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Abstract. This paper presents recent results concerning the planet formation, planet migration,
and the long term stability of planetary systems. Most stars are found in binary systems and
binary companions can disrupt both planet formation and stability. We first consider the effects
of outer binary companions on the late stages of terrestrial planet formation and show how
planet formation depends on the binary periastron. We then consider migration mechanisms
for giant planets. In this case, planet scattering produces the full range of orbital eccentricities,
but is less effective in moving planets inward (decreasing their semi-major axes). Disk torques
are effective at moving planets inward, but not at increasing the eccentricities. We explore a
scenario in which disk torques act in concert with planet scattering to provide the full range of
orbital elements observed in extrasolar planetary systems. Finally, we consider the longer term
stability of Earth-like planets in binary systems; we find that nearly 50 percent of binaries allow
for Earth-like planets to remain stable over the current (4.6 Gyr) age of our solar system.
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1. Introduction
During the course of planet formation, planet migration, and the subsequent evolu-

tion of planetary systems, chaos plays an important role in the underlying dynamics. In
particular, all of these systems exhibit sensitive dependence on their initial conditions,
so that the result of any given process cannot be unambiguously predicted. Instead, the
results must be described in terms of the distributions of possible outcomes. In this con-
tribution, we discuss a collection of subproblems in planet formation/migration where the
systems display sensitive dependence on the initial conditions. During terrestrial planet
formation, the locations, masses, and numbers of planets in the resulting solar system
must be described as a distribution. In this context, we consider the late stages of terres-
trial planet formation in binary star systems and show that the planet formation process
leads to a wide distribution of outcomes, but well-defined trends can still be determined
(Figure 1). For example, we can determine the fraction of binary systems that allow the
terrestrial planet formation to take place unimpeded. When planets migrate, the orbital
elements of the final state display a distribution of values. Here we explore a scenario for
giant planet migration in which disk torques act to move the planets inward and planet-
planet scattering acts to increase the orbital eccentricities; the resulting distributions
of orbital elements predicted by the theory are in reasonable agreement with those of
observed extrasolar planets (Figure 2). Finally, planets on unstable orbits in binary star
systems display a wide distribution of ejection times (Figure 3). Nonetheless, the distri-
butions of ejection times exhibit well-defined dependences on the binary parameters and
we can determine the fraction of binary systems that allow Earth-like planets to remain
stable over the current age of the solar system.
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2. Terrestrial Planet Formation in Binary Systems

The first part of this work studies the formation of terrestrial planets in binary star
systems, with the goal of quantifying the effects of the binary companions on the planet
formation process. We note that the extrasolar planets discovered thus far (e.g., Mayor &
Queloz 1995; Marcy & Butler 1996; Butler et al. 1999; Marcy et al. 2001) have masses
near that of Jupiter and are thus thought to be gaseous giant planets. Although terrestrial
planets have not been detected in extrasolar systems with main-sequence primaries due
to their small masses, they are expected to readily form in such systems alongside their
Jovian counterparts (e.g., Lissauer 1993). Indeed, the following three lines of evidence
suggest that terrestrial planets might be common: (1) Our solar system has produced
terrestrial planets, and no instances of astronomical creation are known to be unique.
(2) Our solar system has manufactured a large number of moons, asteroids, and other
rocky bodies that presumably formed in the same manner as the planets. (3) Terrestrial
planets have been discovered in orbit around the pulsar PSR 1257+12 and hence were
able to form in a harsh environment (Wolszczan & Frail 1992).

In order to study the formation of terrestrial planets, we have performed a series of
N -body simulations using the Mercury integration package (Chambers 1999), which has
recently been modified to include a stellar binary companion (Chambers et al. 2002).
These computations follow the evolution of a field of planetessimals as they evolve into
a terrestrial planet system (Quintana 2004; Quintana et al. 2004). The simulations start
with 14 planetary embryos (with mass 5.6× 1026 g) and 140 planetessimals with a mass
ten times smaller (each population of starting bodies thus accounts for half of the mass).
The bodies are initially distributed on nearly circular orbits with semi-major axes in the
range 0.36 AU � a � 2.05 AU. This particular set of initial conditions was chosen because
it tends to produce terrestrial planet systems like our own when implemented around a
single star of one solar mass (Chambers 2001). The simulations run for approximately
100 Myr and evolve into terrestrial planet systems with a wide range of orbital elements
and a wide range of planet masses.

