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CUP PRODUCTS IN SHEAF COHOMOLOGY 

BY 

J. F. JARDINE* 

ABSTRACT. Let k be an algebraically closed field, and let £ be a prime 
number not equal to chsLv(k). Let X be a locally fibrant simplicial sheaf on 
the big étale site for k, and let Y be a /:-scheme which is cohomologically 
proper. Then there is a Kiinneth-type isomorphism 

H*,{X\ Z/€) ®z/t H*(Y\ Z/€) = H*(X x Y\ Z/t) 

which is induced by an external cup-product pairing. Reductive algebraic 
groups G over k are cohomologically proper, by a result of Friedlander and 
Parshall. The resulting Hopf algebra structure on H*(G; Z/€) may be used 
together with the Lang isomorphism to give a new proof of the theorem of 
Friedlander-Mislin which avoids characteristic 0 theory. A vanishing crite­
rion is established for the Friedlander-Quillen conjecture. 

Introduction. Let k be an algebraically closed field, and let € be a prime number 
which is distinct from the characteristic of k. Let X be a simplicial sheaf on the big étale 
site (Sch \k)et which is fibrant in the sense that it is locally a Kan complex. The main 
new result of this paper asserts that the cup product structure for étale cohomology of 
simplicial sheaves introduced in [5] determines a Kiinneth-type formula 

(1) H*(X; Z/€) ®z/e H*(Y\ Z/€) = H*(X x Y; Z/€), 

provided that Y is represented by a ^-scheme which is cohomologically proper in a 
suitable sense. Examples of such Y include all complete k-varieties and, by a theorem 
of Friedlander and Parshall [4], all reductive algebraic groups over k. 

The Kunneth formula induces a Hopf algebra structure on the étale cohomology 
H*(G; Z/€) of a reductive group G over k which does not depend on a passage to 
characteristic 0 theory, and hence avoids the classification of reductive group-schemes 
over arbitrary bases. It also leads to an alternate proof of a recent theorem of Friedlander 
and Mislin [3], which asserts that the canonical map 

(2) e:r*BG(k)-+ BG 

of simplicial sheaves induces an isomorphism 
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(3) H*(BG\ I/O = H*(BG(k)\ Z/€), 

provided that k is the algebraic closure of a finite field. This proof appears in the second 
section of this paper; it is or is not quicker, depending on your point of view, since it 
relies heavily on the results of [5]. The key point is that the Hopf algebra structure of 
//*(G; Z/€), together with the Lang isomorphism, implies that there are isomorphisms 

r Z / € , 7 = 0 
(4) HJ

et(G/r*G(ky, z/o = 
10, j ± 0, 

where G/T*G(k) is the sheaf-theoretic quotient of G by the action of the constant 
subgroup-sheaf T*G(k) for the group G(k) of /:-rational points of G. 

It is worth trying to compute H*(G/T*G(k); Z/t) for all reductive groups G over 
all algebraically closed fields k. A vanishing result like (4) in that range would imply 
the Friedlander—Quillen conjecture (also called the generalized isomorphism conjec­
ture [3], [5]), which asserts that the map (2) induces an isomorphism (3) in the same 
generality. This follows from the argument given for the Friedlander-Mislin result in 
this paper. One has to learn somehow to live without the Lang isomorphism to be 
successful with this approach. 

This paper is not the end of the cup products story. The Kiinneth formula (1) is 
susceptible to obvious generalizations. Furthermore, one would like to know more 
about the situation over bases which are not algebraically closed fields. 

