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QUASICYCLIC SUBNORMAL SEMIGROUPS 

RICHARD F R A N K F U R T 

I n t r o d u c t i o n . Let T(s), s ^ 0, be a strongly continuous semigroup of 
bounded operators on a separable Hilbert s p a c e d . T(s) is said to be quasicyclic 
if there is a cont inuum of vectors { x s } s > 0 C ^ such tha t T(s)xt = xs+t for all 
s, t > 0 and sp{xs}s>o = Jrff. T{s) is said to be subnormal if there is a semigroup 
of normal operators N(s) acting on a Hilbert space K Z) Jti? such tha t 
N(s)\j? = T(s) for all 5 > 0. In this paper we shall be concerned primari ly with 
semigroups which have both of these properties. 

In Section 1, we obtain a general representation for quasicyclic subnormal 
semigroups. A measure M defined on a half plane Uv = {z\x ^ rj} is said to have 
minimal exponential type if e~sz is /x-integrable for all s > 0. For any such 
measure /x, we denote by H2(IJL) the L2(JLX)-closed span of the functions e~sz, 
s > 0. I t is shown tha t any quasicyclic subnormal semigroup is unitari ly 
equivalent to the semigroup of multiplication by e~~sz on H2 (/x) for some measure 
/x having minimal exponential type. The result is a consequence of Sz.-Nagy's 
spectral representation of normal semigroups. See [11]. 

In Section 2, we s tudy weighted translation semigroups, which are defined as 
follows. Let w(t) be a positive continuous function defined on (0, ° ° ) , and let 
mw be the measure defined on (0, °° ) by drnw(t) = w(t)dt. T h e space L2{mw) 
carries a formal semigroup of forward translat ion operators Tw(s), s ^ 0, 
defined by Tw(s)f(t) = / ( / — s), it being agreed tha t f(t — s) = 0 for t < s. 
Set Mw(s) = sup;>o w(t + s)/w(t). Then Tw(s) is a strongly continuous semi­
group of bounded operators if and only if lim s u p s ^ œ log Mw(s)/s = bw < o°. 
In the special case when w(t) is r ight hand continuous a t 0, these semigroups 
have recently been studied systematically by E m b r y and Lamber t [3 ; 4] from 
a slightly different point of view. Sporadic examples have appeared from 
time to t ime in earlier l i terature. See, for example, Hille and Phillips [8]. In the 
present analysis, it is shown tha t any such semigroup is quasicyclic. In addit ion, 
we show tha t the spectrum of Tw(s) is precisely the disk {z\ \z\ ^ e*bwS} for all 
^ > 0. 

In Section 3, we apply the result of Section 1 to s tudy subnormal weighted 
translat ion semigroups. We show tha t Tw(s) is a subnormal semigroup if and 
only if 

wit) = | e-2txdv(x) 
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for some positive Borel measure v defined on the half line x =" — è^V I n the case 
when w(t) is right hand continuous at 0, ^ is necessarily a finite measure, and 
the present theorem reduces to the result obtained by E m b r y and Lamber t in 
[4]. In addition, we obtain a functional model for subnormal weighted transla­
tion semigroups. Given the measure v, we define a measure /J. on the half plane 
11^= {z\x _• — \bw) by dfi(Xj y) = (2w)~1dv(x)dy. For any p > 0, let F(z) be a 
function analytic for x > — \bw, and assume tha t F(u + z — \bw) belongs to 
Hp of the half plane x > 0 for all u > 0. We then set 

J?p(u; F; n) = ( I \F(u + z)\Pd»(z) 
\ J Ilia 

We denote by S>v{\i) the collection of all such functions F(z) satisfying the 
additional condition t ha t 

\\F\\ = s u p ^ ( w ; ^;/x) < °° • 

The space <^2(/x) is seen to be a functional Hilbert space, and it is shown tha t 
the Laplace Transform is an isometric isomorphism of L2(mw) onto <^ 2(M) which 
intertwines the semigroup Tw(s) with the semigroup of multiplication by e~sz 

on (?2(IJL). 