These simulations are idealized in that they consider only the late stages of planetessi-
mal accumulation, when planets are assembled from hundreds of smaller rocky bodies. As
a result, these simulations do not provide a definitive determination of the full range of
terrestrial planet configurations that are possible. However, the part of the problem that
we understand best is the orbital dynamics and our codes properly integrate the known
equations of motion. In particular, the perturbations due to the binary companion are
well-modeled, so we can achieve an accurate representation of the binary effects within
this idealized scenario for terrestrial planet formation.

Thus far, we have run ∼ 100 simulations of terrestrial planet formation using equal
mass binaries with varying orbital elements, in particular the semi-major axis ab and
orbital eccentricity εb (Quintana 2004; Quintana et al. 2004; Lissauer et al. 2004). One
set of results is shown in Figure 1. Like most dynamical systems of this type, these systems
experience chaotic behavior and exhibit sensitive dependence on the initial conditions.
In the present context, for example, moving one planetessimal forward in its orbit by
one meter (at the start of the simulation) can lead to a change in the number of planets
produced at the end of the simulation. As a result, most quantities of interest (e.g., the
number of planets produced or their orbital elements) cannot be described by a single
value, but rather by a full distribution, even for effectively equivalent starting conditions.
Although a study of the full parameter space for planet formation in binary systems is just
beginning, the importance of presenting the results in terms of distributions is already
apparent (see also Levison et al. 1998). As shown in Figure 1, for the set of simulations
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Figure 1. The effect of binary companions on the location of the outermost planet in numer-
ical simulations of terrestrial planet formation in binary systems (Quintana et al. 2004). The
semi-major axis ap of the outermost terrestrial planet is plotted as a function of the periastron
distance pb for the binary. The mass ratio of the binary is taken to be unity for all cases shown;
the stellar masses are 1.0 M� and 0.5 M� for the pairs of data points shown here. For this
ensemble of simulations,the location of the outermost terrestrial planet takes on a distribution
of values, with the width of the distribution indicated by the larger error bars. The smaller
(inside) error bars indicate the effective error in determining the mean value. The dashed lines
bracket the range of planet location as a function of binary periastron.

with a given value of periastron pb, we find a wide range of values for the location ap of
the outermost terrestrial planet, where the range is depicted by the large error bars in the
figure. Nonetheless, well defined trends emerge. In this case, the distribution of terrestrial
system sizes (ap) is a function of periastron: The range of planet locations (the values of
ap for the outermost planet) gets smaller and the mean value systematically decreases
as the binary periastron pb grows smaller. Further, although the initial field of rocky
building blocks extends out to 2.05 AU, only a few planets are formed with semi-major
axis near 2 AU and none of the simulations produce planets beyond 2 AU. The results
shown here (from Quintana et al. 2004) thus demonstrate how binary companions can
limit the growth of terrestrial planets (see also Levison & Agnor 2003) and demonstrate
that many realizations of the problem must be considered in order to sample the full
distribution of outcomes.
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The results shown in Figure 1 indicate that when binary periastron pb < 10 AU, the
binary companion limits the radial extent of the terrrestrial planet region. For sufficiently
wide binaries (large peristron values), however, the binary will have minimal effect on
the formation of terrestrial planets. In Figure 1, the lower dashed curve, which tracks
the lower end of the ap range, can be extrapolated out to where it exceeds the extent
of our terrestrial planet region (ap ≈ 2 AU), which occurs at pb ≈ 19 AU. Using this
extrapolation, our results obtained to date suggest that binaries with periastron pb > 19
AU have little effect on terrestrial planet formation (although more simulations and hence
better statistics would be desirable). Given that more than two thirds of stars are found
in binary systems (Abt 1983), what fraction of binaries are sufficiently wide, with pb > 19
AU, so that terrestrial planet formation is only minimally affected?