1. Homological algebra. Let X be a fibrant simplicial sheaf on (Sch \k)et9 and let F 
be a sheaf of abelian groups. Recall [5] that the group H"(X; F) = Hn

et(X\ F) m a v be 
defined by 

H"(X\F) = [X, K(F, n)]9 

where the square brackets denote morphisms in the associated homotopy category, and 
the simplicial sheaf K(F, n) is an Eilenberg—MacLane complex. Recall also that the 
homotopy category Ho(Sch \k)et is constructed by formally inverting morphisms repre­
sented by trivial fibrations (also called hypercovers) in the category IT (Sch \k)et whose 
objects are the fibrant simplicial sheaves, and whose horn sets TT(Y, X) are obtained 
from the simplicial sheaf horn sets hom(Y, X) by collapsing by the smallest equivalence 
relation containing the simplicial homotopy relation. The class of morphisms repre­
sented by hypercovers in TX(Sch \k)et admits a calculus of fractions, so that there is an 
isomorphism 

(5) [X, K(F9 n)] = lim TT(7, K(F, re)), 

in Triv [ X 

where the filtered category Triv J, X is the full subcategory of TT(Sch \k)et | X on those 
objects which are represented by hypercovers. 

The same analysis [1], [5] goes through for simplicial abelian sheaves, chain 
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complexes of sheaves, and Z-graded cochain complexes of sheaves on (Sch \k)et. Let 
[>L*>> [>L/7 and [,]co denote morphisms in their respective homotopy categories. 
Brown's adjoint functor lemma [1], together with Theorem 2.5 of [5], implies that there 
is a natural isomorphism 

(6) [X,A] = [ZX, AU, 

for fibrant simplicial sheaves X and abelian sheaves A.Xh- ZX is the free abelian sheaf 
functor. The isomorphism (6) is induced by the standard adjunction isomorphism which 
relates sets to abelian groups. That same adjunction induces an isomorphism 

77(7, A) = 7!ab(ZT, A), 

where irab(, ) denotes simplicial abelian homotopy classes of maps. Let 7: T—> X be 
a hypercover as before. Then Z7: ZT ̂  ZX is a trivial fibration of simplicial abelian 
sheaves, and there is a commutative diagram 

77(7, A) —!—* [X, A] 

(7) J = I = 
nab(ZT,A) — — t [ZXtAU, 

[Z7]* 

where [7]* and [Z7]* are the canonical maps for the colimit (5) and its analogue for 
simplicial abelian sheaves. 

The usual Dold—Puppe story (see [5]) implies that there is a commutative diagram 

[Z7]* 
itab(ZT,A) U> [IX, AU 

(8) 4 = 1 = 
Ttch(ZT,A) > [ZX,A]ch, 

where irco(,) means chain homotopy classes of maps, and the simplicial abelian 
sheaves in question are confused notationwise with their associated Moore complexes. 

Finally, observe that the inclusion of the chain complex category as the objects 
concentrated in negative degrees in the Z-graded cochain complex category has a right 
adjoint which preserves weak equivalences. Putting this together with the analogue of 
(5), as well as (7) and (8) above yields the following generalization of the Verdier 
hypercovering theorem: 

LEMMA 1.1: Let ZX be the Moore complex of a fibrant simplicial sheaf X, and let 
J be a Z-graded cochain complex. Then there is an isomorphism 

[ZX, J]co = lim TTCO(ZT, J). 

in Triv | X 

In particular, the colimit on the right takes cohomology isomorphisms to isomorphisms 
of abelian groups. TTCO( ,) is cochain homotopy classes of maps. If J is the cochain 
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complex F [n] which is the abelian sheaf F concentrated in degree —n, then Lemma 1.1 
specializes to the generalized Verdier hypercovering theorem of [5]. 

Let € be the prime number chosen in the Introduction. As usual, Z/€ will mean both 
the abelian group and the associated constant abelian sheaf T*Z/€ on (Sch \k)et. Let N 
be an €-torsion abelian sheaf (meaning sheaf on Z/€-modules), and let N —» 7* be an 
injective resolution in the €-torsion category. The bicomplex 

hom(l/€(Xn)9 Jp) = hom(ZXn, Jp) 

determines a spectral sequence, with 

(9) Ep2q = Extq(Hp(X; Z/€); N) ^> irtw(ZX, J[p + q]). 

