values. The circle delimits the vortex core (radius
rcc−1 = 5× 10−2), and the principal vectors of the vortex-centre time series are shown as arrows.

10–1

(a) (b)

10–2

1

1 2 3 4 5 6

Eigenvalue index i

 = 2.65 × 10–2
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j=
1∞

σ̂
2 i /

σ̂
2 j

σ̂2
5
/σ̂2

1

σ̂2
i  – σ̂2

j

�σ̂2
i 

Figure 4. The POD eigenvalue spectrum in the last measurement plane. (a) Estimates of the eigenvalues (black
dots) and the respective 95 % confidence intervals computed according to the North et al. (1982) rule of thumb
(black). Practically identical confidence intervals (grey) are obtained from the χ2(N′ − 1) distribution of the
sample variance. (b) Indiscernibility factor, measuring POD mode uncertainty, with a value of unity indicating
the threshold beyond which modes are mutually indiscernible.
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σ̂2
i
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f σ̂
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′  –
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∞
σ̂2

1/ σ2
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∞
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2/ σ2
j

Figure 5. Estimation of the variance of the leading principal component time series. Black dots correspond
to point estimators computed from the individual runs, which vary according to the associated sampling
distribution. The grey error bars indicate the 95 % confidence intervals over all runs, centred around the POD
eigenvalues (cf. figure 4a).

and

σ̂ 2 =
∫ +∞
−∞

(x− μ̂)2 dF̂(x) = 1
N

N∑
n=1

(xn − μ̂)2, (5.6)

respectively. For samples drawn from a Gaussian distribution (as we show in § 5.4),
these definitions of the sample mean and variance correspond to the maximum likelihood
estimates (Cramér 1963; von Storch & Zwiers 2003). From § 4.2, we recall that μ̂ and σ̂ 2

are random numbers. Their quality in estimating the true (deterministic) population values
μ and σ 2 depends on the associated sampling distributions. This is shown in figure 5,
where black dots correspond to the different variance estimates computed on different,
identically prepared runs of the experiment. Obviously, no reliable statement about the true
meandering variance can be obtained from particular realisations of the sample variance,
which scatter according to the sampling distribution. To have a robust result, we define the
test statistic

𝔵 := N′σ̂ 2
i

σ 2
i
∼ χ2(N′ − 1) (5.7)

as multiples of the unknown population value. If the sample is drawn from a Gaussian
distribution, then the non-dimensional variance defined in (5.7) has a χ2 sampling
distribution with N′ − 1 degrees of freedom (Cramér 1963; von Storch & Zwiers 2003).
To account for serial correlation of the data, we use the equivalent sample size N′i = 410
(i = 1, 2), computed with the decorrelation time (4.3).

Given the confidence level p̃ and degrees of freedom N′ − 1, we readily obtain
the interval bounds (𝔵L

p̃, 𝔵U
p̃ ) from p̃ = Pχ2(N′−1)(𝔵L

p̃ < 𝔵 < 𝔵U
p̃ ). Thus, the unknown
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population variance is covered by the confidence interval(
N′σ̂ 2

i

𝔵U
p̃

,
N′σ̂ 2

i

𝔵L
p̃

)
at the p̃× 100 % level of confidence. (5.8)

Figure 5 shows the confidence interval (5.8) that contains the true value of the variance
in 95 % of the cases if we were to repeat the same experiment infinitely often. Overlaying
these confidence intervals on figure 4(a) of the POD eigenvalue spectrum, we find that they
overlap with the North et al. (1982) rule of thumb (5.4a,b). The latter being computed
with a Gaussian sampling distribution implies that our experiment corresponds to an
asymptotically large sample.

From § 3.3, we recall that our vortex meandering model predicts the variance to grow as

σ 2
i (t)
U2∞

∼ 2
(

𝓊

U∞

)2 t
𝓉s

(i = 1, 2), (3.16)

where 𝓊/U∞ ≈ 5× 10−3 denotes the turbulence intensity of the experimental facility
(§ 2.1). Further, recalling our estimate 𝓉s/𝓉a ∼ 10 of the slow vortex response time scale
from § 3.2, our theoretical model predicts standard deviation growth according to

