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A Lower Bound on the Euler–Poincaré
Characteristic of Certain Surfaces of
General Type with a Linear Pencil of
Hyperelliptic Curves

Hirotaka Ishida

Abstract. Let S be a surface of general type. In this article, when there exists a relatively minimal
hyperelliptic ûbration f ∶ S → P1 whose slope is less than or equal to four, we give a lower bound on
the Euler–Poincaré characteristic of S. Furthermore, we prove that our bound is the best possible
by giving required hyperelliptic ûbrations.

1 Introduction

Let S be a surface of general type deûned overC and let f ∶ S → C be a ûbration over a
nonsingular projective curve C of genus g(C). We always assume that f is relatively
minimal; that is, S has no (−1)-curves contained in a ûber of f . Denote the genus of a
general ûber of f by g( f ). A ûbration f is said to be hyperelliptic or non-hyperelliptic
according to the type of a general ûber of f . Let K f be the relative canonical bundle
KS − f ∗KC . We introduce the following numerical invariants associated with f :

χ f ∶= deg f∗K f = χ(OS) − ( g(C) − 1)( g( f ) − 1) ,
K2
f = K2

S − 8( g(C) − 1)( g( f ) − 1) .

It is well known that these numbers are non-negative integers. Moreover, f is lo-
cally trivial if and only if χ f = K2

f = 0. When f is locally trivial, we have χ f > 0
(cf. [2, III,_eorem 17.3]). In such a case, we can deûne the ratio λ( f ) = K2

f /χ f and
call it the slope of f .

_e slope inequality 4 − 4/g( f ) ≤ λ( f ) ≤ 12 was proved by Xiao [14, _eorem 2]
(Horikawa [5, _eorem 2.1] and Persson [11, Proposition 2.12] proved it for a hyper-
elliptic ûbration f ). It shows that 4/(4 − λ( f )) is an upper bound on g( f ) in the
case where λ( f ) < 4. Furthermore, if f is non-hyperelliptic and the relative canoni-
cal bundle f∗K f is semi-stable, then 5(g( f ) − 6)/g( f ) ≤ λ( f ) (see [8, Lemma 2.5]).
Hence, if f is a hyperelliptic ûbration with λ( f ) ≥ 4, then an upper bound on g( f )
may not exist. _e author has studied hyperelliptic ûbrations with slope four in [6]
and proved the following theorem.
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_eorem 1.1 (Ishida [6, _eorem 0.1]) Let S be a surface of general type and let
f ∶ S → C be a relatively minimal hyperelliptic ûbration. If f is not locally trivial and
satisûes that λ( f ) = 4, g( f ) ≥ 4, then

χ f ≥ ∆(g( f )) =
⎧⎪⎪⎨⎪⎪⎩

g( f )/2 − 1 if g( f ) is even,
g( f ) − 3 if g( f ) is odd.

Furthermore, for any integer g ≥ 4 there exists a surface of general type and a
relatively minimal hyperelliptic ûbration f ∶ S → C with λ( f ) = 4, g( f ) = g, and
χ f = ∆(g).

Remark 1.2 For any positive integer z, there exists a relativelyminimal hyperelliptic
ûbration f with λ( f ) = 4, χ f = z, and g( f ) = 2 or 3 (see [12, _éorème 2.9] and
[6, _eorem 0.2]).

By the above theorem, there exists no upper bound on g( f ); however, there ex-
ists the best possible lower bound ∆(g( f )) on χ f . _e base curve of any ûbration
constructed in the proof of _eorem 1.1 is an elliptic curve. Hence, a lower bound on
χ f for a hyperelliptic ûbration over P1 may not be the best. In this manuscript, we
consider a hyperelliptic ûbration f ∶ S → P1 with λ( f ) ≤ 4 and prove the following
theorem.

_eorem 1.3 Let S be a surface of general type and let f ∶ S → P1 be a relatively
minimal hyperelliptic ûbration. If f is not locally trivial and satisûes that λ( f ) ≤ 4,
then

χ f ≥ Γ(g( f )) =
⎧⎪⎪⎨⎪⎪⎩

3g( f ) − 9 if g( f ) ≥ 6,
[ 3g( f )

2 ] if 2 ≤ g( f ) ≤ 5,
(1.1)

where [α] is themaximum integer not exceeding a real number α. In particular, χ(OS) ≥
Γ(g( f )) − g( f ) + 1.
Furthermore, for any integer g ≥ 2, there exists a surface of general type and a

relatively minimal hyperelliptic ûbration f ∶ S → P1 with λ( f ) = 4, g( f ) = g, and
χ f = Γ(g).

By _eorem 1.3, we have the best possible lower bound on χ f for a hyperelliptic
ûbration f ∶ S → P1 with λ( f ) ≤ 4. On the other hand, since the base curve of any
ûbration constructed in the proof of the following theorem is a projective line, we see
that there exists no upper bound on χ f .

_eorem 1.4 (Ishida [7,_eorem 0.3]) Let g and z be integers satisfying either of the
following conditions
(i) g is an even integer that is greater than 4 and z ≥ g2 + g

2 − 2;
(ii) g is an odd integer that is greater than 5 and z ≥ g2 − 1.
_en there exists a relatively minimal hyperelliptic ûbration f with λ( f ) = 4, g( f ) = g,
and χ f = z.
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_e paper is organized as follows. In Section 2, we recall the structure of a hyperel-
liptic ûbration and the canonical resolution of a double cover. _e relative canonical
map of a hyperelliptic ûbration f ∶ S → C is a generically two-to-one map, and its
proper image is a birationally ruled surface over C. Hence, S is birationally equiva-
lent to a double cover of a ruled surface over C (cf. [1, _eorem III. 4]). For resolving
the singularities of this double cover, we use the canonical resolution. _en we have
formulas for computing χ(OS) and K2

S according to [3, Lemma 6]. We introduce
these formulas to calculate χ f and K2

f , which are used in Sections 3–6. In Sections 3
and 4, we prove inequality (1.1) in the cases where g( f ) ≥ 6 and 2 ≤ g( f ) ≤ 5, respec-
tively. In Section 3, by using formulas for computing χ f and K2

f given in Section 2,
we show inequality χ f ≥ 12(g( f )− 3)/(3λ( f )− 8), which is stronger than (1.1). Even
if f ∶ S → P1 is relatively minimal, S may have a (−1)-curve not contained in a ûber
of f . In Section 4, by considering the number of exceptional curves on S, we show
that χ f ≥ [3g( f )/2]. In Sections 5 and 6, in order to prove that the inequality (1.1) is
the best possible, we give the required ûbrations by constructing double coverings of
Hirzebruch surfaces. Furthermore, we shall characterize a surface S of general type
with a relatively minimal hyperelliptic ûbration f ∶ S → P1 satisfying the numerical
properties 6 ≤ g( f ) ≤ 10, λ( f ) ≤ 4, and χ f = 3(g( f ) − 3).