Some explanations are in order; X h> Z/€X) is the free €-torsion sheaf functor, and 
HP(X\ Z/t) is the p{h homology sheaf of the associated chain complex. Also, 
J[p + qY ~ Jn + {p + q) defines the cochain complex J[p + q\. Observe that the Ext 
group is computed in the ^-torsion category. 

It follows that the functor 

X V^ TT(,(ZX, J[n]) 

takes weak equivalences to group isomorphisms. In particular, using Lemma 1.1, one 
sees 

LEMMA 1.2: Let X be afibrant simplicial sheaf and let N —» 7* be a resolution of 
the i-torsion sheaf N by t-torsion injectives. Then the canonical map 

(10) ir,0(ZX, J[n\) -> [ZX, J[n]]co 

is an isomorphism. 

Actually, the map (10) is an isomorphism when J[n] is replaced by any cochain 
complex of injectives which is bounded below, €-torsion or not. One modifies the 
spectral sequence (9) to see this. Similarly, if X = K(U, O) is the constant (hence 
fibrant) simplicial sheaf represented by a scheme U G (Sch\k)en then the integral 
version of Lemma 1.2 (see [5]) implies the existence of a canonical isomorphism 

[ZK(U, 0)9F[n]\ =Hn
et(U\F), 

whereH"t(U
m, F) is the usual étale cohomology group with coefficients in the restriction 

of F to the étale site et 1̂  for U. 
Let Y be another fibrant simplicial sheaf on (Sch\k)et, and choose hypercovers TT: 

S —» Y and 7: T —» X. Then the Z/€-structure of the ^-torsion sheaf N induces a 
cross-product pairing 

(11) hom(Sm, Z/€) ®I/t hom(Tn, N) 4> hom(Sm x Tn, N) 

in the obvious way. The Eilenberg—Zilber map induces a weak equivalence of cochain 
complexes 

/ * 
(12) Totm,„ horn (Sm x Tn, N) -» hom(S x T, N). 
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Now consider the induced composition 

(13) Hphom(S, Z/€) ®I/e Hqhom(T, N) -> Hp + qTotm,nhom(Sm x T„, N) 

4 /* 
Hp + qhom(S x T;N) 

i [IT X 7 ] * 

/ F + «(F x X;A0 

A simplicial homotopy of maps in either S or r induces a chain homotopy in all relevant 
chain complexes. Thus, the functor 

lim lim ( ) 
—> —» 

r-^x r^x 
in Triv J, X in Triv J, X 

may be applied, inducing an external cup product pairing 
U 

HP(Y; Z/€) 0 z / € # '(X; W) > Hp + q(Y x X; AT). 

A scheme £/ E (Sc/i |*)f/ is said to be cohomologically proper if each HP{U\ Z/€) is 
finite and if the presheaf map 

V h* //*(£/; Z/€) Pr > H*(V x [/; Z/€) 

induces an isomorphism of sheaves on (Sch\k)et. Computing stalkwise, one sees that 
examples of cohomologically proper ^-schemes include all complete ^-varieties, by the 
proper base change theorem, and all reductive algebraic groups over fc, by the 
Friedlander-Parshall theorem [4]. The main result of this paper is 

THEOREM 1.3: Suppose that U in (Sch \k)et is cohomologically proper, and that Y is 
a fibrant simplicial sheaf. Then the external cup product pairing 

U 
H*(Y; Z/€) 0 z / € //*(£/; Z/€) > H*(Y x U; Z/€) 

is an isomorphism. 