1. A genera l resu l t . Let T(s), s ^ 0, be a strongly continuous semigroup 
of bounded operators on a Milbert s p a c e d . T(s) is said to be cyclic if there is a 
vector Xo £ J f such tha t sp{ r (s)x 0} s^o = --^- ^o is called a cyclic vector for r ( s ) . 
More generally, we say tha t T(s) is quasicyclic if there is a family of vectors 
{xs}s>o C ^ such tha t T(s)xt = xs+t for all s, / > 0 and spjx,.}.,>0 = J?. The 
family {xs}5>o is called a quasicyclic family for T(s). Clearly if T(s) is cyclic, 
then T(s) is quasicyclic. 

A strongly continuous semigroup T(s) is said to be subnormal if there is a 
semigroup of normal operators N(s), s _• 0, acting on a Hilbert space K D ^ 
such t ha t 7V(s)|^ = 7"(5) for all s _• 0. I t is known tha t T(s) is a subnormal 
semigroup if and only if each individual operator T(s) is subnormal. See I to 
[10]. In this section, we obtain a concrete model for an arbi t rary quasicyclic 
subnormal semigroup, analogous to Bram's result for a single subnormal 
operator with a cyclic vector. See [1]. 

We begin by introducing an appropriate class of measures. Let 77 be any real 
number, and let 1 1 , = {z\x = 77}. We define a mapping r from IT, to the half 
line x _• 7] by r(z) = x(= R e z ) . Given a measure JLX defined on IT,, we define a 
measure v on the half line x =• 77 by d*>(x) = dfi{r~1(x)). By analogy with 
analytic functions, we say tha t /* has minimal exponential type if the Laplace-
Stieltjes integral J^ e~sxdv(x) converges for all s > 0. Given any such measure, 
we observe tha t e~sy Ç L 2 ( M ) for all 5 > 0. We denote by H2(IJL) the L2(M)-closed 
span of these functions. We are now ready to proceed to the main result of this 
section. 

Alv 
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T H E O R E M 1. Let T(s), s ^ 0, be a quasicyclic subnormal semigroup of operators 
on a Hilbert space Jtff. Then there is a measure p defined on a half plane Uv and 
having minimal exponential type, such that the semigroup T(s), s ^ 0, is unitarily 
equivalent to the semigroup of multiplication by e~sz, s ^ 0, on H2(n). 

Proof. Let N(s) be the minimal normal semigroup extension of 7"(5), acting 
on some Hilbert space K 3 J f . Let {xs}5>o be a quasicyclic family for T(s). 
T h e minimali ty of N(s) clearly implies tha t Jf7 = sp{N(t)*xs}Stt>o. By a 
classic result of Sz-Nagy [11], N(s) has a spectral representat ion of the form 

- / . -

/ . 

(1) N(s) = e-"dE(z), 
J n 

where II = II , = {z\x §; 17} for some real number 77, and E(z) is the spectral 
resolution of the infinitesimal generator of the semigroup N(s). For each 
s, t > 0, we define a complex measure jj,Stt on II by 

(2) dns,t(z) = (dE(z)xs, xt). 

li s = t, we write /z M = nt- W e assert t ha t for any s, t, u, v > 0, 

(3) d»s+u^v{z) = e- (M2+")dM,,i(z). 

T o see this, let / be any continuous function with compact suppor t in II, and 
note t ha t 

I f(z)dvs+u>t+v(z) = I f(z) (dE(z)xs+u,xt+v) 
J n •/ n 

/ ( z ) (dE(z)N(v)*N(u)xs,xt) 
I 

= (fj(z)dE(z) fae-iua+vW)dE(w)xs,x^ 

= (fj(z)e-(u°+°~z)dE(z)xs,x?) 

= f /(2)e- ( w z +^ s , ((2). 
•/ n 

T h e assertion follows. In particular, for any s, t > 0, dns+t(z) — e~~2sxdnt(z). 
Consequently, we may unambiguously define a measure /x on II by 

(4) dii{z) = e*°xdna(z) 

for any 5 > 0. Since each measure ixs is finite, it follows easily t ha t M has 
minimal exponential type. 

