
Highlights of Astronomy, Vol. 12 
International Astronomical Union, 2002 
H. Rickman, ed. 

O n t h e Nonl inear N a t u r e of t h e Turbulent a-Effect 

Fausto Cattaneo 
Department of Astronomy and Astrophysics, University of Chicago, 
5640 S. Ellis Ave., Chicago, IL 60637, U.S.A. 

David W. Hughes 

Department of Applied Mathematics, University of Leeds, 
Leeds LS2 9JT, U.K. 

Jean-Claude Thelen 
Department of Astronomy and Astrophysics, University of Chicago, 
5640 S. Ellis Ave., Chicago, IL 60637, U.S.A. 

Abstract. Galactic magnetic fields are, typically, modelled by mean-
field dynamos involving the a-effect. Here we consider, very briefly, some 
of the issues involving the nonlinear dependence of a on the mean field. 

1. Introduction 

Large-scale galactic magnetic fields are usually ascribed to be the result of some 
sort of hydromagnetic dynamo action (see, for example, the monograph by Ruz-
maikin, Shukurov & Sokoloff 1988 and the review by Beck et al. 1996). Galactic 
dynamos have, almost without exception, been modelled by a — w mean field 
dynamos: in such a prescription, poloidal field is sheared by the differential 
rotation, u), to produce a toroidal field, and, conversely, the reverse (toroidal 
to poloidal) step is achieved by the so-called 'a-effect' of mean field electrody­
namics. A non-zero a-effect is attributable to a lack of reflexional symmetry in 
the underlying turbulence; in the galactic context such turbulence may be the 
consequence of exploding supernovae influenced by the galactic rotation. 

Standard mean-field formalism is based essentially on a kinematic treatment 
in which the magnetic field has no influence on the velocity field. In reality, of 
course, dynamo-generated fields will eventually attain sufficient strength to react 
back on the driving flow. Consequently, one of the important points to address 
is the dependence of the a-effect on the mean (large-scale) magnetic field BQ and 
also, crucially, its dependence on the magnetic Reynolds number Rm. This is a 
controversial issue which, in its simplest form, can be reduced to asking whether 
a satisfies a relation of the form 

_ ap 
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where c*o is the turbulent value and the magnetic field strength BQ is measured 
in units of the Alfven speed, or a relation of the form 

1 + RmW2/(u2)' v > 

for some 0(1) value of 7. 
Given that Rm in a galactic context is very large (estimates for Rm based 

purely on collisional processes are O(1014), those based on ambipolar diffusion 
are 0(1O6)), expressions (1) and (2) lead to very different conclusions; the former 
implies that the large-scale field can reach equipartition strength before a is 
suppressed, the latter that suppression occurs for a large-scale field smaller than 
equipartition by a factor of Rm'1'2. 

2. Physical Considerations 

2.1. Two-dimensional Turbulent Diffusion 

To illustrate some of the crucial ideas it is instructive to consider the simpler, 
but related, problem of the diffusion of a planar magnetic field due to a two-
dimensional turbulent flow. Here dynamo action is impossible and decay of the 
field inevitable. The turbulent diffusion time tr for a kinematic magnetic field 
over a scale L is given by the classical result 

tT « L2/U£, (3) 

where £ is the scale of the energy-containing eddies. The dynamic decay time 
(i.e. taking into account the Lorentz force) can however be significantly enhanced 
(Vainshtein & Cattaneo 1992). If Bo is the large-scale component of the field 
then, as shown by Zeldovich (1957), (|B|2) « RmB2; i.e. the fluctuating field is 
significantly {0{Rm}'2)) stronger than the large-scale field. Turbulent diffusion 
occurs through the generation of small-scale fields that eventually are annihi­
lated by molecular processes. However, the generation of small-scale fields is 
inextricably linked with the generation of strong fields. If the fields so gener­
ated attain equipartition with the energy-containing eddies of the flow at scales 
larger than the diffusive scale then severe inhibition of the diffusive process oc­
curs. Indeed, the dynamic timescale, to, for the decay of the magnetic field 
satisfies 

L2 ( 1 1 \ 

^ V U ^ M ^ T J (4) 

(Cattaneo & Vainshtein 1991), where M is the Alfvenic Mach number of the 
large-scale field (M > 1 (< 1) implying that the large-scale field is less than 
(greater than) equipartition strength). The most significant feature of equation 
(4) is that, in accordance with the issues discussed above, only very weak large-
scale fields (M < Rm1'2) are needed to influence strongly the diffusive process. 

Cattaneo (1994) has reconsidered this problem to investigate the physical 
mechanism behind the suppression of diffusion. Taylor (1921) showed that for a 
purely passive scalar contaminant, the turbulent diffusivity D could be expressed 
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in terms of the Lagrangian displacement of fluid particles £ as 

Cattaneo (1994) showed that the role of a (weak) large-scale magnetic field is 
to suppress the tendency of particles to undergo a random walk and hence to 
suppress the turbulent diffusivity of the field. 

2.2. Three-dimensional Flows 

For three-dimensional flows the situation is more complicated with the possibility 
(forbidden in 2D) of dynamo action. As shown by Moffatt (1974), at infinite 
Rm, a may be obtained formally from the Cauchy solution as a = —d(£ • V x 
£)/dt, showing clearly that a, like the turbulent diffusivity, is also a transport 
coefficient. It is then certainly conceivable that the generation of strong magnetic 
fields on small scales could inhibit a in an analogous manner to the suppression of 
turbulent diffusion discussed above. To determine whether this is indeed the case 
requires a combination of rigorous analysis and careful numerical simulations. 

3. Numerical Results and Discussion 

Cattaneo, Hughes & Thelen (2001) have considered the dependence of a on 
both Bo and Rm, for the flow investigated by Cattaneo & Hughes (1996). Their 
results strongly support a nonlinear a-effect of the form of equation (2). Despite 
these compelling results, the subject, nonetheless, remains controversial and a 
number of papers have appeared arguing instead for expression (1) (e.g. Field, 
Blackman & Chou 1999). A full discussion of the issues involved, some of which 
are quite complex and beyond the scope of a brief communication such as this, 
will appear in our forthcoming papers. 
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