PROOF: Choose hypercovers IT: S —> Y and y: T—> U, and choose an €-torsion 
injective resolution /: Z/€ —» 7*. There is a commutative diagram of tricomplexes 

x 
hom(Sm, I/O ®z/e hom(U, Jp) > hom(Sm x U, Jp) 

4 1 0 7 * 1 (1 x 7)* 
X 

hom(Sm, Z/€) 0Z/€ hom(Tn, J
p) > hom(Sm x Tn, Jp) 

Î 1 0 ** Î i* 
x 

hom(Sm, Z/€) ®I/e hom(Tn, Z/([0]Y) > hom(Sm X Tn, (Z/€[0]Y), 
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The maps induced on the total complex level by 7 and the Eilenberg—Zilber map are 
weak equivalences. It follows (see (13)) that the map induced by the bicomplex map 

x 
hom(Sm, Z/€) ®i/i hom(U, Jp) > hom(Sm x U, Jp) 

is isomorphic to the external cup rpoduct pairing, after applying the functor 

lim H*Totm,p( ). 

7-> Y 

in Triv | Y 

Recall that the sheaf hom(U, Jp) is defined by 

hom(£/, JP)(V) = hom(U\v, Jp\v) 

over (Sch \v)e[, and that the evaluation map 

ev: hom(UyJ
p) x U -> Jp 

induces an adjunction isomorphism 

ev^\ hom(Z, hom(U, Jp)) — > /w/w(Z x £/, 70-

Observe also that there is a natural isomorphism 

can: hom(Z/t, M) - ^ M(k) 

for all ^-torsion sheaves M. Then there is a commutative diagram 
C 

hom(Sm, Z/€) ®z/^ hom(Z/€, hom(U, /' ')) > hom(Sm, hom(U, 70) 

= i 1 0 can = I cv^ 

hom(S,„, Z/€) xz/^ hom([/, y)(A:) « /iom(5/w x £/, y ) 

Aom(Sw, Z/€) ® z / , /wm(£/, Jp), ' X 

where the map C is defined by composition. It therefore suffices to show that C induces 
the desired isomorphism. 

Let hom(£/, 7*) —» /** be an Eilenberg-Cartan resolution in the €-torsion cate­
gory, with resolutions j : Hp —» Kp'-* of the cohomology sheaves ///? = // / 'hom([/, 7*). 
Then it is enough to show that the tricomplex map 

C 
hom{Sm, Z/€) ®Z/^ hom(Z/£, Ip'q) > hom(Sm, Ip'q) 

induces an isomorphism after applying the functor 

lim H^Totmpq( ). 

S-> Y 

in Triv j Y 

But the map induced by computing cohomology in the p-direction is 
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c 
hom(Sm, Z/€) ®I/e hom(l/(, Kp<q) > hom(Sm, Kp<q) 

since the resolution /** splits by construction. There is also a commutative diagram of 
bicomplexes 

hom(Sm, Z/€) ®z/t kom(Z/t, (Hp[0])q) > hom{Sm, (Hp[0])q) 

(14) I \®ù i j* 
hom(Sm, Z/€) ®l/e hom(Z/t, Kp'q) > hom(Smy Kp*q). 

The top composition map of (14) is an isomorphism, since Hp is assumed to be a finite 
direct sum of copies of Z/€. Thus, since j is a weak equivalence, the bottom com­
position map of (14) is an isomorphism after applying 

lim H*Totm,q( ). 

5-> Y 

in Triv j y 

The result follows. QED 

COROLLARY 1.4: Suppose that G is a reductive algebraic group over k, and that X 
is a fibrant simplicial sheaf on (Sch \k)et. Then the map 

H*(X; Z/€) ® z / , H*(G; ®I/() -> H*(X x G; Z/€) 

defined by 

" ® v h prx*(w) U prc*(v) 

is an isomorphism. 
Observe that the preservation of weak equivalence by the global sections functor for 

sheaves on (Sch\k)et is required in the proof of Theorem 1.3. This follows from the 
assumption that k is an algebraically closed field. 

2. Algebraic groups 

Let k be the algebraic closure of the finite field ¥p, and choose a prime number 
t ± p. The main result of [3], when translated into the context of simplicial sheaves 
on (Sch\k)et, is the following: 

THEOREM 2.1: Let G be a reductive affine algebraic group over k = ¥p, and choose 
i as above. The the canonical map 

e: T*BG(k) -» BG 

of simplicial sheaves induces an isomorphism 

e*: H*(BG\ Z/€) - 1 1 * H*(BG(k); Z/€). 

