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Internal shear layers in librating spherical shells:
the case of attractors
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Following our previous work on periodic ray paths (He et al., J. Fluid Mech., vol.
939, 2022, A3), we study asymptotically and numerically the structure of internal shear
layers for very small Ekman numbers in a three-dimensional spherical shell and in a
two-dimensional cylindrical annulus when the rays converge towards an attractor. We
first show that the asymptotic solution obtained by propagating the self-similar solution
generated at the critical latitude on the librating inner core describes the main features of
the numerical solution. The internal shear layer structure and the scaling for its width and
velocity amplitude in E1/3 and E1/12, respectively, are recovered. The amplitude of the
asymptotic solution is shown to decrease to E1/6 when it reaches the attractor, as is also
observed numerically. However, some discrepancies are observed close to the particular
attractors along which the phase of the wave beam remains constant. Another asymptotic
solution close to those attractors is then constructed using the model of Ogilvie (J. Fluid
Mech., vol. 543, 2005, pp. 19–44). The solution obtained for the velocity has an O(E1/6)
amplitude, but a self-similar structure different from the critical-latitude solution. It also
depends on the Ekman pumping at the contact points of the attractor with the boundaries.
We demonstrate that it reproduces correctly the numerical solution. Surprisingly, the
numerical solution close to an attractor with phase shift (that is, an attractor touching
the axis in three or two dimensions with a symmetric forcing) is also found to be O(E1/6),
but its amplitude is much weaker. However, its asymptotic structure remains a mystery.

Key words: waves in rotating fluids, rotating flows, boundary layer separation

1. Introduction

In rotating flows, inertial waves with frequency smaller than twice the rotation
rate propagate at a fixed angle with respect to the rotation axis (Greenspan 1968).
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The frequency and the angle are preserved when inertial waves reflect on a boundary.
However, an inertial wave beam may contract or expand as it reflects. This linear
contraction effect is responsible for inviscid singularities in the inertial wave field
(Rieutord, Georgeot & Valdettaro 2001; Ogilvie 2020).

There are two types of inviscid singularities concerned in the present work. One is at
the critical latitude of a sphere where the rays are tangent to the boundary and where
Ekman pumping blows up (Roberts & Stewartson 1963). This singularity propagates
within the fluid along the tangent critical line at the critical latitude (Kerswell 1995). When
regularised by viscosity, it forms concentrated internal shear layers around the critical line.
The viscous self-similar solution of Moore & Saffman (1969) and Thomas & Stevenson
(1972) is expected to describe the viscous structure of these thin layers for small Ekman
numbers. For a librating spheroid, Le Dizès & Le Bars (2017) derived the singularity
strength and the amplitude of the self-similar solution by matching asymptotically the
shear layer solution with the Ekman layer solution. The self-similar solution was found
to be in agreement with direct numerical simulation. The same self-similar solution (with
the singularity strength and the amplitudes derived in an open domain) was also used to
describe the solution on a periodic orbit in a spherical shell geometry (He et al. 2022,
hereafter HFRL22). In that case, the solution was obtained by considering its propagation
along the periodic orbit for an infinite number of cycles. It was found to agree very well
with the numerical solutions obtained for low Ekman numbers. In particular, both the
internal shear layer structure and its amplitude scaling in E1/12 were recovered by the
numerical results using Ekman numbers as low as 10−10.

The singularity obtained from the critical latitude on the outer sphere gives rise to
different internal shear layers. These layers are weaker and thicker, and do not possess
a self-similar structure (Kerswell 1995; Lin & Noir 2021). Kida (2011) obtained their
asymptotic structure for a precessing sphere.

Besides libration and precession, which drive the flows through viscosity, non-viscous
forcing associated with translating or deforming bodies has also been analysed. Many
studies have been performed in the context of stratified fluids for applications to tidal
flows. Analytic results were obtained for the cylinder and the sphere in an unbounded
geometry (Hurley 1997; Hurley & Keady 1997; Voisin 2003) and validated experimentally
in both two (Sutherland & Linden 2002; Zhang, King & Swinney 2007) and three (Flynn,
Onu & Sutherland 2003; Voisin, Ermanyuk & Flór 2011; Ghaemsaidi & Peacock 2013)
dimensions. Hurley & Keady (1997) and Voisin (2003) also showed that in the far field, the
solution takes the self-similar form predicted by Moore & Saffman (1969). The singularity
strength, however, varies with respect to the nature of the forcing. Machicoane et al. (2015)
discussed this effect for pulsating and oscillating spheres.

The other inviscid singularity is the attractor in a closed container onto which inertial
waves tend to focus (Rieutord & Valdettaro 1997). The presence of such singularities is
related to the hyperbolic character of the Poincaré equation describing the wave structure:
it leads to an ill-posed Cauchy problem, except for a few geometries such as the cylinder or
the ellipsoid (Rieutord, Georgeot & Valdettaro 2000). Contrary to the singularity attached
to the boundary at the critical latitude, the attractor is a limit cycle that is not directly
dependent on the nature of the forcing. Attractors also generate intense internal shear
layers, as first observed in a trapezoidal tank for a stably stratified fluid (Maas et al.
1997). The asymptotic structure of these layers was analysed in a forced regime in two
dimensions by Ogilvie (2005) (hereafter O05). Under a few technical hypotheses, he
was able to derive the functional equation describing the inviscid streamfunction and to
provide the viscous asymptotic expression of the streamfunction close to the attractor.
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In particular, O05 showed that for his quadrilateral geometry possessing a unique attractor,
the main contribution to the solution is associated with the logarithmic singularity of the
inviscid streamfunction. We will use and adapt his results to our geometry. His results were
confirmed by a numerical study of an inclined rotating square in Jouve & Ogilvie (2014).

In a spherical shell, there may exist both critical-latitude and attractor singularities at
the same time. In HFRL22, we have considered a case where no attractor was present. We
have assumed that the fluid was forced by librating the inner core at a frequency such that
inertial waves propagated in a direction oriented at 45◦ with respect to the rotation axis. All
the ray trajectories were periodic in that case, and the (critical) path issued from the critical
latitude on the inner core was just a rectangle in the upper left meridional cut of the shell.
For other frequencies, the rays issued from the critical latitude are expected to perform a
more complex pattern and possibly converge to an attractor (Tilgner 1999; Ogilvie & Lin
2004; Ogilvie 2009). It is this situation that we want to address in the present work. We
consider the same framework as in HFRL22, where local asymptotic solutions propagated
in the volume are compared with global numerical results, but for a frequency for which
an attractor is now present.

The paper is organised as follows. The framework is introduced in § 2. In § 2.1, we
describe the three-dimensional (3-D) and two-dimensional (2-D) configurations that we
have considered, and provide the governing equations. In § 2.2, the numerical method used
to integrate the equations for each configuration is explained. In § 3, we first analyse the
wave beams emitted from the critical latitude on the inner core. The asymptotic solution
built by propagating the self-similar solution is compared to the numerical solution.
Discrepancies are observed close to the attractors for some of the cases. In § 4, we then
focus on the solution close to the attractors. We construct an asymptotic solution based
on the theory of O05 for an attractor without phase shift in § 4.1, and provide a numerical
validation in § 4.2. A brief conclusion is provided finally in § 5.

2. Framework

2.1. Configurations
In this paper, we consider the flow of an incompressible fluid of constant kinematic
viscosity ν∗ rotating around the axis ez with a uniform rotation rate Ω∗. We consider two
different configurations. The first is the axisymmetric flow filling a 3-D spherical shell, as
in HFRL22. The other configuration is the 2-D flow, but with three velocity components,
between two co-axial cylinders whose axis is horizontal, as in Rieutord, Valdettaro
& Georgeot (2002) and Rieutord & Valdettaro (2010). In the following, geometries,
governing equations and forcings are described separately for the two configurations.

2.1.1. Three-dimensional configuration
The geometry of the 3-D spherical shell is shown in figure 1(a), whose meridional plane
can be found in figure 2 of HFRL22. The radii of the outer and inner spheres are ρ∗ and ηρ∗
(with 0 < η < 1 the aspect ratio), respectively. Lengths are non-dimensionalised by the
outer radius ρ∗ such that the inner and outer dimensionless radii are η and 1, respectively.
Time is non-dimensionalised by the angular period 1/Ω∗. The imposed harmonic forcing
is the libration of one of the two boundaries, with amplitude ε = ε∗/Ω∗ (ε � 1) and
frequency ω = ω∗/Ω∗. The Ekman number is defined as

E = ν∗

Ω∗ρ∗2 , (2.1)
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Figure 1. Configurations: (a) a 3-D spherical shell subject to the longitudinal libration on the inner core;
(b) a 2-D cylindrical annulus subject to the symmetric forcing on the inner core; (c) a 2-D cylindrical annulus
subject to the antisymmetric forcing on the inner core. The red arrows show the magnitudes and directions of
the forcings at one instant.

with ν∗ being the kinematic viscosity.
As in HFRL22, we care about the linear harmonic response when the Ekman number is

extremely small. We look for solutions that are harmonic in time:

ε(v, p) e−iωt + c.c., (2.2)

with c.c. denoting complex conjugation. The velocity v and pressure p satisfy the
linearised incompressible Navier–Stokes equations in the rotating frame:

−iωv + 2ez × v = −∇p + E ∇2v, (2.3a)

∇ · v = 0. (2.3b)

In terms of the velocity components and pressure, the governing equations in the
cylindrical coordinate system (r, z, φ) become

−iωvr − 2vφ + ∂p
∂r

− E
(

∇2 − 1
r2

)
vr = 0, (2.4a)

−iωvz + ∂p
∂z

− E ∇2vz = 0, (2.4b)

−iωvφ + 2vr − E
(

∇2 − 1
r2

)
vφ = 0 , (2.4c)

∂vr

∂r
+ vr

r
+ ∂vz

∂z
= 0, (2.4d)

with the Laplacian operator

∇2 = ∂2

∂r2 + 1
r
∂

∂r
+ ∂2

∂z2 . (2.5)

The fluid is subject to no-slip boundary conditions on all boundaries. One of the
two boundaries is subject to the longitudinal libration, as shown by the red arrows in
figure 1(a), which corresponds to the oscillating solid body rotation of the boundary
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according to
v(ρ) = reφ at ρ = η or 1, (2.6)

while the other boundary is not moving,

v(ρ) = 0 at ρ = 1 or η, (2.7)

where r is the distance to the rotation axis of the cylindrical coordinate system (r, z, φ),
while ρ = √

r2 + z2 is the distance to the centre in the spherical coordinate system.