2 Invariants of Hyperelliptic Fibrations

In this section, we recall the terminology and formulas for computing invariants of
a hyperelliptic ûbration (cf. [3, 10]). Let f ∶ S → C be a hyperelliptic ûbration from a
complex surface of general type onto a nonsingular projective curve C of genus g(C).

Since f is hyperelliptic, the image of the relative canonical map of f is isomorphic
to a birationally ruled surface overC. Hence, we can take a geometrically ruled surface
pr∶W → C that is birationally equivalent to this image (see [1, _eorem III 4] and
[6, Lemma 1.1]).

Let K be the rational function ûeld of S and let ϕ∶ S′ →W be the K-normalization
of W . Let µ∶ S̃ → S′ be a resolution of singularities of S′. If we assume that f is
relatively minimal, then there exists a contraction ρ∶ S̃ → S of exceptional curves in
ûbers of pr ○ ϕ ○ µ such that the following diagram commutes (cf. [4, Lemma 4] and
[6, p. 470]) :

S̃
ρÐÐÐÐ→ S

fÐÐÐÐ→ C
×××Ö

µ ∥

S′ ÐÐÐÐ→
ϕ

W ÐÐÐÐ→
pr

C .

Moreover, we can choose the canonical resolution of ϕ∶ S′ →W as µ. _e canonical
resolution of ϕ∶ S′ →W is determined by the following process; refer to [3] for details.
Denote the branch locus of the double cover ϕ by B(ϕ). Let ν1∶W1 →W = W0 be

the blow-up at a singular point of B(ϕ) and let ϕ1∶ S1 → W1 be the K-normalization
of W1. _en we obtain the natural birational morphism µ1∶ S1 → S′ = S0 and the
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following commutative diagram:

S1
µ1ÐÐÐÐ→ S0 = S′

×××Ö
ϕ1

×××Ö
ϕ0=ϕ

W1
ν1ÐÐÐÐ→ W0=W .

Continuing this process until B(ϕn) has no singularities, we obtain the sequence
of birational morphisms µk (k = 1, 2, . . . , n) and the following diagram:

S̃ = Sn
µnÐÐÐÐ→ Sn−1 ÐÐÐÐ→ ⋅ ⋅ ⋅ ÐÐÐÐ→ S1

µ1ÐÐÐÐ→ S0 = S′
×××Ö

ϕn
×××Ö

ϕn−1

×××Ö
ϕ1

×××Ö
ϕ0=ϕ

Wn
νnÐÐÐÐ→ Wn−1 ÐÐÐÐ→ ⋅ ⋅ ⋅ ÐÐÐÐ→ W1

ν1ÐÐÐÐ→ W=W

_en S̃ = Sn is a smooth surface; i.e., µ = µ1 ○ µ2 ○ ⋅ ⋅ ⋅ ○ µn ∶ S̃ → S′ is a resolution
of singularities of S′.

We now introduce the formulas for computing invariants of f by [3, Lemma 6]
and [10, Corollary 2.2] (see also [6, Lemma 1.3]). We assume that W is the P1-bundle
associated with a vector bundle of degree d. Let H be a tautological divisor of pr and
F a ûber of pr. Since f is hyperelliptic, we can assume that B(ϕ) is linearly equivalent
to 2(g( f ) + 1)H + 2NF, where N is an integer. _en we have the following lemma.

Lemma 2.1 (Horikawa [3, Lemma 6], Persson [10, Corollary 2.2]) Let f ∶ S → C be
a relatively minimal hyperelliptic ûbration. Under the same notation as above, denote
the multiplicity of B(ϕk−1) at the center of the blow-up νk by mk . _en we obtain the
following numerical properties:

χ f =
dg( f )(g( f ) + 1)

2
+ Ng( f ) −

n

∑
k=1

1
2
[ mk

2
]([ mk

2
] − 1) ,(2.1)

K2
f = 2d(g( f )2 − 1) + 4N(g( f ) − 1) −

n

∑
k=1

2([ mk

2
] − 1)

2

+ (the number of curves contracted by ρ),(2.2)

where [α] is the maximum integer not exceeding a real number α.

3 The Lower Bound on χ f in the Case Where g( f ) ≥ 6
Let f be a relatively minimal hyperelliptic ûbration. Assume that f is not locally triv-
ial. We employ the same notation as in Section 2. Let M( f ) = d(g( f ) + 1) + 2N . In
this section, we will prove that χ f ≥ 3(g( f ) − 3) in the case where g( f ) ≥ 6. First,
we prove the following lemma, which will play an important role in the proof of this
inequality.

Lemma 3.1 Let f ∶ S → C be a relatively minimal hyperelliptic ûbration. If f is not
locally trivial and there exists a positive integer m such that [mk/2] ≤ m for any k, then
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the following holds:

2M( f )(g( f ) −m)
mλ( f ) − 4(m − 1) ≤ χ f ≤

g( f )
2

M( f ).(3.1)

Proof By (2.2) and the assumption that [mk/2] ≤ m, we have

2(g( f ) − 1)M( f ) − K2
f ≤

n

∑
k=1

2([ mk

2
] − 1)

2

=
n

∑
k=1

4([mk/2] − 1)
[mk/2]

1
2
[ mk

2
]([ mk

2
] − 1)

≤
n

∑
k=1

4(m − 1)
m

1
2
[ mk

2
]([ mk

2
] − 1)

= 4(m − 1)
m

n

∑
k=1

1
2
[ mk

2
]([ mk

2
] − 1) .

It follows from (2.1) and K2
f = λ( f )χ f that

2(g( f ) − 1)M( f ) − λ( f )χ f ≤
4(m − 1)

m
( g( f )

2
M( f ) − χ f ) .

Hence, we obtain

2M( f )(g( f ) −m) ≤ {mλ( f ) − 4(m − 1)}χ f .

It is clear from (2.1) that χ f ≤ g( f )M( f )/2. _erefore, we can show inequality
(3.1).

We assume that S is a surface of general type andC = P1. Note thatW is isomorphic
to a Hirzebruch surface. We consider all possible values of M( f ). If d = 0, then W
is isomorphic to P1 × P1; i.e., W has another projection onto P1. _is projection also
induces a ûbration from S to P1. Since S is a surface of general type, the genus of
its general ûber is greater than one. Hence, we must have N ≥ 3, which implies that
M( f ) is an even integer that is greater than or equal to six. On the other hand, if
d > 0, then the branch locus of ϕ may contain the minimal section of the Hirzebruch
surfaceW , i.e., 2N ≥ −d. If g( f ) is odd, then M( f ) is an even integer that is greater
than g( f ). If g( f ) is even, then M( f ) is an odd integer that is greater than g( f ) or
an even integer that is greater than 2g( f ) − 1. In summary, we have

M( f ) =
⎧⎪⎪⎨⎪⎪⎩

6, 8, . . . , g( f ) − 2, g( f ), g( f ) + 1, g( f ) + 2, . . . if g( f ) is even,
6, 8, 10, . . . if g( f ) is odd.

