
560
doi:10.1017/S143192761800329X

Microsc. Microanal. 24 (Suppl 1), 2018
© Microscopy Society of America 2018

Dragonfly as a Flexible Platform for Interpreting and Processing Hyperspectral and
other High-dimensional Images

Nicolas Piche ​1​, Francis Cote​1​, Eric Yen​1​, Mike Marsh​2

1.​ Object Research Systems. Montreal, Canada.
2.​ Object Research Systems. Denver, USA

High-dimensional imaging experiments produce results that are data-rich but frustratingly challenging to
interpret. Those challenges arise, in large part, due to the lack of easy software tools to display and
properly analyze any dataset whose domain spans more than four dimensions. We describe here our
extensions to the Dragonfly platform to make the visualization and quantitative analysis of
high-dimensionality images user-friendly and accessible for non-experts.

Ordinary imaging records a single signal at spatially discrete positions and encodes that digitized signal
as a scalar value at every position on a regularly sampled spatial array. Here, we use the terms
high-dimensional image, spectrum image, and hyperspectral image interchangeably to describe imaging
experiments where the spatial array may be 2D, 3D, or 4D (3D-space plus time), but where instead of
capturing a single scalar value at every spatial position, a broad signal array is recorded. That signal
array can be an energy spectrum as in the cases of energy electron loss spectroscopy (EELS) or energy
dispersive x-ray spectroscopy (EDS). Or that signal might be a 2D array as in electron backscattered
diffraction (EBSD) or ptychography. These experiments have become more routine, but the available
processing software is often arcane and has limited functionality.

First we deal with hyperspectral visualization. Normal image visualization techniques display pixels and
use color to convey signal intensity for the rendered image. The most naive, but still useful, solution for
spectral images is to display a conventional 2D or 3D spatial rendering of a single component of the
signal array but provide the user an interface for selecting which component is rendered. Similar to
visualizing a 3D image by displaying a single 2D Z-slice and letting the user drag a slider for Z-position,
visualizing EDS or EELS spectral images is easily done by letting the user have a slider for the
energy-axis; we call this spectral slicing. A slightly more advanced solution is to define an interval of
spectral components (e.g. an energy window) over which the signal is integrated; we refer to this as
spectral windowing. A third solution is to perform a principal components analysis (PCA) over the
spectral dimension for all pixels, take the first eigenvector as a set of coefficients, and then sum the
signal over all components and render the weighted sum; the last approach is a highly efficient way of
reducing a multi-dimensional domain into a single-dimensional axis of greatest variance. All three of
these techniques are nicely implemented in the Cornell Spectrum Imager [1]. What all of these solutions
have in common is taking a spectral array signal and reducing it to single scalar value.

https://doi.org/10.1017/S143192761800329X Published online by Cambridge University Press

https://doi.org/10.1017/S143192761800329X

Microsc. Microanal. 24 (Suppl 1), 2018 561

We generalize the techniques described above by defining a software pattern. In Dragonfly, any Python
function that takes a signal array as input and returns a scalar value can be used for spectral reduction.
We implement all three of the above solutions within the constraints of this pattern but also document
the platform so others can implement their own spectral reduction techniques. In the case of spectrum
slicing, only one slider is required in the user interface. For spectral windowing, two sliders easily define
the lower and upper bounds on the spectrum axis; it is common to also employ spectral background
characterization and correction for this kind of windowing technique, but we describe this elsewhere.
For reduction by PCA, the only user input required is which eigenvector (e.g. first, second, etc.) to use
for the coefficients. This same pattern is easily extended for signals that are comprised of 2D arrays. As
an example we show here a spectral reduction interface that presents the user a 2D image and lets the
user manually paint a binary pattern which defines a non-contiguous 2D integration “window.”

Second we address hyperspectral analysis. A typical solution for analysis is to provide a user interface
positioning a zero-dimensional probe in the spatial domain and displaying a 1D plot of the spectral
signal for that position. We provide the same, but we also support 2D plots for 2D signal arrays, and we
provide for 2D, 3D, and 4D averaging probes in additional to zero-dimensional probes.

Each spectral reduction described earlier is dynamic so users can continuously vary the free parameters
of the Python function and visualize the results in real time. But those dynamic renderings are made
persistent when the user names the output as a new image channel in the Dragonfly workspace.
Thereafter, it’s accessible like any other normal imported 2D, 3D, or 4D image; each spectral reduction,
therefore, behaves like virtual experimental image. For example, the user might process spectral data in
order to yield multiple chemical channels and overlay them for visualization or feed them into
integrative segmentation tools such as Dragonfly’s convolutional neural network filters or
machine-learning Segmentation Trainer [2].

Strengths of Dragonfly include its Python functionality and its integration of image visualization, image
segmentation, and quantitative analysis tools for multiple image channels. By tying these features
together with flexible hyperspectral reduction and analysis, we establish a unified solution that is easy to
use and extend. We support the import of high-dimensional datasets encoded in the open pycroscopy file
format [3] and expect access to Dragonfly to complement that effort for standardizing hyperspectral data
processing.

References:

[1] ​P Cuerva ​et al ​, Microscopy Today ​21​ (2013), pp 40-45.
[2] N Piche ​et al.​, Microsc Microanal ​23​ (2017), Suppl 1, pp. 246-7.
[3] S Jesse ​et al. ​, ​Scientific Reports ​6​ (2016), No: 26348, pp 1-8.

https://doi.org/10.1017/S143192761800329X Published online by Cambridge University Press

https://doi.org/10.1017/S143192761800329X