2.1.2. Two-dimensional configuration
We also consider a 2-D simplification of the 3-D axisymmetric configuration discussed
above. The geometry can be viewed as a slender cored torus with the principal radius
tending to infinity (Rieutord et al. 2002; Rieutord & Valdettaro 2010), which is effectively
equivalent to two co-axial cylinders whose principal axis is horizontal, as shown in figures
1(b,c). The flow between the two cylinders satisfies governing equations similar to (2.3),
while the curvature terms in the differential operators, such as 1/r, (1/r)(∂/∂r) and 1/r2,
are omitted. Explicitly, in terms of the velocity components and pressure, the governing
equations are

−iωvx − 2vy + ∂p
∂x

− E ∇2vx = 0, (2.8a)

−iωvz + ∂p
∂z

− E ∇2vz = 0, (2.8b)

−iωvy + 2vx − E ∇2vy = 0, (2.8c)

∂vx

∂x
+ ∂vz

∂z
= 0, (2.8d)

with the Laplacian operator
∇2 = ∂2/∂x2 + ∂2/∂z2. (2.9)

We use (x, y, z) to denote the Cartesian coordinates, where Ox and Oz are the horizontal
and vertical axes, respectively, and Oy is along the direction perpendicular to the Oxz
plane, as shown in figures 1(b,c). Note that although we use the same symbol for the
Laplacian operators in two and three dimensions, there is no ambiguity since the 2-D and
3-D operators are used independently in the corresponding dimensions.

Similar to libration in the 3-D configuration, the imposed forcing should be on the
boundary. We also require that it drives the fluid in the bulk through viscous coupling
only. The direction of the forcing is thus aligned with that of ey perpendicular to the Oxz
plane. We consider two options for the amplitude of the forcing. One option is that the
amplitude is a constant, which is

v(
) = ey at 
 = η or 1, (2.10)

where 
 = √
x2 + z2. The cylinder subject to this forcing is expected to oscillate uniformly

along the direction ey, as shown by the red arrows in figure 1(b). The other option is that
the amplitude of the forcing depends linearly on the horizontal coordinate x, which is

v(
) = xey at 
 = η or 1. (2.11)

The cylinder subject to this forcing oscillates non-uniformly, inducing shear at the
inner boundary, as shown by the red arrows in figure 1(c). While unrealistic from
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an experimental point of view, it is a mathematically well-posed boundary condition
and provides another symmetry, as discussed later. While the formula for the 2-D
antisymmetric forcing (2.11) is similar to the 3-D libration case (2.6), they differ in that
the horizontal coordinate x in the 2-D configuration can be negative.

Both forcings are symmetric about the horizontal axis Ox. However, the former forcing
(2.10) is symmetric about the vertical axis Oz, while the latter (2.11) is antisymmetric
about Oz; see the red arrows in figures 1(b) and 1(c), respectively. These two forcings are
thus referred to as symmetric and antisymmetric forcings, respectively, according to their
symmetries about the Oz axis. They are also imposed on one of the two boundaries, while
the other boundary condition is no-slip.

In summary, we consider three different forcings, which are referred to as the 3-D
libration (2.6), 2-D symmetric (2.10) and 2-D antisymmetric (2.11) forcings. The first is
defined in the 3-D spherical shell, while the latter two correspond to the 2-D cylindrical
annulus. Note that we restrict our study to purely axisymmetric situations, so that we ignore
zonally propagating waves that require azimuthal inhomogeneities as discussed by Rabitti
& Maas (2013).

2.2. Numerical methods
The governing equations (2.3) are solved numerically by spectral methods for both the 3-D
and 2-D configurations. We actually solve the vorticity equation, which is the curl of the
momentum equations (2.3a):

− iω∇ × v + 2∇ × (ez × v) = E ∇ × (∇2v). (2.12)

In the 2-D configuration, the curl is taken only in the Oxz plane. The numerical methods
are different for the two configurations. Therefore, they are presented separately.

2.2.1. Three-dimensional configuration
In the 3-D configuration, the numerical method is similar to that in our former work
(HFRL22). The governing equations are solved in the spherical coordinates (ρ, θ, φ), with
ρ the distance to the centre, θ the colatitude, and φ the azimuthal angle. The velocity is
expanded onto the vector spherical harmonics in the angular directions:

v =
+∞∑
l=0

+l∑
m=−l

ul
m(ρ)Rm

l + vl
m(ρ)Sm

l + wl
m(ρ)T m

l , (2.13)

with
Rm

l = Ym
l (θ, φ) eρ, Sm

l = ∇Ym
l , Tm

l = ∇ × Rm
l . (2.14a–c)

The gradients are taken on the unit sphere. The vorticity equation (2.12) is projected onto
the basis, and ul and wl satisfy a set of ordinary differential equations

EΔlwl + iωwl = −2Alρ
l−1 ∂

∂ρ

(
ul−1

ρl−2

)
− 2Al+1ρ

−l−2 ∂

∂ρ

(
ρl+3ul+1

)
, (2.15a)

EΔlΔl(ρul)+ iωΔl(ρul) = 2Blρ
l−1 ∂

∂ρ

(
wl−1

ρl−1

)
+ 2Bl+1ρ

−l−2 ∂

∂ρ

(
ρl+2wl+1

)
,

(2.15b)
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with

Al = 1

l2
√

4l2 − 1
, Bl = l2(l2 − 1)Al, Δl = d2

dρ2 + 2
ρ

d
dρ

− l(l + 1)
ρ2 (2.16a–c)

(e.g. Rieutord 1991). Axisymmetry (m = 0) is employed. Here, vl is related to ul through
the continuity equation

vl = 1
ρl(l + 1)

dρ2ul

dρ
. (2.17)

One of the two boundaries is subject to the no-slip boundary condition

wl = ul = dul

dρ
= 0 at ρ = 1 or η. (2.18)

The other boundary is subject to the libration (2.6), whose projection onto the spherical
harmonics yields the inhomogeneous boundary condition

wl = 2
√

π

3
ρδ1,l, ul = dul

dρ
= 0 at ρ = η or 1, (2.19)

where δ1,l is the Kronecker symbol. Note that the libration is imposed on the spherical
harmonic degree l = 1.

Equations (2.15)–(2.19) are truncated to the spherical harmonic degree L. The
derivatives with respect to the radial coordinate ρ are replaced by the Chebyshev
differentiation matrices at N + 1 collocation points of the Gauss–Lobatto grid. Then a
block tridiagonal system is obtained as⎡

⎢⎢⎢⎢⎣
D1 C1
B1 D2 C2

. . .
. . .

. . .

BL−1 DL−1 CL−1
BL DL

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

w1

ρu2

...

wL−1

ρuL

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

b1
b2
...

bL−1
bL

⎤
⎥⎥⎥⎥⎦ . (2.20)

The blocks within the coefficient matrix and the vectors are (N + 1)× (N + 1) and (N +
1)× 1, respectively. The order of the coefficient matrix is (N + 1)L, and the number of
non-zero elements is (N + 1)2(3L − 2). This block tridiagonal system is usually solved by
an LU solver (Rieutord & Valdettaro 1997), by which the coefficient matrix is stored in
the banded matrix format, and the number of elements in memory is (N + 1)2(4L − 4)−
(N + 1)(L − 2). On the other hand, the block tridiagonal system can be solved by the block
version of the standard tridiagonal algorithm (also called the Thomas algorithm), which
is Gaussian elimination on a block tridiagonal system. This method has been utilised by
Ogilvie & Lin (2004). The algorithm can be found in Engeln-Mèullges & Uhlig (1996,
p. 121). The elimination is advanced forwards from the lowest spherical harmonic degree
to the highest, and the block tridiagonal matrix is reduced to a block upper bidiagonal one,
then the solution is obtained by backward substitution. During the forward elimination, the
updated diagonal block Dl is factorised by the LU solver. A partial pivoting of the block is
employed in order to improve the numerical stability.