In particular, if 6 ≤ M( f ) ≤ g, then we have d = 0. By using Lemma 3.1, we give
the region of χ f as follows.

Lemma 3.2 Let S be a surface of general type and let f ∶ S → P1 be a relativelyminimal
hyperelliptic ûbration. If f is not locally trivial, then the following hold.
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(i) If 6 ≤ M( f ) ≤ g( f ), then M is even and

A( g( f ), λ( f ),M( f )) ∶= 2M( f )(2g( f ) −M( f ))
λ( f )M( f ) − 4(M( f ) − 2)

≤ χ f ≤
g( f )
2

M( f ),

(3.2)

(ii) If M( f ) ≥ g( f ) + 1, then

B(g( f ), λ( f ),M( f )) ∶= 2M( f )(g( f ) − [g( f )/2] − 1)
λ([g( f )/2] + 1) − 4[g( f )/2](3.3)

≤ χ f ≤
g( f )
2

M( f ).

Proof By suitable elementary transformations ofW , we can assume that the multi-
plicity of B(ϕk−1) at the center of the blow-up νk is less than or equal to g( f )+2; that
is, [mk/2] ≤ [g( f )/2] + 1 for every k (cf. [5, p. 746]). Applying Lemma 3.1, putting
m = [g( f )/2] + 1, we obtain inequality (3.3) in any case. In particular, assertion (ii)
is proved.

We next consider the case where 6 ≤ M( f ) ≤ g( f ). By the argument just before
this lemma, we have d = 0 and M( f ) is even. In particular, W is isomorphic to
P1×P1. For any point P ∈W , there exists a section that is linearly equivalent to H and
passes through P; that is,mk ≤ B⋅H = 2N = M( f ) for every k. By applying Lemma 3.1
putting m = M( f )/2, we have inequality (3.2). Note that inequality (3.3) is satisûed in
the case where 6 ≤ M( f ) ≤ g( f ). However, it follows from [M( f )/2] ≤ [g( f )/2] + 1
that inequality (3.2) is stronger than (3.3). _erefore, we obtain assertion (ii).

We consider the minimum value of A(g , λ,M) in the case where 6 ≤ M ≤ g.

Lemma 3.3 For integers g ,M and a rational number λ such that
6 ≤ M ≤ g , 4(g − 1)/g ≤ λ ≤ 4,

we have A(g , λ,M) ≥ A(g , λ, 6).

Proof Since M/2 < g, we have λ ≥ 4(g − 1)/g > (2M − 4)/(M/2), that is, λM −
4(M − 2) > 0. _en it follows from 6 ≤ M ≤ g that

A(g , λ,M) − A(g , λ, 6) = 2M(2g −M)
λM − 4(M − 2) −

12(g − 3)
3λ − 8

= 2(M − 6){8g + (8 − 3λ)M − 24}
{λM − 4(M − 2)}(3λ − 8)

≥ 36(M − 6)(4 − λ)
{λM − 4(M − 2)}(3λ − 8) .

Since λ ≤ 4 and 6 ≤ M, we obtain A(g , λ,M) ≥ A(g , λ, 6).

When 6 ≤ M( f ) ≤ g( f ), by Lemmas 3.2 and 3.3, we see that

χ f ≥ A( g( f ), λ( f ), 6) = 12( g( f ) − 3)/(3λ( f ) − 8) .
We next compare A(g , λ, 6) with B(g , λ,M).
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Lemma 3.4 For integers g ,M and a rational number λ such that

6 ≤ g ≤ M − 1, 4(g − 1)/g ≤ λ ≤ 4

and g is even, the following hold.
(i) If g ≥ 6 and M ≥ g + 3, then B(g , λ,M) ≥ A(g , λ, 6).
(ii) If g ≥ 8, then B(g , λ, g + 2) ≥ A(g , λ, 6).
(iii) If g ≥ 10, then B(g , λ, g+1) ≥ A(g , λ, 6). In particular, if B(g , λ,M) < A(g , λ, 6),

then we have (g ,M) = (6, 7), (6, 8), (8, 9).

Proof For any M ≥ g + 3, it is clear that B(g , λ, g + 3) ≤ B(g , λ,M). We consider
B(g , λ, g + 3) − A(g , λ, 6). _en we have

B(g , λ, g + 3) − A(g , λ, 6) = 2(g + 3)(g − 2)
λ(g + 2) − 4g

− 12(g − 3)
3λ − 8

= 6λ{−(g − 3/2)2 + 33/4} + 32(g2 − 5g + 3)
{λ(g + 2) − 4g}(3λ − 8) .

By assumption, we have −(g − 3/2)2 + 33/4 < 0, i.e., 6λ{−(g − 3/2)2 + 33/4} ≥
−24g2 + 72g + 144. Hence,

B(g , λ, g + 3) − A(g , λ, 6) = 6λ{−(g − 3/2)2 + 33/4} + 32(g2 − 5g + 3)
{λ(g + 2) − 4g}(3λ − 8)

≥ 8(g − 5)(g − 6)
{λ(g + 2) − 4g}(3λ − 8) .

_is implies that assertion (i) holds.
Similarly as in the preceding case, we have

B(g , λ, g + 2) − A(g , λ, 6) ≥ 8(g − 4)(g − 8)
{λ(g + 2) − 4g}(3λ − 8) ,

B(g , λ, g + 1) − A(g , λ, 6) ≥ 8(g2 − 13g + 34)
{λ(g + 2) − 4g}(3λ − 8) .

Hence, B(g , λ, g + 2) ≥ A(g , λ, 6) if g ≥ 8, and B(g , λ, g + 1) ≥ A(g , λ, 6) if g ≥ 10.
_e last assertion follows immediately from (i)–(iii).

Lemma 3.5 For integers g ,M and a rational number λ such that

7 ≤ g ≤ M − 1, 4(g − 1)/g ≤ λ ≤ 4,

and g is odd, we have B(g , λ,M) ≥ A(g , λ, 6).