To answer this question, we need to find the fraction of binaries with periastron greater
than a set value p, as a function of p. The orbital elements of binaries have reasonably
well measured distributions (Duquennoy & Mayor 1991; hereafter DM91). The binary
population has a period distribution with a log-normal form; for primary stars with M∗ ∼
1 M�, we can convert the period distribution into the distribution of semi-major axes
ab (using the measured distribution of the mass ratio µ = MC/M∗ – again see DM91).
The eccentricity distribution is also observed, and is independent of semi-major axis for
the wide binaries of interest here (DM91). By integrating over the portion of binary
parameter space corresponding to periastron greater than a set value p, we numerically
obtain the fraction F (p) of binaries with pb � p (David et al. 2003). A fitting function
to the numerically determined result can be written in the simple form

F (p) = F1 exp
[
−(aξ + bξ2)

]
, (2.1)

where F1 = 0.711, a = 0.101, b = 0.0287, and ξ ≡ ln[p/(1AU)]. The function [2.1]
provides a good approximation to the numerically determined result, with an absolute
error less than about 0.011 and a relative error less than 4 percent. More exact fits are
not warranted, as the observed distributions of binary orbital parameters are not known
to this accuracy. This function can be used to estimate the fraction of binary systems
with periastron greater than any specified value within the allowed range 1 < p < 105.
In the present context we find that about 40 percent of binaries have periastron pb � 19
AU and hence have little effect on terrestrial planet formation.

3. Giant Planet Migration
The extrasolar planets detected thus far (again, see Mayor & Queloz 1995; Marcy &

Butler 1996; Butler et al. 1999; Marcy et al. 2001) have apparently moved from their
birth locations in the outer nebula and now reside in rather unusual orbits, with small
semi-major axes a and large eccenticities ε. An important challenge for planet formation
theories is to account for this migration phenomenon. During planet migration, planet-
planet scattering is effective at pumping up the orbital eccentricities but is inefficient
at moving planets inward (e.g., Adams & Laughlin 2003). Disk torques are effective at
moving planets, but inefficient at increasing their eccentricities (for an opposing view, see
Ogilvie & Lubow 2003; Goldreich & Sari 2003). A promising mechanism to account for
both the semi-major axes a and eccentricities ε of the observed extra-solar planets com-
bines dynamical relaxation of two planets with inward forcing driven by tidal interactions
with a circumstellar disk (Adams & Laughlin 2003; Moorhead & Adams 2004). The disk
exerts a torque on the outer planet, which moves inward and interacts with the inner
planet. These planet-planet scattering interactions tend to pump up the eccentricities of
both planets. Since these systems are highly chaotic, the outcomes depend sensitively on
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the initial conditions and the results must be described in terms of distributions. Never-
theless, the resulting distributions of orbital elements (a and ε) for the surviving planets
are in reasonable agreement with the observed distributions (see Figure 2).

We have conducted a comprehensive numerical study of this migration scenario using
two planets and an exterior disk (with ∼8000 simulations thus far). In these experiments,
the two planets are placed on widely spaced orbits around a solar mass star. The inner
planet starts with a period of 1900 days; the initial period of the outer planet is larger
by an irrational factor so the planets do not start out in resonance. The planet masses
are drawn independently from two different planetary mass distributions (denoted here
as the IMF). The first IMF is a random distribution with the planet mass sampled from
the range 0 � mP � 5mJ ; the second IMF is a log-random distribution sampled from the
range −1 � log10[mP /mJ ] � 1. The outer planet is tidally influenced by the circumstellar
disk and is gradually driven inwards. The simulations include three additional effects:
(1) The angular momentum exchange between the disk and planet damps the orbital
eccentricity (e.g., Agnor & Ward 2002) of the outer planet. Since current estimates of
this damping time scale give divergent results, we adopt a parametric approach and
study the effect of different eccentricity damping time scales drawn from the range 0.1
Myr � τed � 1 Myr. (2) The force equations include relativistic corrections, which drive
the periastron of both planetary orbits to precess and tend to move the planets away
from resonance. (3) The simulations include energy loss due to tidal interactions between
the planets and the star (e.g., Papaloizou & Terquem 2001).