The three blocks Bl, Dl and C l, and the inhomogeneous term bl at the spherical
harmonic degree l, are needed only when they take part in the forward elimination.
Hence the storage of the whole coefficient matrix is unnecessary. However, all the updated
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super-diagonal blocks Cl should be reserved in memory for the backward substitution.
Their size is (N + 1)2(L − 1), which is almost one-third of that of non-zero elements
in the original coefficient matrix, and one-quarter of that in the banded matrix format
required by the global LU solver. Therefore, the memory usage of the block tridiagonal
algorithm is much less than that of the global LU solver, especially when L and N are very
large, as required for very low Ekman numbers. We develop a code based on the block
tridiagonal algorithm using the efficient dynamic programming language Julia (Bezanson
et al. 2017). For now, we can reach E = 10−11 by using 8000 spherical harmonics and
2500 Chebyshev polynomials using double-precision floating-point format. The memory
footprint is around 750 GB.

2.2.2. Two-dimensional configuration
In the 2-D configuration, we take the numerical method similar to that adopted by Rieutord
et al. (2002) and Rieutord & Valdettaro (2010). The vorticity equation (2.12) is solved in
the polar coordinates (
, ϑ), with 
 the distance to the centre, and ϑ the angle measured
from the horizontal axis Ox. In terms of the streamfunction ψ and the associated variable
χ ,

v
 = − 1



∂ψ

∂ϑ
, vϑ = ∂ψ

∂

, vy = χ, (2.21a–c)

and the vorticity equation is recast to

−iω∇2ψ + 2
(

sinϑ
∂χ

∂

+ cosϑ




∂χ

∂ϑ

)
− E ∇4ψ = 0, (2.22a)

−iωχ − 2
(

sinϑ
∂ψ

∂

+ cosϑ




∂ψ

∂ϑ

)
− E ∇2χ = 0, (2.22b)

with the operator

∇2 = ∂2

∂
2 + 1



∂

∂

+ 1

2

∂2

∂ϑ2 . (2.23)

The streamfunction ψ and the associated variable χ are expanded by Fourier series in the
angular direction as

ψ =
+∞∑

l=−∞
ψl(
) eilϑ, χ = −i

+∞∑
l=−∞

χl(
) eilϑ . (2.24a,b)

The projection of the governing equations (2.22) onto this basis is

iω∇2
l ψl + (χ ′

l−1 − χ ′
l+1)− 1




[
(l − 1)χl−1 + (l + 1)χl+1

]+ E ∇4
l ψl = 0, (2.25a)

iωχl + (ψ ′
l−1 − ψ ′

l+1)− 1



[
(l − 1)ψl−1 + (l + 1)ψl+1

]+ E ∇2
l χl = 0, (2.25b)

with

∇2
l = d2

d
2 + 1



d
d


− l2


2 . (2.26)
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The unforced boundary is subject to the no-slip boundary condition

ψl = dψl

d

= χl = 0 at 
 = 1 or η. (2.27)

The other boundary is subject to the viscous boundary forcings (2.10) and (2.11). Both
forcings are symmetric about the horizontal axis Ox, which leads to

ψ−l = −ψl, χ−l = χl. (2.28a,b)

Only the non-negative Fourier components are necessary to be computed. The symmetric
forcing (2.10) imposes the boundary condition

ψl = dψl

d

= 0, χl = iδ0,l at 
 = η or 1. (2.29)

Note that the forcing is imposed at l = 0. Therefore, the following Fourier components are
excited:

χ0, ψ1, χ2, ψ3, . . . . (2.30)

On the other hand, the antisymmetric forcing (2.11) imposes the boundary condition

ψl = dψl

d

= 0, χl = i




2
δ1,l at 
 = η or 1. (2.31)

Note that the forcing is imposed at l = 1. Therefore, the following Fourier components are
excited:

χ1, ψ2, χ3, ψ4, . . . . (2.32)

As in the 3-D configuration, the equations are truncated at the Fourier component L,
and the derivatives to 
 are replaced by the Chebyshev differentiation matrices with order
N + 1. The resulting block tridiagonal system is solved by the same block tridiagonal
algorithm as before.

The verification of the two spectral codes used in this paper can be found in Appendix A.

3. Wave beams from the critical latitude on the inner core

The aforementioned forcings are imposed on the inner core. The forcing frequency
ω is chosen in the inertial range such that inertial waves propagate at an inclined
angle θc = arccosω/2 relative to the horizontal plane. As in HFRL22, two concentrated
wave beams are expected to be generated from the critical latitude localised at (r, z) =
(η
√

1 − ω2/4, ηω/2) on the inner core. These wave beams travel along the tangential
line at the critical latitude in two opposite directions (northwards and southwards), reflect
on the boundaries, and form a ray pattern in the spherical shell geometry. In general,
for a fixed inclined angle θc, any ray pattern is composed of the four rays with opposite
propagation directions, which are referred to as the northward, outward, southward and
inward, as shown in figure 2. In HFRL22, we considered the case where the ray pattern
is a simple periodic pattern. Here, we consider a more general situation where the
wave beams converge towards an attractor. Our first objective is to analyse whether an
asymptotic solution can be constructed by propagating the self-similar solution describing
the concentrated wave beam emitted from the critical latitude, as it was done in HFRL22.

In § 3.1, the asymptotic theory is presented. The properties of the self-similar solution
and of the reflection laws are first recalled and adapted to the 2-D configurations that
we also consider before analysing the propagation towards the attractor. The asymptotic
solution is then compared to numerical results in § 3.2.
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z

r

x‖ x⊥

Northward ray

x‖x⊥

Outward ray
x‖x⊥

Southward ray

x‖
x⊥

Inward ray

θ(i)

θ(r)

Figure 2. Four propagation directions of the rays in a closed domain. The local vectors attached to each ray
are the orientations of the local frames (x‖, x⊥).

3.1. Asymptotic theory

3.1.1. Viscous self-similar solution and scaling
The concentrated ray beams emitted from the critical latitude are associated with an
inviscid singularity along the critical ray (Le Dizès 2023). It is the viscous smoothing
of this singularity that gives rise in the limit of small Ekman numbers to a self-similar
expression for the dominant wave beam velocity components (Moore & Saffman 1969).

The natural way to describe this self-similar solution is to introduce the local coordinates
(x‖, x⊥) on the critical ray path, with x‖ measuring the travelled distance from the source
along the critical ray, and x⊥ measuring the displacement relative to the critical ray (x⊥ =
0 is the critical ray equation). The orientation of x⊥ is chosen as indicated in figure 2. It is
assumed not to change during the beam propagation.

The wave beam is centred on the critical ray and has width of order E1/3. In the (r, z)
plane, its main velocity component is oriented along e‖ and can be written at leading order
in E1/3 in the 3-D axisymmetric geometry as (see details in Le Dizès & Le Bars 2017)

v‖ = 1√
r

C0 Hm(x‖, x⊥) = 1√
r

C0

(
x‖

2 sin θc

)−m/3

hm(ζ ), (3.1)

with the similarity variable

ζ = x⊥E−1/3
(

2 sin θc

x‖

)1/3

, (3.2)
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and the special function introduced by Moore & Saffman (1969),

hm(ζ ) = e−imπ/2

(m − 1)!

∫ +∞

0
eipζ−p3

pm−1 dp. (3.3)

The parameters C0 and m denote the amplitude and singularity strength, respectively,
which will be specified below. Note that this meaning of m should not be confused with the
order of the spherical harmonics in the spectral expansion (2.13), which is not used here
since we focus on purely axisymmetric solutions. The velocity across the critical rays v⊥
and the pressure p are O(E1/3) smaller. However, the wave beam has a velocity component
normal to the (r, z) plane of the same order, which is given by (see Rieutord et al. 2001;
Le Dizès & Le Bars 2017)

vφ = ±iv‖. (3.4)

The sign corresponds to the sign of the projection of the local unit vector e‖ onto the
global unit vector er. For the northward and inward rays, the sign is −; for the southward
and outward rays, the sign is + (see figure 2).