σi(t)
U∞
∼ 2× 10−3

√
t
𝓉a

(i = 1, 2) (5.9)

for the present experimental parameters. Standard deviation growth according to (5.9) is
displayed in figure 6, along with the corresponding standard deviation point estimators
(5.6) and 95 % confidence intervals (5.8) in the available measurement planes. The
equivalent sample size in the last three measurement planes is similar in magnitude to
the above given value N′i = 410. However, the autocorrelation structure of the dynamics
is shorter in the first two measurement planes, which results in larger equivalent
sample sizes here, which explains the narrower confidence intervals in the first two
measurement planes. Physically, this finding means that the temporal signature of vortex
meandering in measurement planes close to the vortex generator is close to white noise,
while a significant correlation structure establishes only beyond z/c ∼ 10 for the given
experimental parameters (see the Appendix). This downstream amplification of vortex
meandering is a well-known experimental fact (Baker et al. 1974; Devenport et al. 1996;
Edstrand et al. 2016). Overall, we find that our model (5.9) corresponds reasonably well
with the available point estimators, and stays within the 95 % confidence interval. An
amplification according to (5.9) was explicitly reported in previous studies (van Jaarsveld
et al. 2011; Bailey et al. 2018; Dghim et al. 2021) and was shown to be consistent with a
broad range of experiments (Bölle 2021, 2023).

5.3. Stationarity of vortex meandering
Likely the usual and simplest way to infer stationarity of a random sample is by considering
the underlying physics of the phenomenon relative to which the data have been taken,
together with the measurement instructions detailing the sampling process (Bendat &
Piersol 2010). In experiments, we expect stationarity of the data by taking measurements
after initial transients due to start-up of the facility have died out. Indeed, visual inspection
of the sample time series shown in figure 1 does not reveal any obvious non-stationarity
such as trends or periodicities. As required for stationary time series, all anomalies are
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σ̂i(t)/U∞

tc/U∞
Figure 6. Downstream amplification of the vortex meandering standard deviation. Point estimates and 95 %
confidence intervals for the five measurement planes are shown in grey, where the thick black line illustrates
the predicted growth according to the Brownian-motion-like meandering model (5.9). Besides the second
measurement plane, the model consistently stays in the range spanned by the 95 % confidence intervals, and
closely matches the point estimates.

necessarily temporary, returning to zero eventually. Finite duration of the anomalies is
consistent with decay of the autocorrelation function shown in figure 10 below. Although
there is no obvious indication for non-stationarity of the sample, autocorrelations close
to unity (ρ̂1 := exp(−λ̂1 �t) = 0.990 here; see § 5.5) imply that we should principally be
concerned about stationarity (Enders 1995). In this subsection, we use a hypothesis test to
quantitatively show data stationarity.

To this end, we conjecture that meandering in fact corresponds to a non-stationary
process, and show that the actually realised sample deviates significantly from this null
hypothesis. We suppose that the sample time series is generated from a slowly varying
first-order process

xt = axt−1 + εt, (5.10)

where εt is a stationary white noise process, and |a| < 1 guarantees stationarity of the
{xt} sequence (Enders 1995; Wilks 2006). This is consistent with our model (cf. § 3), as
the process defined by (5.10) corresponds to a discrete form of an Ornstein–Uhlenbeck
process that is stationary if we take x0 = x(t→−∞) as the initial condition. Letting now
|a| = 1, recursively applying (5.10) yields

xt = xt−1 + εt = xt−2 + εt−1 + εt = · · · = x0 +
t∑

i=1

εi. (5.11)

For the variance of this unit-root process, we readily derive

V(xt − x0) = V

( t∑
i=1

εi

)
=

t∑
i=1

V(εi) = σ 2
ε t, (5.12)
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Figure 7. Results of the Dickey–Fuller (DF) test for each run, showing stationarity of the leading two principal
components x1(t), x2(t) at the 1 % level of significance (filled markers). Stationarity at the 1 % level of
significance also holds for the augmented Dickey–Fuller (ADF) test with optimal lag determined by the
Bayesian information criterion (BIC) (respective open markers). The 1 % to 10 % levels of significance are
shown by dotted, dashed and solid lines, respectively.

using the fact that the elements of a white noise process are mutually uncorrelated and
stationary with variance σ 2

ε . Equation (5.12) reflects the well-known result that summing
over a stationary random process εt yields a non-stationary random process xt (Yaglom
1962). Recognising that (5.11) is a Wiener process, this is also plausible on physical
grounds.