The purpose of this section is to outline a proof of this theorem from the point of view 
of the homotopy theory of simplicial sheaves, using the results of the previous section. 

https://doi.org/10.4153/CMB-1986-074-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-074-2


4 7 6 J. F. JARDINE [December 

The first step is to observe that T*G(k) is a subgroup-sheaf of G, via e: 
T*G(k) —» G. Thus, there is a commutative diagram of simplicial sheaves 

ET*G(k) -

4 
BT*G(k)-

> EG ^ ^ 

1 ^ ^ ^ 
> EG/r*G(k),-

-^BG 

~~+TS 

where TTÉ^ is isomorphic to e. ê* induces an isomorphism of homology sheaves, so the 
theorem is proved by showing that IT induces an isomorphism in cohomology. 

The map IT, on the simplex level, is the projection map 

G/T*G(k) x (G x . . . x G) - ^ (G x . . . x G), 

and so, by Corollary 1.4 and a spectral sequence argument, it is enough to show that 

fZ/€, j = 0, 
HJ(G/T*G(k);Z/€) = \ 

[0, j > 0. 

Observe that 

G/T*G(k) = lim G/r*G(Fp«), 
—» 

where G(FP«) is the finite group of Fp«-valued points of G, and the filtered colimit is 
indexed over the natural numbers, ordered by divisibility. Proposition 2.13 of [5] 
implies that there is a short exact sequence 

(15) O ^ l i m 1 Hj-\G/T*G(¥p*);Z/e)^>Hj(G/r*G(k):Z/t) 

-> lim Hj(G/r*(¥p«)-9Z/e) -> 0. 

In effect, the directed system above may be replaced by a cofinal subsystem 

G/r*(F,) -> G/r*(F,„) -» G/r*(F^) - • . . . . 

Then each of the resulting maps (of constant simplicial sheaves) may be replaced up 
to weak equivalence by a monomorphism, by using a pointwise telescope on the 
presheaf level and then sheafifying. 

Now let cp:G —> G be the Frobenius homomorphism. The sequence of sheaf 
homomorphisms , / „ 

T*G(¥P»)->G—^G 

is short exact in the sense that l/cp" determines a canonical isomorphism of sheaves 

G/r*G(F^) = G 

on (Sch\k)et. This is the Lang isomorphism [2, 12.1], [7] in this context. It follows that 
the lim1 term of the sequence (15) vanishes, since the groups //* (G;Z/€) are finite. 

It also follows easily that 
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H°(G/T*G(ky,Z/t) = Z/€. 

Let v|i = cp" for a fixed n. Then there is a commutative diagram 

G — > G = G/r*G(F^) 

(16) || | 7 

G > G = G/r*G(Fp«), 

where 7 is the composite 
A 1 x ili x ili2 x . . . x i l / - 1 

G > G x . . . x G " z > G x ...x G > G. 
m 

A is the diagonal map and m is the multiplication map; they give //*(G;Z/€) a Hopf 
algebra structure, via Corollary 1.4. It follows that 

7*(JC) = JC + i|i*(;c) + . . . + (ty*)d~](x) + decomposables 

in positive degrees. 
Recall finally that <p* is an automorphism of the finite €-torsion group Hj(G; Z/€), 

j > 0, [6] so that (i|/*)^ = 1 for some N. Thus, for each n and j > 0, there is a J such 
that, for 7 in (16), y*(HJ(G; Z/€)) is decomposeable. It follows by induction onj that 
the system of groups 

{//'•(G/r*G(F,«);Z/€)} 

is pro-trivial. This implies that 

lim^'(G/r*G(Fp-);Z/€) = 0 

for each j > 0. QED 
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