The inviscid singularity that gives rise to the self-similar viscous solution is recovered
by taking the limit ζ → ∞ in (3.1):

v‖ → 1√
r

C0 x−m
⊥ Em/3 as ζ → +∞. (3.5)

As we will see, it is also useful to introduce the streamfunction ψ that can be defined
for axisymmetric flows by

v‖ = ε
1
r
∂ψ

∂x⊥
, v⊥ = −ε 1

r
∂ψ

∂x‖
, (3.6a,b)

where ε = 1 for the rays propagating northwards and southwards, and ε = −1 for the rays
propagating inwards and outwards (see figure 2). Equation (3.6a) can be integrated to give
at leading order

ψ = ε
√

r
C0E1/3

m − 1
Hm−1(x‖, x⊥). (3.7)

Note that the streamfunction ψ is E1/3 smaller than the parallel velocity v‖.
The above expressions are valid for 3-D axisymmetric geometries. For 2-D

configurations, the term
√

r is not present in the velocity and streamfunction expressions.
We get

v
(2-D)
‖ = C0 Hm(x‖, x⊥), (3.8a)

ψ(2-D) = ε
C0E1/3

m − 1
Hm−1(x‖, x⊥). (3.8b)

The velocity component vy perpendicular to the (x, z) plane differs from v
(2-D)
‖ by a

±π/2 phase factor, as the relation (3.4) between vφ and v‖ in three dimensions.
In the self-similar solution (3.1), the free parameters, the singularity strength m and the

amplitude C0 depend on the nature of the forcing. For a viscous forcing – that is, a forcing
induced by Ekman pumping – these parameters can be obtained in closed form for the
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3-D libration 2-D symmetric forcing 2-D antisymmetric forcing

8(2 sin θc)
1/2(2/η)1/4|C0|
E1/12 (η sin θc)

3/2 1 η sin θc

Table 1. Absolute value of the complex amplitude C0 for different forcings.

northward and southward beams generated from the critical latitude (Le Dizès & Le Bars
2017; Le Dizès 2023). For a librating sphere, they are given by (Le Dizès & Le Bars 2017)

m = 5/4, (3.9)

and

C0 = E1/12

8(2 sin θc)1/2(2/η)1/4
eiπ/2 for the northward beam, (3.10a)

C0 = E1/12

8(2 sin θc)1/2(2/η)1/4
ei3π/4 for the southward beam. (3.10b)

These expressions can be applied to our geometry for the three forcings (2.6), (2.10)
and (2.11) imposed on the inner core. Considering the different non-dimensionalisation
of lengths adopted by Le Dizès & Le Bars (2017) and this work (the radial distance of
the critical latitude to the rotation axis versus the outer radius), the absolute value of the
complex amplitude C0 should be adapted as indicated in table 1 for the three forcings. The
factor η sin θc is the distance of the critical latitude to the axis Oz.

Note that the amplitude C0 of the parallel velocity scales as E1/12. This scaling has
been validated by HFRL22 for Ekman numbers down to 10−10. The amplitude of the
streamfunction is weaker and of order E5/12.

3.1.2. Reflections on the boundaries and on the axis
The reflection of a self-similar wave beam on a boundary has been discussed in Le
Dizès (2020) and HFRL22. Le Dizès (2020) showed that the wave beam keeps its
self-similar form when it reflects on a boundary. More precisely if the incident beam
is written as v(i)‖ = C(i)0 Hm(x

(i)
‖ , x(i)⊥ ), then the reflected beam can also be written as

v
(r)
‖ = C(r)0 Hm(x

(r)
‖ , x(r)⊥ ), with

x(r)‖b

x(i)‖b

= α3,
C(r)0

C(i)0

= αm−1, (3.11a,b)

where the subscript b indicates values taken at the reflection point. The reflection factor α
at the reflection point is given by

α = sin θ(r)

sin θ(i)
, (3.12)

where θ(r) and θ(i) are the angles of the reflected and incident beams with respect to the
boundary (see figure 2). This factor is smaller than 1 (resp. larger than 1) when there is a
contraction (resp. expansion) of the beam. A reflection on a boundary then just modifies
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the travelled distance from the source and the amplitude of the beam. In particular, it has
no effect on its phase.

Note, however, that this reflection law assumes implicitly that the beam is not forced
at the boundary where it reflects. In particular, this implies a simple relation on the
streamfunction of the incident and reflected beams at the boundary that can be written
as

ψ(r)(x(r)‖b , x(r)⊥b)+ ψ(i)(x(i)‖b
, x(i)⊥b) = 0. (3.13)

We will see below that this relation is no longer valid when we get very close to an attractor.
The crossing of the wave beam with the rotation axis is of different nature. In the

3-D axisymmetric geometry, the self-similar solution diverges on the axis, but it can
nevertheless be continued as if there were a reflection. The relation between the incident
and reflected beams is obtained by a matching condition with the solution obtained close to
the axis (see Le Dizès & Le Bars 2017). In that case, we obtain a phase shift π/2 between
the reflected and incident beams:

x(r)‖b
= x(i)‖b, C(r)0 = eiϕC(i)0 , (3.14a,b)

with ϕ = π/2.
In the 2-D configurations, the condition of reflection to apply on the axis Oz is related

directly to the property of symmetry of the forcing. On the axis Oz, the projections of
propagation directions of the incident and reflected rays onto the global unit vector ex are
of opposite sign. According to the formula (3.4), we then have the relations

v(r)y = ±iv(r)‖ , v(i)y = ∓iv(i)‖ . (3.15a,b)

For the 2-D symmetric forcing (2.10) where vy is forced in a symmetric way about the
axis Oz, we have v(r)y = v

(i)
y . Therefore, the parallel velocities are of opposite sign, which

means that
ϕ = π (3.16)

in (3.14). For the 2-D antisymmetric forcing (2.11) with v(r)y = −v(i)y , the parallel velocity
is unchanged, which means that

ϕ = 0. (3.17)

In order to consider a quarter of the domain in the (r, z) or (x, z) plane, the horizontal
axis Or (or Ox) also has to be considered as a place of reflection. Applying the same
approach, we can show easily that no phase shift is created between reflected and incident
beams on this axis for all the three forcings.

3.1.3. Propagation of critical-latitude beams
Having provided the structure of the wave beam and how it reflects on the boundaries
and the axis, we are now in a position to analyse its propagation in a closed geometry.
As explained above, we consider a frequency such that the rays emitted from the critical
latitude on the inner core end up on an attractor. Our objective is to obtain the property
of the self-similar beam centred on the critical ray as it moves towards the attractor.
An example of a critical ray is shown in figure 3, where the ray (blue lines) propagates
northwards from the critical latitude and spirals into one side of the attractor (red lines).
In the following, we use this figure for explanation purposes, but the methodology is
applicable for any type of wave pattern.
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z

r

P1,1

P2,1

P3,1

P4,1

P5,1

P6,1

P7,1

P0,2

P1,2

P2,2

P3,2

P4,2

P5,2

P6,2

P7,2

P0,3

P1,3

P1,∞

P2,∞

P3,∞

P4,∞

P5,∞

P6,∞

P7,∞

P0,∞

··
·

· · ·

· · ·

···

···

· · ·

· · ·

· · ·

P0,1

P0,2

P0,∞
(s)

x ⊥(0,1)

x ⊥(0,2)

x ⊥(0,∞)

L
0,2

x ′‖(0,∞
)

x ′‖(0,2)

x ′‖(0,1)
L

0,∞
(s)

(s)

(s)

Figure 3. Schematic of propagation of a critical ray towards an attractor for η = 0.35 and ω = 0.8317. The
symbol ∗ denotes an arbitrary point, from which the local coordinates of each segment (0, n) are measured.

The reflection positions on the axes and the boundaries during every loop are indicated
as Pj,n, where j denotes the reflection position and ranges from 0 to J − 1 (J = 8 in
figure 3). The index n denotes the number of the cycle and ranges from 1 to ∞. For
example, the reflection points on the rotation axis are P1,1,P1,2, . . . and P1,∞. To simplify
the formula, we assume that the initial point of a cycle is the position J of the former cycle,
that is, P0,n+1 = PJ,n. The critical latitude corresponds to P0,1. The critical ray follows the
following path during propagation:

P0,1P1,1 · · · PJ−1,1 → P0,2P1,2 · · · PJ−1,2 → · · · → P0,∞P1,∞ · · · PJ−1,∞. (3.18)

The critical ray ends up on the attractor denoted by P0,∞P1,∞ · · · PJ−1,∞ after an infinite
number of cycles.

The solution obtained by propagating the self-similar beam along the critical ray is
expected to be composed of as many contributions as the number of segments between two
reflection points. We use the subscript ( j, n) to denote the parameters associated with the
segment Pj,nPj+1,n (with j between 0 and J − 1). Finding the parameters characterising
this contribution requires tracking the variation of the travelled distance and of the
amplitude during all the previous reflections. For this purpose, it is useful to write the
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travelled distance x‖( j,n) as

x‖( j,n) = L(s)j,n + x′
‖( j,n), (3.19)

where x′
‖( j,n) is the distance from Pj,n, and L(s)j,n is the distance of the ‘virtual’ source P(s)j,n

from Pj,n. The condition of reflection (3.11a) applied in Pj+1,n implies that

L(s)j+1,n = (L(s)j,n + Lj,n)α
3
j+1,n, (3.20)

where Lj,n is the length of the segment ( j, n), and αj+1,n is the reflection factor at Pj+1,n.
Concerning the amplitude Cj,n of the self-similar solution, we obtain from (3.11b) with
(3.9) that

Cj+1,n = Cj,nα
1/4
j+1,n eiϕj+1, (3.21)

where ϕj is the phase shift obtained at the reflection at Pj,n. For the critical ray shown in
figure 3, this phase shift is null except for j = 1 (because the reflection is on the axis), for
which it can be π/2 (3-D case), π (2-D symmetric case) or 0 (2-D antisymmetric case).

In the following, we will consider the solution in a section perpendicular to the segments
(0, n). It is therefore useful to consider the evolution of the beam after each cycle for this
particular segment as a function of n. Using (3.20), we can write

L(s)0,n+1 ≡ L(s)J,n = (L(s)0,n +Λn)α
3
n, (3.22)

with

Λn = L0,n + L1,n

α3
1,n

+ L2,n

α3
1,nα

3
2,n

+ · · · + LJ−1,n

α3
1,nα

3
2,n · · ·α3

J−1,n
(3.23)

and
αn = α1,nα2,n · · ·αJ,n. (3.24)

Similarly, we obtain
C0,n+1 ≡ CJ,n = C0,nα

1/4
n eiϕ, (3.25)

with
ϕ = ϕ1 + ϕ2 + · · · + ϕJ. (3.26)

Note that αJ,n = α0,n+1 and ϕJ = ϕ0. For the first segment of the first cycle, the source is
at P0,1, so L0,1 = 0 and the amplitude C0,1 is given by the expression (3.10) of C0.