Statistical tests of stationarity that are based on this reasoning are called unit-root tests.
A suitable variant for our purposes is the Dickey–Fuller test (Hamilton 1994; Enders 1995),
which is based on the difference equation

�xt = xt − xt−1 = (a− 1)xt−1 + εt = δxt−1 + εt, (5.13)

obtained from subtracting xt−1 on both sides of (5.10). Taking the null hypothesis that
the sample sequence {xt} is generated from a non-stationary process implies that we have
to test for H0 : δ = 0. We thus define the Dickey–Fuller test statistic 𝔡DF := δ̂/σ̂δ as the
deviation of the estimator δ̂ from the expected value δ = 0 as multiples of the standard
error σ̂δ . Test thresholds are tabled in Enders (1995). Figure 7 shows that the sample
principal component time series obtained from the ten measurement runs (cf. § 2.1) are
stationary at the 1 % level of significance.

We used the Dickey–Fuller test here as it corresponds to our meandering model. Figure 7
also includes the respective results for the augmented Dickey–Fuller test. The latter
generalises (5.10) to a p-order process, where the number of lags p is determined by the
Bayesian information criterion (see also Enders 1995; Wilks 2006). From figure 7, we see
that stationarity of the leading sample principal component time series also holds for the
augmented Dickey–Fuller test at the 1 % level of significance.

We conclude that vortex meandering in the given experiment (§ 2.1) is a stationary
process in a fixed measurement plane.
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Figure 8. Comparison of the standardised empirical distribution F̂X1 with the standard Gaussian distribution
FN . (a) A 60 bins histogram of F̂X1 compared with a Gaussian distribution, including the 95 % confidence
interval (grey shading). The inset shows a close-up of the region of largest deviation (indicated by a grey dot)
from the Gaussian distribution. (b) Standard normal distribution over empirical distribution (F̂X1 , FN ) (bold
grey). An exact Gaussian distribution would collapse with the diagonal (thin black). Dashed off-diagonals are
the thresholds for the hypothesis, the sample is normally distributed, to be rejected at the 5 % significance level.

5.4. Gaussian distribution of vortex meandering

The estimator F̂Xi(xi) of the distribution function of the sample FXi(xi), called the
empirical distribution function, is defined as

F̂Xi(xi) := card({X(n)
i : X(n)

i ≤ xi})
N

(i = 1, 2), (5.14)

where card(A) is the cardinality of the set A (Cramér 1963; von Storch & Zwiers 2003).
We notice that since the relative counts in each bin of (5.14) depend on the sample xN

actually realised, F̂Xi(xi) is in fact a random variable, as all estimators (cf. § 4.2). The
histograms (assuming 60 bins) corresponding to the estimator defined in (5.14) are shown
in figures 8 and 9 for the leading two principal components. Analogous results for the
upstream measurement planes are shown in the Appendix.

While figures 8 and 9 show fair agreement between theory and experiment, histograms
or frequency distributions are crude estimates in general (von Storch & Zwiers 2003).
We therefore rely on statistical tests, which for probability distributions are typically
called goodness-of-fit tests. To this end, we suppose that the population distribution
function is Gaussian, i.e. we assume the null hypothesis H0 : FXi(xi) = FN (xi), FN (xi) =
(1/2π)

∫ xi
−∞ dz exp(−z2/2).
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Figure 9. Comparison between the standardised sample distribution F̂X2 and the standard normal probability
distribution FN . See figure 8 for details.

In order to assess closeness of the empirical distribution function to a Gaussian
distribution, we use the Kolmogorov–Smirnov test (Wilks 2006). To understand this test,
recall that as the number of elements in each bin as well as the bins themselves tend
to infinity, the estimator (5.14) converges (almost surely) to the population distribution
function by the Glivenko–Cantelli theorem (Cramér 1963). This suggests using the
uniform norm as a distance measure

𝔡KS := max
x∈xN
|F̂X(x)− F∗N (x)|, (5.15)

referred to as the Kolmogorov–Smirnov test statistic. Strictly speaking, the Kolmogorov–
Smirnov test applies only if the true distribution parameters are known (Lilliefors
1967). Using estimators instead, as we do, is indicated by adding an asterisk to the
conjectured population distribution in (5.15). Appropriately modified test bounds for the
Kolmogorov–Smirnov test statistic (5.15) have been computed by Lilliefors (1967) (see
also von Storch & Zwiers 2003; Wilks 2006).

The critical values for the Lilliefors test depend on the sample size N. As discussed in
§ 4.3, due to serial correlation of the data, we have to consider the effective sample size N′
instead, which depends on the statistical characteristic that is estimated. Lanzante (2021)
suggests using (4.2) for a first-order autoregressive process to compute N′ for the empirical
distribution function.