Proof Similarly as in Lemma 3.4, we consider B(g , λ, g + 1) − A(g , λ, 6). _en we
have

B(g , λ, g + 1) − A(g , λ, 6) = 2(g + 1)(g − 1)
λ(g + 1) − 4(g − 1) −

12(g − 3)
3λ − 8

= 6λ{−(g − 2)2 + 9} + 32(g2 − 6g + 5)
{λ(g + 1) − 4(g − 1)}(3λ − 8) .
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Since g ≥ 7 and λ ≤ 4, we see that 6λ{−(g − 2)2 + 9} ≥ −24g2 + 96g + 120. Hence,

B(g , λ, g + 1) − A(g , λ, 6) ≥ 8(g − 5)(g − 7)
{λ(g + 1) − 4(g − 1)}(3λ − 8) ;

that is, B(g , λ,M) ≥ A(g , λ, 6).

Proposition 3.6 Let S be a surface of general type and let f ∶ S → P1 be a relativelymin-
imal hyperelliptic ûbration. If f is not locally trivial and satisûes that g( f ) ≥ 6, λ( f ) ≤
4, then χ f ≥ 12(g( f ) − 3)/(3λ( f ) − 8).

Proof By Lemmas 3.2–3.5, we have

χ f ≥ A( g( f ), λ( f ), 6) = 12( g( f ) − 3)/(3λ( f ) − 8)

if g( f ) = 7, 9 or g( f ) ≥ 10. If χ f < A(g( f ), λ( f ), 6), then, by the argument in
Lemma 3.2, we have B(g( f ), λ( f ),M( f )) ≤ χ f , that is,

B( g( f ), λ( f ),M( f )) < A( g( f ), λ( f ), 6) .

Hence, by Lemma 3.4, we have three possibilities:
(a) g( f ) = 6,M( f ) = 7,
(b) g( f ) = 6,M( f ) = 8,
(c) g( f ) = 8,M( f ) = 9.
In order to prove the assertion, we only have to show that cases (a), (b), and (c) do
not occur.

In case (a), it follows from (3.3) that

B(6, λ( f ), 7) = 7
λ( f ) − 3

≤ χ f <
36

3λ( f ) − 8 = A(6, λ( f ), 6) .(3.4)

In particular, we have λ( f ) > 52/15. By the assumption that λ( f ) ≤ 4 and (3.4), we
obtain

3χ f + 7 ≤ K2
f ≤ min{ 8

3
χ f + 12, 4χ f + 1} ,

7 ≤ 7
λ( f ) − 3

≤ χ f <
36

3λ( f ) − 8 < 15.

_en possible pairs of values of g( f )M( f )/2 − χ f and 2(g( f ) − 1)M( f ) − K2
f are as

follows:

(g( f )M( f )/2 − χ f , 2(g( f ) − 1)M( f ) − K2
f ) = (14, 42), (13, 39), (13, 38),

(12, 36), (12, 35), (11, 33),
(11, 32), (10, 30), (10, 29),
(9, 27), (8, 24), (7, 21).

https://doi.org/10.4153/CJM-2015-032-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-032-8


Lower Bound on the Euler–Poincaré Characteristic of Certain Surfaces 75

By (2.1) and (2.2), we have

g( f )M( f )
2

− χ f =
n

∑
k=1

1
2
[mk/2]([mk/2] − 1) ,

2( g( f ) − 1)M( f ) − K2
f ≤

n

∑
k=1

2([mk/2] − 1) 2
.

Furthermore, sincemk ≤ g( f )+2 from the proof of Lemma 3.2, it follows frommk ≤ 8
that ([mk/2]([mk/2] − 1)/2, 2([mk/2] − 1)2) must coincide with one of three pairs
(1, 2), (3, 8), and (6, 18). _erefore, we have gM/2− χ f = 12; that is,m1 = m2 = 8 and
mk ≤ 3 (k = 3, 4, . . . , n). Sincemk ≠ 7, an octuple point of B lies on a ûber contained
in B. On the other hand, since g( f ) = 6 and M( f ) = 7, we have d = 1 and N = 0.
SinceW is isomorphic to the Hirzebruch surface of degree one, if B contains a ûber F
of pr, then Bmust contain theminimal section ofW and F is only one ûber contained
in B. But B has two octuple points. _is is impossible, since B does not contain two
ûbers.

In case (b), similarly as in case (a), it follows from

B(6, λ( f ), 8) < χ f < A(6, λ( f ), 6)

that

11/3 < λ( f ) ≤ 4, 3χ f + 8 ≤ K2
f <

8
3
χ f + 12, 8 ≤ χ f ≤ 12.

_en, pairs of values of g( f )M( f )/2 − χ f and 2(g( f ) − 1)M( f ) − K2
f satisfying

these inequalities are as follows:

(g( f )M/2 − χ f , 2(g( f ) − 1)M − K2
f ) =(16, 48), (16, 47), (15, 45),

(14, 42), (13, 39).

But since ([mk/2]([mk/2] − 1)/2, 2([mk/2] − 1)2) = (1, 2), (3, 8), (6, 18), these are
impossible.

In case (c), it follows from B(8, λ( f ), 9) < χ f < A(6, λ( f ), 6) that

88/23 < λ( f ) ≤ 4,
16
5
χ f +

54
5
≤ K2

f <
8
3
χ f + 20, 14 ≤ χ f ≤ 17.

_en pairs of g( f )M( f )/2 − χ f and 2(g( f ) − 1)M( f ) − K2
f satisfying above in-

equalities are as follows:

( g( f )M/2 − χ f , 2(g( f ) − 1)M − K2
f ) = (22, 70), (22, 69), (21, 67), (20, 64).

Since mk ≤ 10, we have ([mk/2]([mk/2] − 1)/2, 2([mk/2] − 1)2)) = (1, 2), (3, 8),
(6, 18), (10, 32). _erefore, we have the following numerical properties:

g( f )M( f )/2 − χ f = 20, m1 = m2 = 10, mk ≤ 3 (k = 3, 4, . . . , n).

On the other hand, since g( f ) = 8 and M( f ) = 9, we have d = 1 and N = 0. By the
same reasoning as in case (a), we see that this is impossible.

By Proposition 3.6, we immediately obtain the following corollaries.
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Corollary 3.7 Let S be a surface of general type and let f ∶ S → P1 be a relatively mini-
mal hyperelliptic ûbration. If f is not locally trivial and satisûes that g( f ) ≥ 6, λ( f ) ≤ 4,
then χ f ≥ 3(g( f ) − 3). If χ f = 3(g( f ) − 3), then we have λ( f ) = 4.

Corollary 3.8 Let S be a surface of general type and let f ∶ S → P1 be a relatively
minimal hyperelliptic ûbration. If g( f ) ≥ 6 and χ f = 3(g( f ) − 3), then λ( f ) ≥ 4.