Although a given parameter αj,n can be larger than 1, the product (3.24) that defines αn
is necessarily smaller than 1 (for n sufficiently large) because the critical ray converges
towards an attractor. Its limit value α∞ corresponds to the contraction factor of the
attractor. The amplitude of the beam therefore goes rapidly to zero as one gets close to
the attractor. This guarantees that although the various contributions superimpose on each
other close to the attractor, the sum will remain finite on the attractor. The expression
obtained by summing all the contributions coming from the segments (0, n)with n ranging
from 1 to ∞ is then well defined. It can be written as

v‖ ∼
∞∑

n=1

v‖(0,n), ψ ∼
∞∑

n=1

ψ0,n (3.27a,b)

for the parallel velocity and the streamfunction, respectively. These expressions are
expected to provide an asymptotic solution close to segments (0, n). In the following, they
will be referred to as the critical-latitude solution. In the next section, they are plotted and
compared to numerical solutions.
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3.2. Results
The numerical solutions are obtained for Ekman numbers as low as 10−11, for which the
scale separation between the wave beams and the domain size is clear. For simplicity,
the velocity components vφ in three dimensions and vy in two dimensions are used for
comparison. Other velocity components follow a similar trend.

We consider the wave pattern with two coexisting attractors in a spherical shell as
discussed by Tilgner (1999) and Rieutord et al. (2001). The aspect ratio and the frequency
for this case are η = 0.35 and ω = 0.8102, respectively. The forcing is imposed on
the inner core. The numerical results of the 3-D libration at E = 10−9 and E = 10−11

illustrated by the amplitude of vφ are shown in figure 4(a). The wave beams at the
lower Ekman number are more separated. The wave pattern is consistent with the
ray paths from the critical latitude on the forced inner core (see figure 4b). The ray
propagating northwards from the critical latitude (in blue) converges onto the polar
attractor P(P)0,∞ · · · P(P)7,∞, while that propagating southwards from the critical latitude (in

green) converges onto the equatorial attractor P(E)0,∞ · · · P(E)5,∞. The corresponding 2-D
results are not shown because the ray paths are identical and the wave pattern is
qualitatively similar for the same aspect ratio and frequency. However, one should note
that the phase shift ϕ varies for different attractors and forcings. For the polar attractor
with one vertex on the axis Oz, the phase shifts are π/2, π and 0 for the 3-D libration, 2-D
symmetric and 2-D antisymmetric forcings, respectively. For the equatorial attractor, there
is no phase shift for any of the forcing as this attractor does not touch the axis Oz.

Two cuts crossing the two attractors are chosen in order to validate the critical-latitude
asymptotic solution given by (3.27a,b). Figures 5 and 6 compare the velocity profiles
between the asymptotic solutions and the numerical solutions at E = 10−11 on the cuts
S1 and S2, respectively (see figure 4). The cut S1 on the polar attractor is crossed only by
the ray propagating northwards from the critical latitude (blue lines in figure 4b), while the
cut S2 on the equatorial attractor is crossed only by the ray propagating southwards (green
lines in figure 4b). In figures 5 and 6, the vertical lines show the positions of the northward
and southward critical rays when they cross S1 and S2, respectively. These critical positions
correspond to different successive loops. From the rightmost critical position (r1) to the
leftmost one (r∞), the critical ray propagates from the first loop (n = 1) to the final loop
(n = ∞), and from the critical latitude to the final attractor. The critical-latitude solutions
on these two cuts S1 and S2 are built by propagating the self-similar solutions from
the critical latitude northwards and southwards respectively, by using the infinite sum
of self-similar solutions (3.27a,b); see the dashed lines in figures 5 and 6, respectively.
Since the amplitude decreases exponentially, the summation is conducted over a large
enough number of loops in order to ensure convergence (around 150 loops in practice).
The amplitudes are rescaled according to table 1, in order to make sure that the wave
beams from the critical latitude possess the same amplitudes for all three forcings. Note
that the radial dependence of the 3-D configuration is removed by multiplying the velocity
with

√
r.

Around the first critical position r1, the wave beam from the critical latitude is within
the first loop and has not experienced any contraction or expansion on the boundaries. It
takes the same shape for all the three forcings, and the self-similar solution agrees with the
numerical solution very well for both cuts and all three forcings, as shown by the profiles
around r1 in figures 5 and 6. After one loop, the wave beam moves on to the next critical
position r2. The amplitude decreases as expected from (3.25) for αn < 1. The agreement
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|vφ|

S2

S1

E = 10−9 E = 10−11

S1

S2

P6,∞
(P)P3,∞

(P)

P0,∞
(P)

P1,∞
(P)

P2,∞
(P)

P7,∞
(P)

P4,∞
(P)

P4,∞
(E)P1,∞

(E)

P0,∞
(E)

P5,∞
(E)

P2,∞
(E)

P3,∞
(E)

Critical latitude
Northward propagation

Southward propagation
Attractors

P5,∞
(P)

(b)

(a)

Figure 4. Results corresponding to the 3-D libration of the inner core for η = 0.35 and ω = 0.8102.
(a) Numerical results of the amplitude of vφ at E = 10−9 and E = 10−11. (b) Ray paths from the critical
latitude on the inner core.

between the self-similar solution and the numerical solution is still good; see the profiles
around r2 in figures 5 and 6. However, its shape is now dependent on the phase shift that
it has experienced during the first loop. For the polar attractor on S1, the profile around r2
changes compared to that around r1 for the 3-D libration and 2-D symmetric forcing since
there is a non-zero phase shift for both these cases (see figures 5a–d). The profiles between
r1 and r2 remain similar for the 2-D antisymmetric forcing since there is no phase shift
(figures 5e, f ). For the equatorial attractor on S2, there is no phase shift and the profiles
remain similar from r1 to r2 as shown in figure 6 for all three forcings. A similar behaviour
can be observed from the critical position r2 to the next position r3. Interestingly, as shown
in figure 6, the equatorial attractor profiles on S2, which do not cross the rotation axis and
therefore do not alter the phase, are almost the same for all forcing types, after rescaling
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Polar attractor S1, 3-D libration, ϕ = π/2

Polar attractor S1, 2-D symmetric forcing, ϕ = π

Polar attractor S1, 2-D antisymmetric forcing, ϕ = 0

Figure 5. Comparison of velocity profiles between the critical-latitude asymptotic solutions and the numerical
solutions on the cut S1 of the polar attractor shown in figure 4 at E = 10−11 for three forcings: (a,b) 3-D libration
(phase shift ϕ = π/2); (c,d) 2-D symmetric forcing (phase shift ϕ = π); (e, f ) 2-D antisymmetric forcing (no
phase shift). Here, (a,c,e) are the real parts, and (b,d, f ) are the imaginary parts. Amplitudes are rescaled by the
expressions for |C0| in table 1.

the amplitudes according to table 1. This is another confirmation that these cases should
be describable by a unique theory.

When the wave beam moves on to the position of the attractor (r∞), successive critical
positions become very close to each other and the profiles from different loops are not
well separated. Finally, the wave beam just propagates on the attractor, and the summation
of the self-similar solutions is conducted there. As shown by the profiles around the
positions of the attractors r∞ in figures 5 and 6, the attractor with phase shift (figures
5a–d) is weaker than that without phase shift (figures 5e, f and 6). This phenomenon
can be explained by the summation of the self-similar solutions on the attractor. When
there is a phase shift on the attractor path, the self-similar solutions of successive loops
with different phases cancel out, which makes the local solution in the vicinity of the
attractor negligible after summation. Otherwise, the self-similar solutions with the same
phase accumulate on the attractor, which makes the solution much stronger. For the polar
attractor with phase shift (r∞ in figures 5a–d), the critical-latitude solution (3.27a,b) is
consistent with the numerical solution. However, for the polar attractor without phase shift
(r∞ in figures 5e, f ), the asymptotic solution does not perform as well as for the positions
far from the attractor. This deviation is much more obvious for the equatorial attractor
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Figure 6. Same as for figure 5 but on the cut S2 of the equatorial attractor. There is no phase shift for all three
forcings.

without phase shift (r∞ in figure 6), where the amplitudes are largely overestimated and
the critical-latitude solution (3.27a,b) deviates from the numerical solutions gradually as
the ray converges towards the attractor.

In order to investigate what is happening around the attractor, the velocity amplitude
scalings with Ekman number of both the critical-latitude asymptotic solution (3.27a,b)
and the numerical solution at the critical positions on the cuts S1 and S2 are shown in
figure 7 for the 3-D libration. Similar behaviour can be observed for the other two forcings
and are not shown here. The critical-latitude solution (3.27a,b) and the numerical solution
at the first critical position r1 follow the expected scaling E1/12, which validates the Ekman
number scaling of the wave beams from the critical latitude for a libration frequency
different from that in HFRL22. Then the amplitude on S1 (polar attractor with phase shift)
decreases to a weaker level as the ray gets closer to the position of the attractor r∞, and
the scaling is eventually closer to E1/6. The scaling E1/6 around r∞ is more obvious for
the other cut S2 of the equatorial attractor without phase shift. However, the corresponding
prefactor is overpredicted by the critical-latitude solution.