The simulations are integrated until only one planet remains or the integration time
reaches a fiducial scale of 1 Myr. The evolutionary trend is as follows: The planets start
out of resonance, but the outer planet is forced inward by the dissipative term until the
planets enter into a mean motion resonance (usually the 3:1 resonance because of the
starting conditions). The two planets then migrate inwards together, near resonance, but
planetary interactions tend to increase the eccentricity of both orbits. The growing eccen-
tricities drive the planets to exhibit ever-larger departures from the resonant condition.
Sometimes the outer planet passes through the 3:1 resonance and then becomes held up
with a period ratio of 2:1. The eccentricities increase in chaotic fashion until the system
(usually) becomes unstable, i.e., until one of the planets is ejected or accreted by a star
(or the planets collide). After a planet is lost, however, the orbit of the surviving planet
continues to evolve as long as the disk is present. To account for this additional evolution,
we assume that the disk has a randomly chosen lifetime (with τdisk � 1 Myr) and cor-
rect the orbital elements of the surviving planet for energy dissipation and eccentricity
damping over this time scale.

The orbital elements of the surviving planets display a distribution of values and this
distribution is in reasonable agreement with observations. Figure 2 shows the resulting
orbital elements in the a − ε plane for two ensembles of theoretical simulations and for
the observed extrasolar planets (with the data taken from the California and Carnegie
Planet Search website www.exoplanets.org). The open triangles depict the results for
planet masses chosen according to the linear IMF, the open squares show the results
for the log-random IMF, and the stars represent the orbital elements of the observed
planets. To leading order, all three distributions fill the entire portion of the a− ε plane
shown here. Upon closer inspection, however, one sees that the theoretical simulations
tend to overproduce eccentricity relative to the observed distribution. Over much longer
time scales (the ∼3 Gyr lifetimes of the primary stars, rather than the ∼1 Myr migration
times integrated here), tidal interactions between the planets and their parental stars
can lead to circularization of the orbits. The solid lines in Figure 2 delimit the portion
of the a − ε plane for which this effect is important (where the two lines represent the
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Figure 2. The a− ε plane for the observed population of extra-solar planets and the surviving
planets in solar systems starting with two planets surrounded by a circumstellar disk (from
Moorhead & Adams 2004). The star symbols represent the observed planetary orbits. The open
triangles show the surviving planets for theoretical simulations using a linear IMF. The open
squares show the surviving planets for simulations using a log-random IMF. As shown here,
this planet migration process results in a distribution of orbital elements. The theoretical model
(with multiple planets and a disk) produces distributions of orbital parameters in reasonable
agreement with the observed distribution.

variation due to the possible range in the planet’s Q-value: see, e.g., Wu & Goldreich
2002). With this correction for tidal circularization, the theoretical distributions are in
decent agreement with the observed distribution of orbital elements.

The observed distribution of planetary mass is close to a log-random distribution.
Although the planets of lowest mass tend to be those that are ejected, we find that
the final mass distribution for simulations started with a log-random IMF are in good
agreement with the observed mass distribution. For this log-random IMF, the numerical
experiments end with about 33% ejections, 33% accretion events, and 3% collisions. The
remaining simulations reach the stopping time of 1 Myr, corresponding to depletion of
the circumstellar disk, without losing a planet. As a result, about one third of the systems
are predicted to have multiple planets, a fraction that is somewhat higher than that of
the observational sample (although additional planets might be found in the future). As
expected, the outer planets are more likely to be ejected, whereas the accreted planets
are almost exclusively the inner planets. As mentioned above, the ejected planets tend
to be the lighter ones: The mean mass of the ejected planets is about 〈mP 〉 ≈ 1.2 mJ ,
nearly four times smaller than the mean mass of the ejectees (with 〈mP 〉 ≈ 4.4mJ ).
The average time for the first planet to be ejected is about 0.5 Myr, comparable to the
viscous damping time of 0.3 Myr. Finally, we note that the mean ejection speed is about
5 km/s, a result that has consequences for future observations of freely floating planets
(Moorhead & Adams 2004).
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4. Stability of Earth-like Planets in Binary Systems