Here, we propose the following estimate. The Kolmogorov–Smirnov test statistic
(5.15) defines a distance measure between the empirical and population distribution
functions in terms of the uniform norm. Among the various other metrics that can
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Linear response theory of vortex meandering

be defined (e.g. Cramér 1963), we know that the variance is given by V(F̂X(x)) =
FX(x) (1− FX(x))/N for any empirical distribution function (von Storch & Zwiers
2003). Motivated by general norm inequalities, we expect that 𝔡2

KS ≥ V(F̂X(x∗)),
letting x∗ = arg maxx∈xN 𝔡KS. The point of maximal deviation x∗i in the uniform
norm is indicated by a grey dot in figures 8 and 9. For the sake of estimating
N′, we assume that 𝔡2

KS = V(F̂X(x∗)) = F∗N (x∗) (1− F∗N (x∗))/N′, which yields
N′ = F∗N (x∗) (1− F∗N (x∗))/𝔡2

KS as an estimate of the equivalent sample size. For the
present experiment, we thus obtain the estimated value N′ = 510 for the equivalent sample
size.

Taking this estimate for N′, as shown in figures 8(b) and 9(b), the leading sample
principal components are consistent with a Gaussian distribution at the 5 % level of
significance. In agreement, figures 8(a) and 9(a) show that the 95 % confidence interval of
the empirical distribution consistently covers the conjectured Gaussian distribution.

This finding has a noteworthy implication on the nature of the meandering
dynamics (Bölle 2021). If meandering was indeed governed by a genuine instability or
transient-growth mechanism, then the dominant vortex response should be a helical wave.
The corresponding probability distribution would then be M-shaped, with peaks around
the oscillation amplitude (Tennekes & Lumley 1972). This conclusion is confirmed by
direct numerical simulations (DNS) of the nonlinear vortex dynamics initialised with
optimal perturbations (Mao & Sherwin 2012; Navrose & Jacquin 2019). Obviously, the
experimentally observed probability distribution differs significantly from this conjecture
and must be rejected. We further emphasise that the oscillatory vortex response observed
in DNS does not correspond to the initial phase of transient energy amplification due
to non-normal linear dynamics, but occurs in the nonlinear saturation regime (Mao
& Sherwin 2012; Navrose & Jacquin 2019; Bölle 2021). We therefore conclude that
vortex meandering, in the given experiment, differs significantly from a helical motion
as predicted by a genuine instability or transient-growth mechanism. This is already
emphasised clearly by Bailey & Tavoularis (2008) and Bailey et al. (2018).

5.5. Sample correlation in the vortex meandering manifold
In the preceding subsection we concluded that the hypothesis of vortex meandering
corresponding to a dominant helical wave must be rejected. This association with a
deterministic wave motion clearly understands vortex meandering as a purely intrinsic
dynamics, and implies the existence of a governing ‘meandering frequency’ (or
wavelength). Due to its direct relation to instability mechanisms, the quest for a
characteristic meandering frequency has been attempted repeatedly (Devenport et al. 1996;
Jacquin et al. 2001; Bailey & Tavoularis 2008; Roy & Leweke 2008; Bailey et al. 2018).
However, the identification of ‘hidden periodicities’ in random samples of finite size is not
obvious (Fuller 1996; von Storch & Zwiers 2003). In this and the following subsection, by
systematic application of the tools introduced in § 4, we inquire whether there is significant
evidence for the existence of a dominant meandering frequency in the present experiment.

Several definitions of the correlation function estimator exist (Trenberth 1984; Fuller
1996). If the expectation is unknown, then the prevalent gives rise to the sample correlation
(Abraham & Ledolter 1983; Hamilton 1994; Enders 1995; Fuller 1996)

ρ̂ij(ν) = 1
N

N−ν∑
n=1

(xi(n)− x̄i)(xj(n+ ν)− x̄j)

σ̂iσ̂j
, ν = 0, 1, 2, . . . , N − 1. (5.16)
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Figure 10. Autocorrelation functions of the first and second principal component time series. For sample
correlations (grey line) outside the dashed horizontal lines, the null hypothesis of the signal being uncorrelated
is rejected at the 5 % level of significance. Grey shading around the sample correlations indicates the 95 %
confidence intervals, which overlap with the conjectured exponential autocorrelation of the population.