The change of scaling of the critical-latitude solution could have been anticipated
from (3.25) for its amplitude. We have seen that because αn < 1, the amplitude of the
self-similar beam decreases as it gets closer to the attractor. But the beam has also a
finite width of order E1/3, so the contributions obtained from each cycle superimpose
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Figure 7. Velocity amplitude scalings of (a,b) the critical-latitude solution and (c,d) the numerical solution, at
the critical positions on the cuts (a,c) S1 and (b,d) S2 for the 3-D libration, at the Ekman numbers [10−11, 10−6].
Here, r1, r2, . . . and r∞ are the critical positions shown in figures 5 and 6.

on each other when the critical ray gets at a distance of this order from the attractor. This
stops the decreasing of the amplitude after a number ns of cycles that can be estimated
approximately by (log E1/3)/(logα∞), which corresponds to the number of contractions
needed to go from 1 to E1/3 with the contraction factor α∞. The amplitude C0,ns has
then decreased from its initial value C0 by a factor α1/4

1 α
1/4
2 · · ·α1/4

ns , which is close to
α

ns/4∞ ≈ E1/12. The velocity amplitude of the critical-latitude solution is therefore expected
to become O(E1/12) smaller close to the attractor and therefore of order E1/6, as observed.

The amplitude of the streamfunction of the critical-latitude solution also decreases from
O(E5/12) to O(E1/2) as we get close to the attractor. Then it becomes of the order of the
Ekman pumping (see Appendix B). This means that the hypothesis of negligible Ekman
pumping that has been used to obtain the reflection laws of the beam in § 3.1.2 breaks
down. In particular, (3.13) should not be valid close to the attractor. We suspect that the
discrepancies observed close to the attractor between the critical-latitude solution and the
numerical solution are due to this effect.

In the next section, we develop a new asymptotic theory to describe the solution close
to the attractor. This theory, which takes into account the Ekman pumping close to the
attractor, is based on ideas developed originally by O05.
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4. Solution close to the attractors

4.1. Asymptotic theory
In order to apply the results of O05, we first consider 2-D configurations without phase
shift or reflection on the axis. In this framework, the inviscid problem can be solved using
the 2-D streamfunction only, and a global solution for the streamfunction is obtained as a
sum of two functions that are constant along the characteristics of the problem (e.g. Maas
& Lam 1995).

In the present work, we are looking for a solution localised near an attractor, say
P0,∞ · · · PJ−1,∞ as illustrated in figure 3, which can be written as a sum of local solutions
ψ
(2-D)
j,∞ (x⊥( j,∞)) valid close to the segment ( j,∞) only. In the 2-D inviscid framework,

these local solutions just mean that the solution is transported from Pj,∞ to Pj+1,∞ along
the lines x(⊥j,∞) = constant without modification. Whereas the critical-latitude solution
was reflected on boundary without modification, the solution constructed by O05 is forced
directly by the boundary condition in the neighbourhood of the attractor. Close to a point
Pj,∞, the solution is expected to be composed of the incident solution ψ(2-D)

j,∞ (x⊥(j,∞))

and the reflected solution ψ(2-D)
j+1,∞(x⊥( j+1,∞)), and satisfies the boundary condition on the

surface

ψ
(2-D)
j,∞ (x⊥( j,∞))+ ψ

(2-D)
j+1,∞(x⊥( j+1,∞)) = ψ

(EP)
j,∞ , (4.1)

where the condition of being on the surface close to Pj,∞ means that

x⊥( j+1,∞) = αj,∞x⊥( j,∞). (4.2)

In (4.1), ψ(EP)
j,∞ is the value of the streamfunction prescribed at Pj,∞. In our case, this

prescribed value is given by the Ekman pumping (EP) at the surface (or is zero if there is
no Ekman pumping).

If we apply these conditions at each point P0,∞,P1,∞, . . .,PJ−1,∞ of the attractor, we
end up, after a complete cycle, with an equation for each ψj,∞ that can be written as

ψ
(2-D)
j,∞ (α∞x⊥( j,∞))− ψ

(2-D)
j,∞ (x⊥( j,∞)) = εj,∞δ, (4.3)

with

δ =
J/2∑
k=1

(
ψ
(EP)
2k,∞ − ψ

(EP)
2k+1,∞

)
(4.4)

and

α∞ = α1,∞α2,∞ · · ·αJ,∞, (4.5)

where we have used the fact that the point Pj+J,∞ corresponds to the point Pj,∞
(implying thatψj,∞ = ψj+J,∞ andψ(EP)

j+J,∞ = ψ
(EP)
j,∞ ). The parameter εj,∞ is the sign in the

streamfunction definition (3.6). The parameter α∞ is the contraction factor of the attractor.
Equation (4.3) is a functional constraint on the inviscid solution close to a 2-D attractor. It
is identical to equation (3.17) of O05.
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The general solution of this equation can be written as

ψ
(2-D)
j,∞ (x⊥( j,∞)) = εj,∞δ

lnα∞
ln |x⊥( j,∞)| +

+∞∑
n=−∞

h±
n |x⊥( j,∞)|2nπi/lnα∞, (4.6)

where the ± sign is for positive or negative x⊥( j,∞). Interestingly, the dominant
logarithmic part of this solution has a simple expression that depends only on the
contraction factor α∞ and the forcing term δ. This part corresponds to a particular solution
of (4.3), while the sum is a general homogeneous solution determined by the global ray
mapping. Contrary to O05, we will not try to determine this homogeneous solution, since
the global ray mapping for the attractors in a spherical shell is not expected to be simple.
We will keep only the dominant logarithmic term to describe the inviscid solution close to
the attractor. This hypothesis is not justified from an asymptotical point of view, but O05
showed that the correction associated with the homogeneous part was very small for his
case.

If we keep only the particular solution, then we get a simple inviscid expression for the
parallel velocity:

v
(2-D)
‖( j,∞) ∼ δ

lnα∞
x−1
⊥( j,∞). (4.7)

As explained already above, this singular behaviour can be smoothed by viscosity by
introducing the self-similar solution of Moore & Saffman (1969). The viscous solution
that matches with the singular behaviour (4.7) is

v
(2-D)
‖( j,∞) ∼ C(A)0 H1(x‖( j,∞), x⊥( j,∞)), (4.8)

with

C(A)0 = δ

lnα∞
E−1/3, (4.9)

where Hm(x‖, x⊥) has been defined in (3.1).
In the above expression, the virtual source of the beam – that is, the position where

x‖( j,∞) = 0 – is, however, not known. This position can be obtained by using the argument
developed in § 3.1.3 for the critical-latitude solution. In particular, if as above, x‖( j,∞) is
written as

x‖( j,∞) = L(s)j,∞ + x′
‖( j,∞), (4.10)

with x′
‖( j,∞) = 0 at Pj,∞, then the distance L(s)j,∞ satisfies (3.20) and (3.22) with n → ∞.

For the first segment between P0,∞ and P1,∞, we then get, using (3.22),

L(s)0,∞ = (L(s)0,∞ +Λ∞)α3
∞, (4.11)

that is,

L(s)0,∞ = Λ∞
α3∞

1 − α3∞
, (4.12)

where Λ∞ and α∞ are given by (3.23) and (3.24) with n → ∞.
It is worth noting that the amplitude of the attractor solution does not change along the

cycle. This is due to the particular value of the index of m of the self-similar solution – that
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is, m = 1 for the attractor solution – which guarantees that the amplitude does not change
when the beam reflects on the boundary, as prescribed by the reflection law (3.11b).

For the 3-D configurations or when there is a phase shift during a cycle, the above
considerations have to be modified. First note that in 3-D axisymmetric geometries,
the streamfunction is not propagated identically along characteristics as it is in two
dimensions. It evolves according to a propagator defined by the Riemann function, which
is a Legendre function of index −1/2 for axisymmetric solutions considered here (but see
§ 2.3.2 of Rieutord et al. (2001, for more details)). In other words, there is no simple
global expression of the inviscid solution for the streamfunction in three dimensions.
However, if the solution varies on small scales compared to the distance to the axis, then
the propagation is almost as in two dimensions: in that case, an approximate local solution
can be obtained far from the axis in the form

ψ = √
r ψ̃(x⊥), v‖ = ṽ‖(x⊥)√

r
, (4.13a,b)

where the
√

r factor guarantees that these approximations are valid up to second-order
corrections. The same analysis as above can then be performed for ψ̃ as long as we are
far from the axis. This leads to a 3-D expression for the local solution near an attractor
without phase shift that is obtained directly from (4.8) as

v‖( j,∞) ∼ C(A)0√
r

H1(x‖( j,∞), x⊥( j,∞)), (4.14)

with C(A)0 given by (4.9) but with a slightly different expression for δ:

δ =
J/2∑
k=1

(
ψ
(EP)
2k,∞√r2k,∞

− ψ
(EP)
2k+1,∞√r2k+1,∞

)
. (4.15)

For the solution along the first segment P0,∞P1,∞, x‖( j,∞) is still defined by (4.10) and
(4.12).

For the attractor without reflection on the axis, it is the expressions (4.8) for 2-D
configurations and (4.14) for 3-D configurations that we will use and compare to our
numerical data.