Most stars have companions: The majority of solar type stars reside in binary systems
(Abt 1983) and thus have stellar companions. In addition, recent discoveries of extrasolar
planets show that Sun-like stars often have planetary mass companions (e.g., Butler et al.
1999; Marcy et. al 2001). The distributions of orbital parameters for binary star systems
are relatively well known (DM91) and the orbital parameters for extrasolar planets are
under intense study. If terrestrial planets form in these solar systems, the companions
can affect their prospects for long term orbital stability. This section addresses the issue
of planetary stability with the overall goal of estimating the fraction of solar systems
that allow an Earth-like planet to remain stable over the current age of our Sun (we note
that a great deal of previous work has been done, e.g., Pilat-Lohinger & Dvorak 2002).

To study the stability of Earth-like planets in binary systems, we have performed
large numbers (∼100,000 to date) of three-body simulations (David et al. 2003; Fatuzzo
et al. 2004). Specifically, we consider the possible ejection of an Earth-like planet that
starts in a circular orbit with radius 1 AU around its parent star, with a stellar or
planetary companion that acts as a source of gravitational perturbations. Through long
term dynamical interactions with the companion, the orbital elements of the Earth-like
planet evolve, generally in chaotic fashion (Wisdom & Holman 1991), until the planet is
ejected from the system. For the sake of definiteness, we use a solar mass primary and
a planet with one Earth mass. The mass MC , eccentricity ε, and semi-major axis a of
the companion body are then specified for each run. We consider numerical experiments
with the same binary orbital parameters (MC , a, ε) and a random distribution for the
remaining (angular) orbital elements. In our initial set of simulations (David et al. 2003),
the inclination angle was set to i = 0 so the systems are co-planar; ongoing work is
exploring the effects of i �= 0 (Fatuzzo et al. 2004; see also Pilat-Lohinger et al. 2003).
For each set of initial conditions, we integrate the system forward in time until Earth is
ejected, or it collides with either star.

For simulations with given binary properties (MC , a, ε), the ejection time τej varies
with the choices of the remaining orbital elements. The systems are highly chaotic and
this variation is not smooth. Figure 3 shows that the ejection time displays a log-normal
distribution for an ensemble of different realizations of the same underlying problem, i.e.,
the same (MC , a, ε) and a random sampling of the remaining orbital parameters. These
systems thus display a distribution of ejection times with two important properties: The
width of the distribution is substantial and the distribution is log-normal (so that log τej

is the relevant variable for doing statistics). The distribution of ejection times shown in
Figure 3 corresponds to one point in the parameter space (MC , a, ε). Since each point
in the space corresponds to a distribution of ejection times, one must perform multiple
realizations of the three-body problem for each point in question. Suppose, for example,
that each point (MC , a, ε) has the same width σ ≈ 0.5 for its distribution of log τej. To
determine the ejection time itself to 1 percent accuracy, one needs about 2625 different
realizations of the problem.