Strictly speaking, (5.16) is neither the maximum likelihood nor the least squares estimator;
see Fuller (1996) for further discussion.

Figures 10 and 11 show the different time-lagged sample correlations (5.16) computed
from the experimental data. Although we find fair agreement with the conjectured
theoretical correlations (3.17) in all cases, the sample correlations are subject to
fluctuations, which could be indicative of periodicities in the meandering dynamics not
covered by the model. On the other hand, spurious variability of the sample correlations,
in particular at large time lags, is a consequence of the finiteness of the sample (von
Storch & Zwiers 2003). In this subsection, we inquire whether these apparently oscillatory
fluctuations are statistically significant or merely an artefact of working with finite
samples.

In order to test for serial correlation in the principal component time series, we
conjecture the null hypothesis H0 : ρij(ν) = 0, i.e. that the data in the sample are
uncorrelated, and use the von Neumann ratio

𝔡ij :=
∑N

n=2(xi(n)− xj(n− 1))2√∑N
n=1 x2

i (n)

√∑N
n=1 x2

j (n)

≈ 2(1− ρ̂ij(1)) (i, j = 1, 2) (5.17)

as a test statistic. We recognise that (5.17) is essentially an adaptation of the
Durbin–Watson test for regression residuals (Fuller 1996; von Storch & Zwiers 2003).
From (5.17), we see that the test statistic takes values 𝔡 ∈ [0, 4], where perfectly
uncorrelated time series are associated with a test statistic 𝔡 = 2, while values 𝔡→ 0
indicate progressively stronger positive autocorrelation. Evaluating (5.17) for the leading
two principal component time series of the experiment yields 𝔡11 = 0.05, 𝔡22 = 0.08
and 𝔡12 = 𝔡21 = 2.00. That is, on the basis of this test, we cannot reject H0 for the
time-lagged cross-correlations, while the respective time series have significant positive
autocorrelations, respectively (Hart 1942).
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Figure 11. Cross-correlations of the first and second principal component time series. See figure 10 for
details.

This finding is corroborated by recalling that for large sample sizes drawn from a
Gaussian distribution, the correlation estimate (5.16) has an approximately Gaussian
sampling distribution (Cramér 1963; Fuller 1996; Wilks 2006). Hence, testing for the
null hypothesis that principal component time series pertaining to the same or different
POD modes are uncorrelated amounts to comparing |ρ̂ij(ν)| with its Gaussian standard
error (Abraham & Ledolter 1983; Wilks 2006). If the sample is drawn from a stationary
Gaussian process (cf. §§ 5.3–5.4) with vanishing correlation beyond lag p, then the
variance of the sample correlation is approximately (Abraham & Ledolter 1983; Fuller
1996; von Storch & Zwiers 2003)

V(ρ̂ij(ν)) ≈ 1
N

(
1+ 2

p∑
n=1

ρ̂ii(ν) ρ̂jj(ν)

)
, ν > p. (5.18)

We thus define the standardised Gaussian test statistic 𝔷 := ρ̂ij(ν)/σ̂ρ̂ij (denoting σ̂ρ̂ij =
V(ρ̂ij(ν))), and reject H0 at the p̃× 100 % level of significance if

√
N′ |ρ̂ij(ν)| > 𝔷±p̃ , ν > 0, (5.19)

with 𝔷±p̃ = 1.96 for p̃ = 0.05. In (5.19), we have used that (5.18) corresponds to the
reciprocal equivalent sample size (4.1a,b) computed with the decorrelation time (4.4).
We notice that in (5.19), N′ → N if the data have no serial correlation. Figures 10 and 11
contain the bounds on the test statistic (5.19) corresponding to the 5 % significance level
as dashed lines.

Both tests, based on (5.17) and (5.19), show that the individual principal component time
series have significant autocorrelation for sufficiently short time lags (ν � 256), while they
are mutually uncorrelated at all time lags. We emphasise that the mathematical properties
of the POD merely impose vanishing cross-correlations at zero time lags (Holmes et al.
1996).