We now want to consider the case of an attractor touching the axis. For the
critical-latitude solution, we have seen that a phase shift could be generated as the beam
reflects on the axis. A similar phenomenon is expected for the attractor solution. Let us
first consider the 2-D configurations. We have seen that in that case, the presence of a
phase shift depends on the symmetry of the forcing with respect to the Oz axis. A phase
shift ϕ = π is expected for a symmetric forcing, while no phase shift is present for an
antisymmetric forcing. This is easily understood as changing x into −x changes x⊥(0,∞)

into x⊥(1,∞). The local solutions ψ(2-D)
0,∞ (x⊥(0,∞)) and ψ(2-D)

1,∞ (x⊥(1,∞)), valid close to the
two lines x⊥(0,∞) = 0 and x⊥(1,∞) = 0, respectively, should therefore satisfy the same
symmetry as the forcing, that is,

ψ
(2-D)
1,∞ (x⊥(1,∞)) = ψ

(2-D)
0,∞ (x⊥(0,∞)) (4.16)

for the symmetric forcing, and

ψ
(2-D)
1,∞ (x⊥(1,∞)) = −ψ(2-D)

0,∞ (x⊥(0,∞)) (4.17)
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for the antisymmetric forcing, when x⊥(0,∞) = x⊥(1,∞). For the antisymmetric case, the
axis is therefore as a vertical boundary without Ekman pumping (compare (4.17) to (4.1)).
The same solution as for a 2-D attractor not reflecting on the axis can therefore be used.
For the symmetric case, this is no longer the case. Owing to (4.16), (4.3) now becomes

ψ
(2-D)
j,∞ (α∞x⊥( j,∞))+ ψ

(2-D)
j,∞ (x⊥( j,∞)) = εj,∞δ (4.18)

if there is an even number of reflections on the axis. A particular solution to this equation
is just ψ(2-D)

j,∞ (x⊥( j,∞)) = εj,∞δ/2, so there is no longer a logarithmic singularity in the
solution. Thus the inviscid expression (4.7) is not obtained, and neither is its viscous
counterpart (4.8).

In three dimensions, as a phase shift of π/2 appears when the ray reflects on the
axis, a similar phenomenon is expected if the number of reflections on the axis is not a
multiple of 4. In that case, no logarithmic singularity should be present in the function
ψ̃j,∞, and the analysis performed above should also break down. A weaker attractor
solution is probably obtained in that case, which could explain why no significant attractor
contribution was observed in the numerical solution when there is a phase shift. Finding
the correct asymptotic form of the attractor solution in the presence of a phase shift is not
an easy task. We leave it for future studies, probably in a simpler geometry.

4.2. Results
We now try to assess the performance of the attractor solution discussed above, and see
whether the rather poor performance of the critical-latitude solution (3.27a,b) for the cases
without phase shift (the polar attractor forced by the 2-D antisymmetric forcing in figures
5(e, f ) and the equatorial attractors in figure 6) is improved. Since all three forcings are
imposed on the inner core, only one vertex for each attractor is forced, namely P(P)0,∞ for

the polar attractor, and P(E)0,∞ for the equatorial attractor (see figure 4b). The forcing term
δ (see (4.4) and (4.15)) can be simplified to

δ =
{
ψ
(EP)
0,∞ , 2-D,

ψ
(EP)
0,∞ /

√r0,∞, 3-D.
(4.19)

The values of the Ekman pumping at the positions P(P)0,∞ and P(E)0,∞ correspond to the
formulae of the inner core in table 2 of Appendix B. As shown in figure 8, the attractor
solution (in red) performs much better than the previous critical-latitude solution. It
demonstrates the necessity of including the Ekman pumping into the asymptotic solution
as one gets close to the attractor, especially for the attractors without phase shift. However,
it is unnecessary for the attractors with phase shift, as shown by figures 5(a–d), since there
is no logarithmic singularity.

Note that we now face the problem of defining a transition between the critical-latitude
solution valid during the first cycles and the attractor solution eventually valid close to
the attractor. While we do not discuss this aspect of the problem in this paper, further
studies would be required to clarify this transition.

The forcings considered up to now were imposed on the inner core, which excites the
wave beams from the critical latitude on the inner core. These wave beams propagate
towards the attractors and coexist with them. In order to further validate the attractor
solution, it is helpful to consider a configuration where the attractor is not affected by
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3-D libration 2-D symmetric forcing 2-D antisymmetric forcing

Inner core iη2 sin2 θ/2 i/2 iη sin θ/2
Outer boundary −i sin2 θ/2 −i/2 −i sin θ/2

Table 2. Expressions of Ekman pumping ψ(EP) (divided by ((1/λ+)− (1/λ−))
√

E) generated by different
forcings.
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Figure 8. Comparison of velocity profiles between the numerical solution, the critical-latitude solution and the
attractor solution at E = 10−11: (a,b) the cut S1 of the polar attractor forced by the 2-D antisymmetric forcing;
(c,d) the cut S2 of the equatorial attractor forced by the 3-D libration. (The other 2-D forcings for the equatorial
attractor show the same results as in (c,d).)
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Figure 9. Results corresponding to the 3-D libration of the outer boundary for η = 0.35 and ω = 0.8102.
(a) Numerical result of the amplitude of vφ at E = 10−11. (b) Ray paths from the critical latitude on the outer
boundary.
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Figure 10. Comparison of velocity profiles between the attractor solutions and the numerical solutions on the
cut S2 of the equatorial attractor excited by the three forcings imposed on the outer boundary at three Ekman
numbers.

the propagation of the wave beams from the forced critical latitude. Fortunately, such a
configuration exists for the same aspect ratio and frequency but with the forcing imposed
on the outer boundary. The wave pattern of the 3-D libration on the outer boundary is
shown in figure 9(a), which can be compared to the ray paths in figure 9(b). Since only the
critical latitude on the outer boundary is forced, the only option for the initial propagation
direction is pointing into the bulk. As shown in figure 9(b), this ray (in cyan) propagates
onto the polar attractor. The corresponding wave beam from the critical latitude on the
outer boundary should possess E1/5 width and E1/5 amplitude (Roberts & Stewartson
1963; Noir, Jault & Cardin 2001; Lin & Noir 2021), but it will not be our concern here.
More importantly, figure 9(a) shows that the equatorial attractor is still present, although
it is not connected to the ray emerging from the critical latitude on the outer boundary. It
should thus be forced directly by the Ekman pumping at the positions of the attractor on
the outer boundary. The attractor solution can be built for this attractor since there is no
phase shift associated with it. Because the vertices P(E)2,∞, P(E)3,∞ and P(E)5,∞ of the equatorial
attractor are forced, the forcing term δ (see (4.4) and (4.15)) can be simplified to

δ =
{
ψ
(EP)
2,∞ − ψ

(EP)
3,∞ − ψ

(EP)
5,∞ , 2-D,

ψ
(EP)
2,∞ /

√r2,∞ − ψ
(EP)
3,∞ /

√r3,∞ − ψ
(EP)
5,∞ /

√r5,∞, 3-D.
(4.20)

The values of the Ekman pumping at the positions P(E)2,∞, P(E)3,∞ and P(E)5,∞ correspond to the
formulae of the outer boundary in table 2 of Appendix B. Figure 10 shows the comparison
between the attractor solutions and the numerical solutions for the three forcings at three

974 A3-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

76
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.761


Internal shear layers in librating spherical shells

10−11 10−10 10−9 10−8 10−7 10−6 10−11 10−10 10−9 10−8 10−7 10−6

E

10−3

10−2

B
ea

m
 w

id
th

3-D libration

2-D symmetric forcing

2-D antisymmetric forcing

E1/3

E

10−3

10−2

A
m

p
li

tu
d
e

3-D libration

2-D symmetric forcing

2-D antisymmetric forcing

E1/6

(a) (b)

Figure 11. Ekman number scalings of the equatorial attractor excited by the three forcings imposed on the
outer boundary: (a) beam width measured by the distance of the peaks of the profiles in figure 10; (b) velocity
amplitude taken at the critical position.

Ekman numbers. The amplitudes of the three forcings are rescaled. Good performance
of the attractor solution is observed. As the Ekman number decreases, the agreement
between the two solutions becomes better. The small ripples on the negative side of the
similarity variable at the low Ekman numbers are wave beams from the critical latitude
on the unforced inner core. They are much weaker, and the accumulation of them on the
attractor remains negligible compared to the attractor beam. Figure 11 shows the Ekman
number scalings of the attractor beams with beam width and velocity amplitude in E1/3

and E1/6, respectively, as expected.
To summarise, we have seen that the solution close to an attractor without phase shift

is described well by our asymptotic solution obtained by keeping only the logarithmic
singularity contribution of the inviscid expression of the streamfunction. This has been
observed for all types of forcing, in two and three dimensions, and for configurations where
the attractor is connected to the critical latitude or not.