4 The Lower Bound on χ f in the Case Where 2 ≤ g( f ) ≤ 5
Let f ∶ S → P1 be a relatively minimal hyperelliptic ûbration. We assume that f is not
locally trivial and satisûes that 2 ≤ g( f ) ≤ 5. In this section, we prove the inequality
χ f ≥ [3g( f )/2]. Since the base curve is P1, the surface S may not be minimal. Let
ρ∶ S → S be the contraction of exceptional curves on S and є the number of exceptional
curves contracted by ρ. We now prove the following two lemmas regardless of the
value of g( f ).

Lemma 4.1 Let S be a surface of general type and f ∶ S → P1 a relatively minimal
hyperelliptic ûbration. Let є be as above. _en we have

8( g( f ) − 1) − є < K2
f and {K2

f − 4(g( f ) − 1)}є ≤ 4( g( f ) − 1) 2
.

In particular, if є ≠ 0, then the following inequality holds:

8(g( f ) − 1) − є < K2
f ≤ 4(g( f ) − 1) + 4(g( f ) − 1)2

є
.

Proof Since S is a surface of general type, we have

0 < K2
S = K2

S + є = K2
f − 8( g( f ) − 1) + є;

that is, 8(g( f ) − 1) − є < K2
f .

Note that S has the linear pencil that consists of the proper images of ûbers of f by
ρ. LetT be amember of this linear pencil. Denote the arithmetic genus ofT by pa(T).
Moreover, ρ is the composition of blow-ups at є points (possibly inûnitely near). Let
E1 , E2 , . . . , Eє be the exceptional curves of these blow-ups. Denote the intersection
number of the proper transform of T by ρ and the total transform of E i on S by l i .
_enwe have T2 = ∑є

i=1 l 2i ≥ є and pa(T) = g( f )+∑є
i=1 l i(l i−1)/2. Hence, we obtain

KS ⋅ T = 2pa(T) − 2 − T2 = 2g( f ) − 2 +
є

∑
i=1

l i(l i − 1) − T2

= 2g( f ) − 2 −
є

∑
i=1

l i ≤ 2g( f ) − 2 − є.

By Hodge’s index theorem, we see that K2
S
⋅ T2 ≤ (KS ⋅ T)2 (cf. [13, p. 127]). By using

this inequality, we have (K2
f − 8(g( f ) − 1) + є)є ≤ {2(g( f ) − 1) − є}2; that is,

{K2
f − 4( g( f ) − 1)}є ≤ 4( g( f ) − 1) 2

.
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_e assumption that 2 ≤ g( f ) ≤ 5 is not used in Lemma 4.1. In the next section, we
use this lemma for the case where g( f ) ≥ 6. By Lemma 4.1, we obtain the following
lemma.

Lemma 4.2 Let S be a surface of general type and let f ∶ S → P1 be a relativelyminimal
hyperelliptic ûbration. Let є be as above. _en є ≤ 2g( f ) − 3.

Proof Assume that є ≠ 0. _us, є ≤ 2g( f ) − 2. Since KS is nef, we have 0 ≤ KS ⋅ T ≤
2g( f ) − 2 − є. It follows from Lemma 4.1 that 8(g( f ) − 1)є − є2 < 4(g( f ) − 1)є +
4(g( f ) − 1)2, i.e., {є − 2(g( f ) − 1)}2 > 0. Hence, є ≠ 2g( f ) − 2.

We now obtain the lower bound on χ f in the case where 2 ≤ g( f ) ≤ 5.

Proposition 4.3 Let S be a surface of general type and let f ∶ S → P1 be a relatively
minimal hyperelliptic ûbration. If f is not locally trivial and satisûes that λ( f ) ≤ 4, 2 ≤
g( f ) ≤ 5, then we have χ f ≥ [3g( f )/2].

Proof Assume contrarily that χ f ≤ [3g( f )/2] − 1. _en by Lemma 4.1, we have

8( g( f ) − 1) − є < K2
f ≤ λ( f )([3g( f )/2] − 1) ≤ 6g( f ) − 4;

that is, є > 2g( f ) − 4. It follows from Lemma 4.2 that є = 2g( f ) − 3. Hence, by
Lemma 4.1, we have

6g( f ) − 5 < K2
f ≤ 4( g( f ) − 1) + 4(g( f ) − 1)2

2g( f ) − 3
.

If g( f ) ≠ 2, then we have

4( g( f ) − 1) + 4(g( f ) − 1)2

2g( f ) − 3
− (6g( f ) − 5) − 1 = 2(2 − g( f ))

2g( f ) − 3
< 0;

that is, there exists no integer that is greater than 6g( f )−5 and not exceeding 4(g( f )−
1) + 4(g( f ) − 1)2/(2g( f ) − 3). Hence, we can assume that g( f ) = 2. _en we obtain
χ(OS) = 1 and K2

S
= 1; i.e., S is a numerical Godeaux surface. Let T be as in the proof

of Lemma 4.1. Since KS ⋅ T ≤ 1, we see that dimH0(S ,OS(T)) ≤ 1 by [9, Lemma 5].
It contradicts that T is a member of linear pencil of S.

By Corollary 3.7 and Proposition 4.3, we have the inequality χ f ≥ Γ(g( f )) in
_eorem 1.3. By _eorem 1.3, we see the following corollary.

Corollary 4.4 Let S be a surface of general type and let f ∶ S → C be a relatively
minimal hyperelliptic ûbration with λ( f ) = 4. If χ f < Γ(g( f )), then C is a irrational
curve.

5 The Existence in the Case Where g( f ) ≥ 6
In this section, we shall show that there exists a relatively minimal hyperelliptic ûbra-
tion f ∶ S → P1 with g( f ) = g , λ( f ) = 4 and χ f = 3(g − 3) for any integer g that is
greater than or equal to six. As we have seen in Section 2, a hyperelliptic ûbration onto
P1 is induced by a double cover of a Hirzebruch surface. Let pr i ∶P1 × P1 → P1 be the
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projection map onto the i-th factor. Put ∆t = pr−1
1 (t) and Ft = pr−1

2 (t) for any point
t ∈ P1. Note that A(g , 4, 6) = 3(g − 3). Moreover, if M( f ) = 6, then we have d = 0
and N = 3. _erefore, we construct an eòective divisor B on P1 × P1 that is linearly
equivalent to 2(g + 1)∆0 + 6F0 for giving required ûbrations. By (2.1) and (2.2), we
have

3g − 9 = 3g −
n

∑
k=1

[mk/2]([mk/2] − 1)/2,

12g − 36 = 12g − 12 −
n

∑
k=1

2([mk/2] − 1) 2

+ (the number of curves contracted by ρ).