Our findings so far do not immediately imply any particular autocorrelation structure.
In order to provide evidence for the appropriateness of our model (3.17), we further show
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that the correlation interval estimators overlap with the respective conjectured theoretical
correlations; cf. figure 10. Using the above results, the population correlation function
ρii(ν) is covered by the (1− p̃)× 100 % confidence interval (Abraham & Ledolter 1983)

ρ̂ii(ν)±
𝔷±p̃
N

(
1+ 2

ν−1∑
n=1

ρ̂2
ii(ν − 1)

)
, ν > 0. (5.20)

Trivially, ρ̂ii(0) = 1 is non-random and consequently collapses with its confidence
interval. We take the finding that the 95 % confidence interval contains the model
autocorrelation at all time lags, shown in figure 10, as sufficient evidence for the
appropriateness of our model. In particular, the entire variability of the correlation
structure is spurious at this level, and cannot be related significantly to any periodicity
of the dynamics.

A stationary Gauss process is Markovian if and only if it has exponential autocorrelation
(Yaglom 1962). On account of our statistical analyses of the experimental data
in §§ 5.3–5.5, we therefore reach the important conclusion that vortex meandering
corresponds to a Markov process. This confirms our Brownian-motion-like meandering
model (§ 3) for the given experiment at the 5 % level of significance.

5.6. Sample Eulerian time spectrum
To corroborate our previous conclusion that the meandering dynamics in the given
experiment is not significantly associated with any (hidden) periodicity, we discuss
the power spectra in this subsection (see also the Appendix). There is a persistent
practice to compare power spectra of supposedly turbulent flow with the well-known
power-law slopes of either two- or three-dimensional turbulence (Tennekes & Lumley
1972; Devenport et al. 1996; Jacquin et al. 2001; Bailey & Tavoularis 2008). However,
these power laws hold in the inertial range, while vortex meandering is associated with the
integral, energy-carrying scales. In fact, our Langevin model implies the power-spectral
signature (3.17), as shown in figure 12.

The Wiener–Khinchin theorem (2.6a,b) suggests estimating the power spectrum by
taking the Fourier transform of the estimated autocovariance functions. This direct
approach yields the periodogram, which is known to be a poor spectral estimator (von
Storch & Zwiers 2003). Rather, we estimate the power spectrum by Welch’s average
periodogram method (Welch 1967). To this end, we split the principal component time
series into K overlapping segments, compute the modified periodogram from each
segment, and estimate the power spectrum by averaging all periodograms. Given a
time series of length N = 40 960 in the experiment, we define each segment to contain
Nb = 4096 contiguous data points. Allowing an overlap of 1− D = 0.5 between adjacent
segments, as suggested by Welch (1967), the time series are covered by K = 19 overlapping
segments.

We define the normalised spectral estimator as (von Storch & Zwiers 2003; Bendat &
Piersol 2010)

𝔵 := 2KD Ĝii(ω)

Gii(ω)
∼ χ2(2KD), (5.21)

where 2KD denotes the equivalent degrees of freedom of the χ2 distribution, given
approximately by 2KD ≈ 18K/11 ≈ 31 (Welch 1967). Welch’s correction of the degrees
of freedom accounts for variance inflation of the spectral estimate due to overlapping
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Figure 12. Power spectra of the first and second principal component time series. Spectral estimates Ĝii(ω)

(grey lines) and their respective 95 % confidence intervals (grey shading) overlap with the conjectured
population power spectra (solid black lines). Dashed black lines indicate the 5 % significance level bounds
(5.24) to reject the null hypothesis that no preferred frequency exists.

segments, reducing to 2KD → 2K for non-overlapping segments of Bartlett’s method
(von Storch & Zwiers 2003). Letting 𝔵L

p̃, 𝔵U
p̃ denote the limiting values of the χ2(2KD)

distribution, such that p̃ = Pχ2(𝔵L
p̃ ≤ 𝔵 ≤ 𝔵U

p̃ ), the true population spectrum is covered by
the confidence interval

Gii(ω) ∈
(

2KD Ĝii(ω)

𝔵U
p̃

,
2KD Ĝii(ω)

𝔵L
p̃

)
at the p̃× 100 % level of confidence. (5.22)

Figure 12 shows the estimated power spectra of the leading principal component
time series. Overlapping of the corresponding 95 % confidence intervals (5.22) with
the conjectured model power spectra (3.17) provides evidence for the validity of the
meandering model.