As mentioned earlier, nearly two-thirds of solar-type stars live in multiple systems
(Abt 1983). To estimate the fraction of binaries that allow for stable Earth-like orbits,
we must combine our exploration of planetary stability with the observed distributions
of binary parameters (DM91). Our initial survey of parameter space (David et al. 2003)
indicates that the ejection time of an Earth-like planet is a steeply increasing function
of the binary periastron p (see also Chambers et al. 1996, Holman & Wiegart 1999).
To a good working approximation, the ejection time varies with periastron according to
the exponential law τej = τ0 exp[(p − 1)/�0], where the length scale �0 and time scale
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τ0 depend on the companion mass MC and where are lengths are given in AU (David
et al. 2003). Although the numerical simulations are only carried out to 10 − 100 Myr,
the steepness of this time scale function allows us to extrapolate the ejection times to
the age of the solar system. To obtain a conservative extrapolation, we use the lower
end of the range of ejection times for each value of periastron p and use the results for
the largest companion mass MC . This procedure indicates that an Earth-like planet can
remain stable in a binary system if the periastron p > 7 AU, so we need to estimate the
fraction of binaries with p > 7 AU. By integrating over the relevant fraction of binary
parameter space (MC , a, ε) using the results from DM91 and equation [2.1], we estimate
that 50 percent of binary systems allow Earth-like planets to remain stable for the current
age of the solar system (taken to be 4.6 Gyr).

5. Conclusions
This paper presents a collection of recent results concerning planet formation

(Quintana et al. 2004), planet migration (Moorhead & Adams 2004; Adams & Laughlin
2003), and the longer term stability of planetary systems (David et al. 2003). Our findings
can be summarized as follows:

During terrestrial planet formation in binary systems, we have shown that effectively
equivalent starting conditions lead to a distribution of final solar system properties. In
spite of the wide distribution of outcomes, however, we can extract general trends. For
example, we find that the extent of terrestrial planet systems, as measured by the semi-
major axis of the outermost planet, depends primarily on binary periastron pb (Figure 1).
Combining our simulation results with the observed distribution of binary parameters,
we find that about 40 percent of binary systems are wide enough (specifically, with
periastron pb � 19 AU) so that terrestrial planet formation is relatively unaffected.

Next we have explored a promising mechanism for giant planet migration which in-
cludes a circumstellar disk and multiple planets. The disk exerts torques on the outermost
planet, drives it inward, and thereby decreases its semi-major axis a; the inner planet of-
ten becomes locked in resonance with the outer planet and is also driven inward. During
the migration epoch, scattering interactions between the planets are effective at increas-
ing the eccentricities of both orbits. In these systems, the resulting distributions of orbital
elements (e.g., in the a − ε plane) for the surviving planets are in reasonable agreement
with the observed distributions (Figure 2).

Finally, we have considered the longer term stability of planetary systems. Binary
companions can disrupt planetary orbits, and the ejection time for Earth-like planets in
habitable orbits displays a wide distribution with nearly a log-normal form (Figure 3).
Nonetheless, the mean ejection time varies (almost) exponentially with the binary pe-
riastron and sufficiently wide systems allow planets to remain stable over long spans of
time. Again combining our numerical results with the observed distributions of binary
parameters, we find that nearly 50 percent of binary systems allow Earth-like planets to
survive over the current (4.6 Gyr) age of the solar system.

The results from this set of numerical investigations emphasize a general aspect of
solar system dynamics. For a given set of initial conditions, none of the subproblems
studied here actually has an answer. Instead, every set of effectively equivalent starting
conditions leads to a full distribution of possible outcomes. The process of terrestrial
planet formation leads to a distribution of planet number, planet masses, and planetary
orbits. Similarly, the result of planet migration is a distribution of orbital elements for
the surviving planets. Even the seemingly simple question – how long can an Earth-like
planet survive in a particular binary system – has a distribution of answers (due to the
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Figure 3. The distribution of ejection times for an Earth-like planet in a binary, using different
realizations of the same system (from David et al. 2003). In this set of the experiments, the
binary companion has mass MC = 0.1 M�, eccentricity ε = 0.5, semi-major axis a = 5 AU,
and inclination angle i = 0. The solid histogram shows the distribution of ejection times result-
ing from the B-S code (for a random sampling of the remaining orbital elements). The dashed
histogram shows the corresponding distribution of ejection times resulting from the symplectic
code (again, for a random sampling of orbital elements). The smooth curve shows a log-normal
distribution with the same peak value and width as the computed distributions. Notice that the
distributions predicted by the two numerical codes are similar and that both have a log-normal
form (with the same width and peak location). Because the width of this distribution is sub-
stantial, any determination of ejection times must consider a large number of realizations of the
underlying problem in order to adequately sample the distribution.