5. Conclusion

Using asymptotic analysis and numerical integration, we have studied the linear harmonic
solution obtained in a rotating spherical shell by librating the inner or outer boundary
for very small Ekman numbers. We have considered a shell aspect ratio and a forcing
frequency such that the ray beams converge towards either a polar attractor touching
the rotation axis, or an equatorial attractor not touching the rotation axis. Both 3-D
axisymmetric and 2-D configurations with different types of forcing have been considered
to analyse the effect of the geometric singularity on the axis (obtained in three dimensions)
and the influence of a phase shift (present in the polar attractor in three dimensions,
and in two dimensions with a symmetric forcing). We have focused our interest on the
concentrated internal shear layers that appear along the ray emitted from the critical
latitude on the inner core, and close to the attractors.

We have first shown that when the forcing is performed on the inner core, the dominant
part of the solution is associated with a critical-latitude beam. We have shown that the
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characteristics of this beam are obtained by propagating the self-similar solution issued
from the critical latitude on the inner core, as in an unbounded geometry (Le Dizès & Le
Bars 2017) or for periodic ray paths (HFRL22). This self-similar solution has a width in
E1/3, a well-defined velocity amplitude in E1/12, and a velocity structure corresponding to
the singularity index m = 5/4. As it propagates and reflects on boundaries (and possibly
on the axis), its amplitude decreases down to E1/6 until it reaches one of the two attractors.

We have then observed that the numerical solution departs from the asymptotic
critical-latitude solution when we get close to the attractor, for some of the attractors. We
have seen that the departure was present when the rays do not exhibit a phase shift along the
attractor, that is, for the equatorial attractor and for the polar attractor in two dimensions
with an antisymmetric forcing. We have then constructed a new asymptotic solution to
describe the solution close to such an attractor, using results from O05. The main idea is
based on the derivation of an inviscid functional equation for the streamfunction obtained
by propagating the solution on a complete cycle on the attractor, taking into account
contraction/expansion as well as Ekman pumping from the boundaries. The equation
that is obtained when there is no phase shift is the equation obtained by O05. We have
solved this equation by keeping only the logarithmic singular part. When smoothed by
viscosity, this singular behaviour leads to a self-similar expression for the velocity with
singularity index m = 1 and amplitude in E1/6. Contrary to the critical-latitude solution,
the amplitude of this attractor solution depends on the Ekman pumping at the locations
where the attractor touches the boundaries. We have shown that it describes correctly the
numerical solution close to the attractor for all the attractors without phase shift.

From an asymptotic point of view, it would now be useful to obtain a solution that
describes both the critical solution and the attractor solution in order to understand how
the index characterising the self-similar solution changes from m = 5/4 to m = 1.

When the attractor exhibits a phase shift, the analysis of O05 cannot be applied
completely. We have seen that a different functional equation is obtained for the
streamfunction, which does not possess any logarithmically singular solution. We suspect
that the amplitude of the solution is weaker in that case, which could explain why its
contribution is not visible in the numerical solution close to the attractor. Obtaining an
asymptotic expression describing the solution in that case still constitutes one of the
important remaining issues.
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Appendix A. Verification of the spectral codes

The spectral codes are verified against the open-source spectral-element software Nek5000
(Fischer 1997; Nek5000 Version 19.0, Argonne National Laboratory, Illinois, available at
https://nek5000.mcs.anl.gov). This code has already been used in the context of inertial
wave propagation (Favier et al. 2014). Linear temporal simulations with the time-harmonic
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forcing are implemented by Nek5000. After a large enough number of periods, the
time-harmonic steady state is reached, and the results at different instants are extracted
to compare with the real and imaginary parts of the spectral results. Since it is almost
impossible to reach the very low Ekman number 10−11 when solving the initial-value
problem with Nek5000, the comparison is done at the relatively high Ekman number
10−6. The simulations are run for all three forcings considered in this work. In the 3-D
configuration, the simulation is run in the upper right quarter of an annulus, with the
axisymmetric and symmetric boundary conditions set on the two straight boundaries.
In the 2-D configuration, the simulations are run in the upper half of an annulus, with
symmetric boundary conditions set on the two straight boundaries. One of the curved
boundaries is subject to the harmonic forcing, while the other is subject to the no-slip
boundary condition. The aspect ratio and the forcing frequency are chosen to be 0.35 and√

2, respectively, so that the wave pattern is a simple periodic orbit as in HFRL22. The
comparisons are shown in figure 12. The results of Nek5000 are shown on the left-hand
side, while those of the spectral codes are shown on the right-hand side. They agree with
each other very well.

On the other hand, the convergence of the spectral codes is verified by the spectra of
the spherical harmonic (or Fourier) components and the Chebyshev coefficients, as in
Rieutord & Valdettaro (1997). Figure 13 shows the spectra for the 3-D libration imposed
on the inner core with aspect ratio 0.35 and forcing frequency 0.8102 at the lowest Ekman
number 10−11. The 2-D results are similar and omitted.

Appendix B. Ekman pumping

The viscous forcing generates an Ekman layer adjacent to the boundary. The Ekman
pumping plays a role in the generation of wave beams in the bulk. In order to derive the
formula for it, it is convenient to use the streamfunction expression in spherical or polar
coordinates.

B.1. Three-dimensional configuration
We first consider the libration imposed on the inner core. In the spherical coordinates
(ρ, θ, φ), the streamfunction ψ and the associated variable χ are defined as

vρ = 1
ρ2 sin θ

∂ψ

∂θ
, vθ = − 1

ρ sin θ
∂ψ

∂ρ
, vφ = χ

ρ sin θ
. (B1a–c)

The governing equations (2.3) are recast to

−iωD2ψ + 2
(

cos θ
∂χ

∂ρ
− sin θ

ρ

∂χ

∂θ

)
− E D4ψ = 0, (B2a)

−iωχ − 2
(

cos θ
∂ψ

∂ρ
− sin θ

ρ

∂ψ

∂θ

)
− E D2χ = 0, (B2b)

with the operator

D2 = ∂2

∂ρ2 − 1
ρ2 tan θ

∂

∂θ
+ 1
ρ2

∂2

∂θ2 , (B3)
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0.0050–0.005

vφ

Nek5000 Spectral

(a)

(b)

(c)

Figure 12. Comparison between the direct numerical results given by Nek5000 and the spectral codes: (a) 3-D
libration; (b) 2-D symmetric forcing; (c) 2-D antisymmetric forcing. The combination of the aspect ratio and
forcing frequency is (η, ω) = (0.35,

√
2).

and the boundary conditions

ψ = ∂ψ/∂ρ = 0, χ = η2 sin2 θ at ρ = η, (B4a)

ψ = ∂ψ/∂ρ = χ = 0 at ρ = 1. (B4b)

The length scale of the Ekman layer is
√

E. The radial distance to the centre is rescaled
as

ρ̂ = (ρ − η)/
√

E. (B5)

The streamfunction ψ and the associated χ are expanded as to the leading order:

ψ =
√

E ψ̂(1)(ρ̂, θ), χ = χ̂ (0)(ρ̂, θ). (B6a,b)
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Figure 13. Spectra of (a) the spherical harmonic components and (b) the Chebyshev coefficients at E = 10−11,
with resolution (N,L) = (2500, 8000). For each l or n, the maximum value over the other spectral component
is taken. The forcing corresponds to the 3-D libration imposed on the inner core. The aspect ratio is η = 0.35,
and the forcing frequency is ω = 0.8102.

In the leading order, the governing equations (B2) become

−iω
∂2ψ̂(1)

∂ρ̂2 + 2 cos θ
∂χ̂ (0)

∂ρ̂
− ∂4ψ̂(1)

∂ρ̂4 = 0, (B7a)

−iωχ̂(0) − 2 cos θ
∂ψ̂(1)

∂ρ̂
− ∂2χ̂ (0)

∂ρ̂2 = 0, (B7b)

with the boundary conditions

ψ = ∂ψ/∂ρ = 0, χ = η2 sin2 θ at ρ̂ = 0, (B8a)

∂ψ/∂ρ → 0, χ → 0 as ρ̂ → ∞. (B8b)

The solution of the streamfunction is obtained as

ψ =
√

E i
η2 sin2 θ

2

(
−e−λ+ρ̂

λ+
+ 1
λ+

+ e−λ−ρ̂

λ−
− 1
λ−

)
, (B9)

with λ± defined as

λ+ = (1 − i)
√
ω/2 + cos θ (B10)

and

λ− =
{
(1 − i)

√
ω/2 − cos θ, ω/2 > cos θ,

(1 + i)
√

cos θ − ω/2, ω/2 < cos θ.
(B11)

When ρ̂ goes to +∞, the Ekman pumping is obtained as

ψ(EP) = iη2 sin2 θ

2

(
1
λ+

− 1
λ−

)√
E. (B12)

The Ekman pumping blows up at the critical colatitude θc = arccosω/2.
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When the libration is imposed on the outer boundary, the boundary conditions become
different, and the corresponding Ekman pumping can be obtained similarly:

ψ(EP) = −i sin2 θ

2

(
1
λ+

− 1
λ−

)√
E. (B13)

B.2. Two-dimensional configuration
In the 2-D configuration, the governing equations (2.22) of the streamfunction and the
associated variable χ in polar coordinates are solved asymptotically using the same scaling
E1/2 as in the 3-D configuration. The expressions of the Ekman pumping generated by
different forcings are given in table 2. Note that ϑ in the 2-D configuration has been
replaced by π/2 − θ in order to keep expressions similar to the 3-D counterpart.

Note that the Ekman pumping is O(E1/2), except at the critical latitude where the Ekman
pumping blows up.
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