For the normalisation of the power spectra, recall that
∫

R
dω Gii(ω) = σ 2

i by Parseval’s
theorem (Yaglom 1962). This implies that the normalised power spectra Ĝii(ω)/σ̂ 2

i
represent the partial variance contained in the frequency interval dω around ω. Observing
that Ĝii(ω)/σ̂ 2

i always has the dimension of a time, irrespective of the dimension of
the underlying random process, requires further normalisation on a characteristic time
scale to obtain a dimensionless result. Our analysis so far suggests taking (twice) the
vortex response time scale 2λ̂−1

i , which amounts to the normalisation Ĝii(ω)/Ĝii(0) (von
Storch & Zwiers 2003). Evaluating the power spectrum at ω = 0, we obtain Gii(0)/σ 2

i ∼∫
R

dτ ρii(τ ) = 2λ−1
i , recalling that λ−1

i equals the integral time scale (Yaglom 1962;
Tennekes & Lumley 1972). Figure 12 shows that the normalised spectral estimates are
close to unity as ω→ 0. The normalised model power spectra (3.17) proceed along the
same lines to yield GB,i(ω) = λ2

i /(ω
2 + λ2

i ). Obviously, GBi(ω→ 0)→ 1, as can also be
seen in figure 12.
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As discussed in § 1, vortex meandering is repeatedly assumed to be associated with
some preferred frequency of the order of fc/U∞ ∼ 1. Indeed, if one such meandering
frequency exists, then it would show up as a peak in the spectral estimates. On the other
hand, it is well known that power spectra computed from finite samples are subject to
erratic peaks. The sample power spectra shown in figure 12 display several such potential
peaks. Taking a decision on a statistical basis, we consider any peak as significant that has
significantly larger variance than the conjectured model power spectrum. Our meandering
model assumes a red noise power spectrum (3.17), which is known to admit no preferred
frequency. Thus, a suitable statistical test for the existence of any preferred meandering
frequency is readily constructed by assuming the null hypothesis that the population has a
red noise power spectrum, i.e. H0 : Gii(ω) = GB,i(ω). Assuming (5.21) as the test statistic,
a frequency ωj is significant at the 1− p̃ level if for the associated squared amplitude
estimate Â2

j we have (Wilks 2006)

Â2
j ≥

GB(ωj)

2KD
𝔵U

p̃ , where 𝔵U
p̃ : Pχ2(2KD)(𝔵 ≥ 𝔵U

p̃ ). (5.23)

The test (5.23) is appropriate for a priori known frequencies, whereas if no such
frequency is specified beforehand, then we must account for test multiplicity by the
Bonferroni method, yielding the modified test criterion (Wilks 2006)

Â2
j ≥

GB(ωj)

2KD
𝔵U

p̃∗ where p̃∗ = 1− α∗ = 1− 2α

Nb
. (5.24)

In (5.24), Nb/2 = 2048 is the number of frequencies in the estimator, and α∗ = 5× 10−2

and α ≈ 2.4× 10−5 are the nominal and actual test levels, respectively. The dashed lines
in figure 12 display the squared amplitude threshold resulting from (5.24), beyond which
the null hypothesis that there exists no preferred frequency can be rejected at the 5 % level
of significance. Since the sample power spectra always remain below this threshold, we
conclude that vortex meandering, at least in the present experiment, is not associated with
any distinguished characteristic frequency at the given level of significance.

5.7. Ergodicity of vortex meandering
Taking measurements after initial transients have died out, we tacitly assume the dynamics
to be characterised by an ergodic probability measure. Thus, taking time averages (as
we did throughout) is asymptotically equivalent to computing expectations from the
equilibrium ensemble. As is well known, a stochastic process can be ergodic only if
it is also stationary (Bendat & Piersol 2010), shown to be true in § 5.3. According to
Hänggi & Thomas (1982), finite values of the power spectra as ω→ 0 further constitute a
sufficient condition for ergodicity. This was shown to be the case in figure 12 of § 5.6. As
a matter of fact, ergodicity holds for the class of stationary, Gaussian random processes
having absolutely continuous power spectra, i.e. having no discrete frequencies associated
with distinct periodicities (Bendat & Piersol 2010). In §§ 5.3–5.6, we provided statistical
evidence that vortex meandering corresponds to a stationary Gauss–Markov process, being
a subset of this class. We therefore conclude that vortex meandering in the experiment is
ergodic.

6. Conclusion

Meandering constitutes the main manifestation of vortex unsteadiness commonly observed
in experiments, and serves as the prototype of the slow vortex response dynamics.
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In this study, we review previous approaches at explaining the phenomenon, and develop a
unified stochastic model in the context of linear response theory. The resulting theory
identifies experimental vortex meandering as a form of Brownian motion, and is the
first model that is consistent with all fundamental characteristics observed universally in
experiments, namely (i) the Gaussian distribution of the vortex position with (ii) growing
slow-scale variance downstream and (iii) the broadband power spectral signature.