_is implies that there exist conditions for the singularities of B and the number of
curves contracted by ρ. _e simplest conditions for B are as follows:
● B has three sextuple points (including inûnitely near points);
● B has at worst double points except for these sextuple points;
● there exists no exceptional curve contracted by ρ.
Denote by fB ∶ S → C the hyperelliptic ûbration induced by the double cover branched
along an eòective divisor B. Let the notation about the structure of fB and the canon-
ical resolution be as in Section 2.
A singular point P is called a 2-fold m-ple point of a curve B, if and only if it turns

into an ordinary m-ple point a�er the blow-up at P.

Proposition 5.1 For any integer g ≥ 6, there exists a surface S of general type and
a relatively minimal hyperelliptic ûbration f ∶ S → P1 with g( f ) = g, λ( f ) = 4, and
χ f = 3(g − 3).

Proof We ûrst give a required branch locus. Let (x , y) be local coordinates of
P1 ∖ {∞} × P1 ∖ {∞}. Denote the closure of the zero set of a polynomial Φ in x , y
on P1 × P1 by D(Φ).

Let Φα ,β(x , y) = y+αxy+ βx2, where α, β ∈ C∖{0}. _en, D(Φα ,β) satisûes the
following properties:
● D(Φα ,β) is linearly equivalent to 2∆0 + F0;
● D(Φα ,β) is tangent to F0 at (0, 0) with order two;
● D(Φα ,β) passes through (∞,∞) and meets F∞ transversally.
We choose six distinct members D1 , . . . ,D6 of {D(Φα ,β) ∣ α, β ∈ C∖{0}} and 2g−10
points t1 , t2 , . . . , t2g−10 on P1. We set Bg = ∑6

i=1 D i +∑2g−10
j=1 ∆t j . _en by a suitable

choice of the above curves, Bg has the following properties:
(a) Bg is linearly equivalent to 2(g + 1)∆0 + 6F0;
(b) (0, 0) is the 2-fold sextuple point of Bg and the singular point inûnitely near (0, 0)

lies on the proper transform of F0 a�er the blow-up at (0, 0);
(c) (∞,∞) is the ordinary sextuple point of Bg ;
(d) Bg has at worst double points except for these sextuple points.
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We next consider the numerical properties of fBg . In Figure 1, we describe the
canonical resolution of the double cover branched along Bg . To illustrate the canoni-
cal resolution, thick lines denote the branch locus Bg . Broken lines are used to repre-
sent curves not contained in Bg and thin lines denote rational curves on Wn . Double
lines are used to represent irrational curves on Wn . _e self-intersection number is
written near the curve. When the number near a curve is omitted, it means that the
self-intersection number of this curve is −2. In Figures 2, 3, 5, and 7, curves are rep-
resented in a similar manner as Figure 1.

(When g = 6 , this component is rational.)

2−fold

ν1 ◦ · · · ◦ νn

−1

−1

−1

Wn S̃

∆0

∆∞

F0 F∞ −1

−1

Σ0

E1, −1

−1

E2, −1

ϕn

−4

−1

sextuple point

E3 E4

2g − 10
sections

Figure 1: Double covering branched along Bg

By properties (b), (c), and (d), we may assume that m1 = m2 = m3 = 6 and mk =
2 (k = 4, 5, . . . , n). It is clear that there exists no (−1)-curve contracted by ρ (see
[7, Lemma 2.2]). Hence, by (2.1) and (2.2), we have

g( fBg) = g , χ fBg
= 3g − 9, K fBg

= 12(g − 1) − 24 = 12g − 36.

We next consider the number of exceptional curves contracted by ρ. Assume that
(0, 0) is the center of the blow-up ν1. Since Bg ⋅ ∆0 = 6, it follows from property (b)
that the center of νk does not lie on ∆0 for k = 2, 3, . . . , n. _us, the inverse image
of the proper transform of ∆0 by ϕn consists of two (−1)-curves, say E1 and E2. Af-
ter the blow-up at the ordinary sextuple point inûnitely near (0, 0), we see that the
proper transform of the exceptional curve of ν1 is a (−2)-curve and does not meet
the branch locus. It follows that its inverse image by ϕn consists of two (−2)-curves,
say E3 and E4. Since E3 (resp. E4) meets E1 (resp. E2) in one point, these four curves
are contracted by ρ. By the property (c), there exists only one blow-up in {νk}n

k=1
whose center lies on ∆∞. _en the inverse image of the proper transform of ∆∞ by
ϕn also consists of two (−1)-curves. It follows that there exist six exceptional curves
contracted by ρ (see Figure 1). We have

K2
S = 12g − 36 − 8(g − 1) + 6 = 4g − 22 > 0.

_is implies that S is a surface of general type. Hence, fBg ∶ S → P1 is a required ûbra-
tion.
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Remark 5.2 _e surface S constructed in the proof of the above proposition has
the following numerical properties:

χ(OS) = 3g − 9 − (g − 1) = 2g − 8, K2
S = 4g − 22,

i.e., S is the minimal surface on the Noether line K2
S
= 2χ(OS) − 6.

Considering possible values of є, our surfaces with 6 ≤ g( f ) ≤ 10 can be charac-
terized by the value of g( f ).

Corollary 5.3 Let S be a surface of general type and let f ∶ S → P1 be a relatively
minimal hyperelliptic ûbration. If 6 ≤ g( f ) ≤ 10, χ f = 3(g( f ) − 3) and λ( f ) ≤ 4, then
the minimal model S of S has the following properties:

χ(OS) = 2g( f ) − 8, K2
S = 4g( f ) − 22.

Proof By Corollary 3.7, we have λ( f ) = 4, i.e., we have following numerical prop-
erties:

χ(OS) = χ f − ( g( f ) − 1) = 2g( f ) − 8,
K2

S = K2
f − 8( g( f ) − 1) + є = 4g( f ) − 28 + є.

Hence, it suõces to show that є = 6. By Lemma 4.1, we have є ≤ (g( f )− 1)2/(2g( f )−
8). Since 6 ≤ g( f ) ≤ 10, the maximum value of (g( f ) − 1)2/(2g( f ) − 8) is equal to
27/4, i.e., є < 7. On the other hand, by using Noether’s inequality, we have

K2
S ≥ 2χ(OS) − 6 = 4g( f ) − 22,

from which follows є ≥ 6. _erefore, we obtain є = 6.

6 Existence in the Case Where 2 ≤ g( f ) ≤ 5
In this section, we show that there exist relatively minimal hyperelliptic ûbrations
with 2 ≤ g( f ) ≤ 5, λ( f ) = 4 and χ f = [3g( f )/2]. For this purpose, we use a similar
method as in Section 5. We now introduce some notations. Let pd ∶Σd = PP1(OP1 ⊕
OP1(d)) → P1 be the d-th Hirzebruch surface. Put

∆(d)0 = PP1(OP1) ⊂ Σd and ∆(d)
∞

= PP1(OP1(d)) ⊂ Σd .

