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High-dimensional imaging experiments produce results that are data-rich but frustratingly challenging to 
interpret. Those challenges arise, in large part, due to the lack of easy software tools to display and 
properly analyze any dataset whose domain spans more than four dimensions. We describe here our 
extensions to the Dragonfly platform to make the visualization and quantitative analysis of 
high-dimensionality images user-friendly and accessible for non-experts. 
 
Ordinary imaging records a single signal at spatially discrete positions and encodes that digitized signal 
as a scalar value at every position on a regularly sampled spatial array. Here, we use the terms 
high-dimensional image, spectrum image, and hyperspectral image interchangeably to describe imaging 
experiments where the spatial array may be 2D, 3D, or 4D (3D-space plus time), but where instead of 
capturing a single scalar value at every spatial position, a broad signal array is recorded. That signal 
array can be an energy spectrum as in the cases of energy electron loss spectroscopy (EELS) or energy 
dispersive x-ray spectroscopy (EDS). Or that signal might be a 2D array as in electron backscattered 
diffraction (EBSD) or ptychography. These experiments have become more routine, but the available 
processing software is often arcane and has limited functionality. 
 
First we deal with hyperspectral visualization. Normal image visualization techniques display pixels and 
use color to convey signal intensity for the rendered image. The most naive, but still useful, solution for 
spectral images is to display a conventional 2D or 3D spatial rendering of a single component of the 
signal array but provide the user an interface for selecting which component is rendered. Similar to 
visualizing a 3D image by displaying a single 2D Z-slice and letting the user drag a slider for Z-position, 
visualizing EDS or EELS spectral images is easily done by letting the user have a slider for the 
energy-axis; we call this spectral slicing. A slightly more advanced solution is to define an interval of 
spectral components (e.g. an energy window) over which the signal is integrated; we refer to this as 
spectral windowing. A third solution is to perform a principal components analysis (PCA) over the 
spectral dimension for all pixels, take the first eigenvector as a set of coefficients, and then sum the 
signal over all components and render the weighted sum; the last approach is a highly efficient way of 
reducing a multi-dimensional domain into a single-dimensional axis of greatest variance. All three of 
these techniques are nicely implemented in the Cornell Spectrum Imager [1]. What all of these solutions 
have in common is taking a spectral array signal and reducing it to single scalar value. 
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We generalize the techniques described above by defining a software pattern. In Dragonfly, any Python 
function that takes a signal array as input and returns a scalar value can be used for spectral reduction. 
We implement all three of the above solutions within the constraints of this pattern but also document 
the platform so others can implement their own spectral reduction techniques. In the case of spectrum 
slicing, only one slider is required in the user interface. For spectral windowing, two sliders easily define 
the lower and upper bounds on the spectrum axis; it is common to also employ spectral background 
characterization and correction for this kind of windowing technique, but we describe this elsewhere. 
For reduction by PCA, the only user input required is which eigenvector (e.g. first, second, etc.) to use 
for the coefficients. This same pattern is easily extended for signals that are comprised of 2D arrays. As 
an example we show here a spectral reduction interface that presents the user a 2D image and lets the 
user manually paint a binary pattern which defines a non-contiguous 2D integration “window.”  
 
Second we address hyperspectral analysis. A typical solution for analysis is to provide a user interface 
positioning a zero-dimensional probe in the spatial domain and displaying a 1D plot of the spectral 
signal for that position. We provide the same, but we also support 2D plots for 2D signal arrays, and we 
provide for 2D, 3D, and 4D averaging probes in additional to zero-dimensional probes. 
 
Each spectral reduction described earlier is dynamic so users can continuously vary the free parameters 
of the Python function and visualize the results in real time. But those dynamic renderings are made 
persistent when the user names the output as a new image channel in the Dragonfly workspace. 
Thereafter, it’s accessible like any other normal imported 2D, 3D, or 4D image; each spectral reduction, 
therefore, behaves like virtual experimental image. For example, the user might process spectral data in 
order to yield multiple chemical channels and overlay them for visualization or feed them into 
integrative segmentation tools such as Dragonfly’s convolutional neural network filters or 
machine-learning Segmentation Trainer [2].  
 
Strengths of Dragonfly include its Python functionality and its integration of image visualization, image 
segmentation, and quantitative analysis tools for multiple image channels. By tying these features 
together with flexible hyperspectral reduction and analysis, we establish a unified solution that is easy to 
use and extend. We support the import of high-dimensional datasets encoded in the open pycroscopy file 
format [3] and expect access to Dragonfly to complement that effort for standardizing hyperspectral data 
processing. 
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