dependence of the ejection time on the starting angular phases of the bodies). As a result,
the dynamical systems involved in planet formation, migration, and longer term evolution
display sensitive dependence on their initial conditions, one of the signposts of chaotic
behavior. In the face of such chaos, the outcome of the planet formation/migration process
must generally be described in terms of distributions of possible results. In spite of this
complication, however, astronomical results can be obtained: In the context of planet
migration, we have shown that our theoretical mechanism provides roughly the same
distribution of orbital elements as the observational sample. In addition, we have shown
here that 40 percent of binary systems are wide enough to not disrupt the formation of
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terrestrial planets and that about 50 percent of binary systems are wide enough to allow
Earth-like planets to remain stable for the age of the solar system.
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for their hospitality. This work was supported at the University of Michigan by the Michi-
gan Center for Theoretical Physics and by NASA through the Terrestrial Planet Finder
Mission (NNG04G190G) and the Astrophysics Theory Program (NNG04GK56G0).

References
Abt, H. 1983, ARA&A 21, 343
Adams, F. C., & Laughlin, G. 2003, Icarus 163, 290
Agnor, C. B., & Ward, W. R. 2002, Astrophys. J. 567, 579
Butler, R. P., et al. 1999, Astrophys. J. 526, 916
Chambers, J. E. 1999, Mon. Not. R. Astron. Soc. 304, 793
Chambers, J. E. 2001, Icarus 152, 205
Chambers, J. E., Quintana, E. V., Duncan, M. J., & Lissauer, J. J. 2002, Astron. J. 123, 2884
Chambers, J. E., Wetherill, G. W., & Boss, A. P. 1996, Icarus 119, 261
David, E.-M., Quintana, E. V., Fatuzzo, M., & Adams, F. C. 2003, Publ. Astron. Soc. Pacific

115, 825
Duquennoy, A., & Mayor, M. 1991, Astron. Astrophys. 248, 485 (DM91)
Fatuzzo, M., Adams, F. C., Doering, C. R., & Gaubin, R. 2004, in preparation
Goldreich, P., & Sari, R. 2003, Astrophys. J. 585, 1024
Holman, M. J., & Wiegart, P. A. 1999, Astron. J. 117, 621
Levison, H. F. & Agnor, C. 2003, Astron. J. 125, 2692
Levison, H. F., Lissauer, J. J., & Duncan, M. J. 1998, Astron. J. 116, 1998
Lissauer, J. J. 1993, ARA&A 31, 129
Lissauer, J. J., Quintana, E. V., Chambers, J. E., Duncan, M. J., & Adams, F. C. 2004, in:

Gravitational Collapse: From Massive Stars to Planets, in press
Marcy, G. W., & Butler, R. P. 1996, Astrophys. J. 464, L147
Marcy, G. W., et al. 2001, Astrophys. J. 556, 296
Mayor, M., & Queloz, D. 1995, Nature 378, 355
Moorhead, A. V., & Adams, F. C. 2004, Icarus, submitted
Ogilvie, G. I., & Lubow, S. H. 2003, Astrophys. J. 587, 398
Papaloizou, J.C.B., & Terquem, C. 2001, Mon. Not. R. Astron. Soc. 325, 221
Pilat-Lohinger, E., & Dvorak, R. 2002, Cel. Mech. Dyn. Astron. 82, 143
Pilat-Lohinger, E., Funk, B., & Dvorak, R. 2003, Astron. Astrophys., 400, 1085
Quintana, E. V. 2004, PhD Thesis, Physics Department, University of Michigan
Quintana, E. V., Adams, F. C., & Lissauer, J. J. 2004, in preparation
Wisdom, J., & Holman, M. 1991, Astron. J. 102, 1528
Wolszczan, A., & Frail, D. A. 1992, Nature 355, 145
Wu, Y., & Goldreich, P. 2002, Astrophys. J. 564, 1024

https://doi.org/10.1017/S1743921304008440 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921304008440