Note that ∆(d)0 is linearly equivalent to the tautological divisor H.

Proposition 6.1 _ere exists a surface S of general type and a relatively minimal
hyperelliptic ûbration f ∶ S → P1 with g( f ) = 2, λ( f ) = 4, and χ f = 3.

Proof We ûrst give the required ûbration by constructing the branch locus. By [7,
Lemma 2.1], we have an eòective divisor D2 on Σ3 satisfying the following properties:

(a) D2 is linearly equivalent to 6∆(3)0 ;
(b) D2 has six 2-fold triple points on ∆(3)0 , say Q1 ,Q2 , . . . ,Q6;
(c) for each i, the singular point R i inûnitely near Q i lies on the proper transform of

p−1
3 (p3(Q i)) a�er the blow-up at Q i ;
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(d) D2 has at worst double point except for singular points on ∆(3)0 .
We put B2 = D2 + p−1

3 (p3(Q1)) + p−1
3 (p3(Q2)) and consider the hyperelliptic

ûbration fB2 ∶ S → P1. Note that Q1 and Q2 are 2-fold quadruple points of B2. In
Figure 2, we describe the canonical resolution of the double cover branched along B2.

Σ3

Q1 Q2 Q3 Q4 Q5 Q6

fibers of p3

ν1 ◦ · · · ◦ νn

−1 −1 −1−1−1 −1

−3

−3

Wn

S̃

−6

−6

−1 −1 −1 −1

−1 −1

ϕn

∆
(3)
0

∆
(3)
∞

Figure 2: B2 and the branch divisor a�er the canonical resolution

Wenext count the number of exceptional curves on S̃. By properties (b) and (c), the
set {νk}n

k=1 contains blow-ups at Q i ’s and R i ’s. Since B2 ⋅ F = 6, it follows again from
properties (b) and (c) that there exists no other blow-up at a point on p−1

d (pd(Q i))
in {νk}n

k=1. Hence, the proper transform of each p−1
d (pd(Q i)) is a (−2)-curve. Since

B2 contains both p−1
d (pd(Q1)) and p−1

d (pd(Q2)), the inverse image of the proper
transform of each p−1

d (pd(Q i)) by ϕn is a (−1)-curve.
On the other hand, we see that inverse images of the proper transforms of excep-

tional curves introduced by blow-ups at Q3 , . . . ,Q6 are (−1)-curves on S̃ (see [11,
p. 13]). Hence, six exceptional curves are contracted by ρ (see Figure 2). It follows
from (2.1) and (2.2) that

g( fB2) = 2, χ fB2 = 11 − 8 = 3, K2
fB2

= 22 − 16 + 6 = 12, K2
S ≥ 4;

that is, fB2 is a required ûbration.

Proposition 6.2 _ere exists a surface S of general type and a relatively minimal
hyperelliptic ûbration f ∶ S → P1 with g( f ) = 3, λ( f ) = 4, and χ f = 4.

Proof In order to construct the required ûbration, we give two kinds of eòective
divisors on P1 × P1. Put Ψα(x , y) = y2 − 1 + (y2 + 1)x + α(y2 + 1)x(x − 1). If α ≠ 0,
then D(Ψα) satisûes the following properties:

https://doi.org/10.4153/CJM-2015-032-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-032-8


82 H. Ishida

● D(Ψα) is linearly equivalent to 2∆0 + 2F0;
● D(Ψα) is tangent to F√

−1 (resp. F−√−1) at (∞,
√
−1) (resp. (∞,−

√
−1));

● D(Ψα) is tangent to ∆1 at (1, 0);
● D(Ψα) passes through (0,±1) and meets F1 and F−1 transversally.

Let Dα ,β = D((x − 1)Ψα + βxy2). If α, β ≠ 0, then Dα ,β satisûes the following
properties:
● Dα ,β is linearly equivalent to 3∆0 + 2F0;
● Dα ,β is tangent to F√

−1 (resp. F−√−1) at (∞,
√
−1) (resp. (∞,−

√
−1));

● (1, 0) is the simple double point of Dα ,β ;
● Dα ,β passes through (0,±1) and meets F1 and F−1 transversally.

We choose four distinct nonzero complex numbers α1 , α2 , α3 , β. Put

B3 =
2

∑
i=1
D(Ψα i ) + D(Ψα3 ,β) + ∆0 .

Under an appropriate choice of β, we can take B3 satisfying the following properties:
(a) B3 is linearly equivalent to 8∆0 + 6F0;
(b) (∞,±

√
−1) are 2-fold triple points of B3 and the singular points inûnitely near

(∞,±
√
−1) lie on the proper transform of ûbers a�er the blow-up at Q i ;

(c) (1, 0) is a quadruple point of B3 that decomposes into one ordinary double point
a�er the blow-up at (1, 0);

(d) (0,±1) are ordinary quadruple points of B3;
(e) B3 has at worst double points except for these singularities.

Wenow consider the numerical properties of the hyperelliptic ûbration fB3 ∶ S → P1

and S. In Figure 3, we describe the canonical resolution of the double cover branched
along B3. _e symbol ○means that two curves passing it do not intersect each other.

Since B3 has two 2-fold triple points, we see that there exists two exceptional curves
contracted by ρ (cf. [11, p. 13]). Hence, by (2.1) and (2.2), we obtain

g( fB3) = 3, χ fB3 = 9 − 5 = 4, K2
fB3

= 24 − 10 + 2 = 16.

Since there exists no singular point on ∆0 except for (0,±1), the proper transform of
∆0 is a (−2)-curve. Moreover, since ∆0 is contained in B3, the inverse image of the
proper transform of ∆0 by ϕn must be a (−1)-curve (see Figure 3). _us, we have
K2

S
= 16 − 8(3 − 1) + 1 > 0; i.e., S is a surface of general type. It follows that fB3 is a

required ûbration.

Proposition 6.3 _ere exists a surface S of general type and a relatively minimal
hyperelliptic ûbration f ∶ S → P1 with g( f ) = 4, λ( f ) = 4, and χ f = 6.