The statistical identification of characteristic features in experimental data and relating
them to theoretical models are ubiquitous problems in physics. However, past fluid
dynamics studies regularly resorted to qualitative comparisons and subjective judgements
in the interpretation of statistical characteristics. In the present study, we introduce
an objective statistical methodology for the systematic and quantitative characterisation
of experimental data relative to theoretical models. While this framework is of basic
relevance for fluid dynamics experiments in general, we discuss its application to a
prototypical problem in experimental vortex dynamics. This allows us to robustly identify
experimental vortex meandering with our proposed Brownian-motion-like model at a
precisely specified level of certainty.

In particular, working at the 5 % level of significance, we provide statistical evidence that
vortex meandering observed in experiments constitutes the manifestation of a stationary
Gauss–Markov (Ornstein–Uhlenbeck) process and is therefore ergodic. Physically, this
finding is equivalent to stating that vortex meandering is the manifestation of a Brownian
motion, as suggested recently by Bölle (2023). This result implies several important
corollaries. Probably most notably, experimental vortex meandering corresponds to a
linear dynamics for which, due to Gaussianity, no statistical closure is needed. Due to
Gaussianity, the standard deviation (meandering amplitude) constitutes a characteristic
perturbation scale. Furthermore, the Markov property identifies vortex meandering with a
stochastically memoryless process. Our analysis eventually suggests that the characteristic
time scale of the meandering dynamics is not a certain period, as thought previously.
Rather, the characteristic meandering time scale λ−1

i is a measure of the vortex response,
acting to stabilise, or dampen, external excitation. From a practical perspective, the Markov
property and λ−1

i also indicate a time scale of predictability, which may be relevant for
control applications or wake–vortex encounters in aviation.
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Appendix. Model–experiment comparison in upstream measurement planes

Other than figure 6, this study focuses on a detailed discussion of the experimental vortex
meandering characteristics in a single measurement plane at z/c = 26. In this appendix,
we show supplementary results from upstream measurement planes at z/c ∈ {2, 4, 12, 20}
of the same experiment (§ 2.1) that support the proposed Brownian motion meandering
model.

Figure 13 shows that the empirical probability densities are well approximated by a
Gaussian distribution (as implied by the model) in all measurement planes. They collapse
when standardised, i.e. normalised on the standard deviation, as implied by the theory.
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Figure 13. Comparison between the standardised normal probability density fN (x0,i | xi, t) (thick black) with
the standardised empirical probability densities f̂ (x0,i | xi, t), assuming 60 bins: (a) first and (b) second principal
component time series. Progressively lighter grey colour of the histograms corresponds to more downstream
measurement planes (see figure 14 for further details).

Figure 14 shows that the empirical power spectra in the last measurement planes
(z/c � 10) collapse when scaled on the local variance level and the integral vortex
response time scale. The empirical spectra in the first two planes (z/c = 2, 4) qualitatively
follow a similar law, but differ quantitatively in the attained variance levels at low
frequencies. This difference in the spectral signature seems to be due mainly to the time
scale estimates: in the more upstream planes, the dynamics is still close to white noise
(flat spectrum). This is consistent with our Brownian-motion-like model. At the same
time, it cannot be excluded that other effects not covered by the model contribute to the
experimentally observed spectral signature in the first measurement planes. This may be
due to the roll-up, transient amplifications, etc. These dynamics are out of the scope of this
work.

The spectral trend visible in figure 14 is also consistent with the leading-order vortex
response modes. For the given experiment, a dipolar pattern can be identified in the
fluctuation vorticity by a POD already in the most upstream measurement plane at z/c = 2
that qualitatively is identical to the one shown in figure 3 (Bölle 2021; Bölle et al. 2023).
The main difference is that, unlike figure 4, this mode contributes only a small fraction to
the total variance. Hence, although vortex meandering seems to be present already at the
upstream stations (z/c = 2, 4), it has an almost white noise signature. The variance then
gradually accumulates in the leading POD modes (Bölle et al. (2023) and figure 6). This
is the essence of a Brownian motion, and is consistent with the power spectral evolution
in figure 14.
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Figure 14. Comparison between the model power spectrum (3.17) (thick black) with the spectral estimates for
the (a) first and (b)second principal component time series.
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