Proof We ûrst give a required ûbration by constructing the branch locus on P1 ×P1.
Let ak(y) (k = 1, 2, 3) be polynomials of degree two satisfying the following condi-
tions:
● ak(0) ≠ 0 for every k;
● if k ≠ l , then ak(y) and a l(y) are coprime and ak(0) ≠ a l(0).
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Σ0

ν1 ◦ · · · ◦ νn

−1

−1

−1

S̃

−1

−4

−1 −1

ϕn

∆0

∆∞

F1 F−1

∆1

F0 F√−1 F−√−1

Wn
−1

−1

−1

−1

−1

−4 −4

−4

Figure 3: B3 and the branch divisor a�er the canonical resolution

Put P1 = (0, 0), P2 = (0,∞) andD4 = ∑3
k=1 D(y+ak(y)x). Denote the elementary

transformation centered P ∈ Σd by ιP . Let σ ∶P1 × P1 → P1 × P1 be the automorphism
that exchanges two factors. In order to simplify the notation, in cases where no con-
fusion can arise, the image of P ∈ Σd by birational maps is denoted by the same letter
P. By appropriate choices of ak(y)’s, we may assume that P1 and P2 are ordinary
triple points of D4 and that D4 has six ordinary double points, say Q1 ,Q2 , . . . ,Q6.
Furthermore, we can assume that pr2(Q i)’s are mutually distinct points on P1. _en
ι = σ ○ ιQ4 ○ ιQ3 ○ ιQ2 ○ ιQ1 ○ σ is a birational map from P1 × P1 to itself. Let ι[D4]
be the proper image of D4 by ι. In Figure 4, we describe σ(D4) and σ(ι[D4]). _ick
lines denote σ(D4) and σ(ι[D4]). Broken lines are used to represent curves except
for σ(D4) and σ(ι[D4]).

ι

Σ0 ⊃ σ(ι[D4]) ∼ 6∆0 + 7F0

∆0 = σ(F0)

∆∞ = σ(F∞)

F0 = σ(∆0)

Σ0 ⊃ σ(D4) ∼ 6∆0 + 3F0

fibers of pr1 F0 = σ(∆0)

σ(ι[∆0]) ∼ ∆0 + F0

σ(ι[∆∞]) ∼ ∆0 + F0

P1

P2

Q1

Q2

Q3

Q4

Figure 4: σ(D4) and σ(ι[D4])
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Since Q i is an ordinary double point of D4, the elementary transformation cen-
tered Q i induces a simple quadruple point on ι[D4]. _us, ι[D4] has four simple
quadruple points. Since P1 and P2 lie on the ûber σ(∆0), the images of P1 and P2
by ι are also ordinary triple points of ι[D4] contained in ∆0. _en ι[D4] is linearly
equivalent to 7∆0 +6F0 and has two ordinary triple points and four simple quadruple
points (see Figure 4).

We take ∆t l (l = 1, 2) not meeting ι[D4] at its singularities. Put B4 = ι[D4] +∆0 +
∑2

l=1 ∆t l . _en B4 satisûes the following properties:
(a) B4 is linearly equivalent to 10∆0 + 6F;
(b) B4 has six simple quadruple points;
(c) two of these quadruple points lie on ∆0;
(d) B4 has at worst double points except for these singularities.
Considering the hyperelliptic ûbration fB4 ∶ S → P1, it is clear that there exists no

(−1)-curve contracted by ρ.

Σ0

ν1 ◦ · · · ◦ νn

−1

−1

S̃

−1

−3

ϕn

∆0

F1 F−1 F0 F√−1 F−√−1

Wn
−1

−1

−1

P1 P2

−1−1

−1

−1−1

−1

−6

−6

−1 −1

−1−1

−1 −1

−1 −1 −1 −1 −1 −1

−1 −1 −1 −1

−3

∆t1

∆t2

Figure 5: B4 and the branch divisor a�er the canonical resolution

Hence, by (2.1), (2.2), and the above properties, we have

g( fB4) = 4, χ fB4
= 12 − 6 = 6, K2

fB4
= 36 − 12 = 24.

Furthermore, by the same argument as in the proof of Proposition 6.2, the inverse
image of the proper transform of ∆0 by ϕn must be a (−1)-curve, i.e., K2

S
= 24−8(4−

1) + 1 = 1 > 0 (see Figure 5). It implies that S is a surface of general type. Hence, fB4 is
a required ûbration.

Proposition 6.4 _ere exists a surface S of general type and a relatively minimal
hyperelliptic ûbration f ∶ S → P1 with g( f ) = 5, λ( f ) = 4 and χ f = 7.
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Proof Let D4 be as in the proof of Proposition 6.3. Let R1 and R2 be points on D4
such that pr i(R1) ≠ pr i(R2) (i = 1, 2). _en ι′ = σ ○ ιR1 ○ ιR2 ○ σ is a birational map
from P1 × P1 to itself. In Figure 6, using a similar manner as in Figure 4, we describe
σ(D4) and σ(ι′[D4]).

ι′

Σ0 ⊃ σ(ι′[D4]) ∼ 6∆0 + 9F0

σ(Fpr2(R1)) ∼ ∆0

σ(Fpr2(R2)) ∼ ∆0

F0 = σ(∆0)

Σ0 ⊃ σ(D4) ∼ 6∆0 + 3F0

fibers of pr1 F0 = σ(∆0)

σ(ι′[Fpr2(R1)]) ∼ ∆0

P1

P2

R1

R2

σ(ι′[Fpr2(R2)]) ∼ ∆0

Figure 6: σ(D4) and σ(ι′[D4])

Since R i does not lie on D4, the elementary transformation centered R i induces a
simple sextuple point on ι′[D4]. Hence, ι′[D4] has two simple sextuple points. Fur-
thermore, the image of P1 and P2 by ι′ are also ordinary triple points on ∆0.

We take ∆s l (l = 1, 2) not meeting ι′[D4] at its singularities. Put B5 = ι′[D4] +
∆0 +∑2

l=1 ∆s l . _en B5 satisûes the following properties:
(a) B5 is linearly equivalent to 12∆0 + 6F;
(b) B5 has two simple sextuple points and two ordinary quadruple points;
(c) two quadruple points lie on ∆0;
(d) B5 has at worst double points except for these singularities.

We now consider the numerical properties of the hyperelliptic ûbration fB5 ∶ S →
P1. It is easy to see that there exists no exceptional curve contracted by ρ. By (2.1),
(2.2), and the above properties, we have

g( fB5) = 5, χ fB5 = 15 − 8 = 7, K2
fB5

= 48 − 20 = 28.

By the same argument as in the proof of Proposition 6.2, the inverse image of the
proper transform of ∆0 by ϕn must be a (−1)-curve. Furthermore, since each ∆pr2(R i)

meets B5 in only one sextuple point, the proper transform of ∆pr2(R i) by ϕn consists
of two (−1)-curves (see Figure 7). Hence, we have K2

S
= 28 − 8(5 − 1) + 5 > 0, which

implies that S is a surface of general type. _us, fB5 is a required ûbration.

By Propositions 5.1 and 6.1–6.4, we complete the proof of _eorem 1.3.
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