Now l e t J f o = sp {N(t) 
*^s}s t>o- W e define a transformation U from J^o to 

L2(ju) by sett ing 
(5) U(N(t)*xs) = e-(8Z+® 
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for any s, t > 0, and extending linearly to J#V We claim tha t U is isometric. 
T o see this, note tha t for any s, t, u, v > 0, we have 

(N{t)*xs,N{v)*xu)^ = (N(t)*N(v)x„ xu)^ 

e \(tJii{z)xs, xu)jf> 
n 

e-ul+">e-i"*J)dvL(z) 

e-uz+tz'e-iuz+'z)d,x{z) 

/—(sz+tz) —(uz+vz)\ 

From this, the assertion follows easily. Thus £/extends to an isometric mapping 
from J ^ to L2(n). In particular, U carries ffl isometrically onto H2(y), and 
evidently U intertwines the semigroup T(s), s ^ 0, and the semigroup of 
multiplication by e~sz, s ^ 0, acting on H2(n). The theorem follows. 

Remarks, (a) We point out tha t if the measure /* is finite, then T(s) will be 
cyclic, a cyclic vector being U* (1). The converse is false, as we shall see later. 

(b) The model of Theorem 1 would be a bit tidier if we could say tha t U maps 
3f onto L2(fi), thus providing a simple concrete realization of N(s). At present, 
however, we do not know if this is true. The generalized Stone-Weierstrass 
theorem would appear to be relevant, but the noncompactness of II seems to 
render it ineffective. 

2. W e i g h t e d t rans la t ion s e m i g r o u p s . Let w(t) be a positive, continuous 
function on the open half line (0, ° ° ) , and let mw be the measure defined on 
(0, °° ) by dmw{i) = w(t)dt. The Hilbert space L2(mw) carries a semigroup of 
forward translation operators Tw(s), s ^ 0, defined formally by 

(6) Tw(s) :f(t)->f(t-s), 

it being understood t h a t / ( / — s) = 0 for / < s. I t is evident tha t (6) is a t least 
meaningful w h e n / has compact support contained in (0, ° ° ) . A simple com­
putat ion with characteristic functions shows tha t (6) defines a bounded operator 
on L2(mw) if and only if 

/i-r\ HT / \ Wit + S) ^ 
(7) Mw{s) = s u p \ J , z < o o , 

t>o W(t) 
and in this case 11J^0) | | = Mw{s)\ We shall therefore assume in all t ha t 
follows tha t Mw(s) < °° for all s- ^ 0. We point out for the record tha t the 
semigroup Tw(s) is unitarily equivalent to the semigroup Tw(s) denned on 
L 2 (wi) by 
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Sporadic examples of semigroups of this type have appeared previously in the 
l i terature. See, for example, Hille and Philips [8, Ch. 19]. T h e first systematic 
s tudy of such semigroups seems to have been made by E m b r y and Lamber t 
[3; 4]. They use the form (8) with the additional restriction t ha t w(i) be right 
hand continuous a t 0. In the present s tudy, we shall use the form (6) through­
out, with no additional assumptions about w(t). In this section, we list some 
general properties of these semigroups which will be needed in the sequel. We 
begin by giving simple conditions which are necessary and sufficient to insure 
t ha t Tw(s) be strongly continuous. 

LEMMA 1. Let w(t) be a positive, continuous function on (0, ° ° ) . Then the 
following conditions are equivalent: 

(i) Tw(s) is a strongly continuous semigroup. 
(ii) There exists a real number b and a constant M > 0 such that Mw(s) ^ Mebs 

for all 5 ^ 0 . 

This result is obtained by E m b r y and Lamber t in [3]. W e present an alter­
nat ive proof, for the sake of completeness. 

Proof. I t follows from [8, Theorem 10.6.2, p. 323] t ha t (i) is satisfied if and 
only if Mw(s) = |(r(<0(|2 = 0 ( 1 ) as s - ^ 0 + . T h u s there is some Ô > 0 and a 
constant K > 0 such t ha t M(s) ^ K for 0 ^ 5 ^ Ô. Set b = (2/<5) log K. If 
s > ô, then there is an integer n ^ 2 and a number s' with 5 — ô/n < s' < ô 
such t ha t 5 = ns'. Then 

Mw(s) = \\Tw(s)\\> Û \\Tw(s')\\^ = Mw(s'Y 

< ebôn 

The lemma follows. 

On account of this result, we assume in all t ha t follows t ha t w(t) satisfies (ii). 
We denote by bw the infinum of all numbers b for which (ii) is satisfied. A 
straightforward a rgument shows tha t bw is given by 

few & v log Mw(s) (9) bw = lim sup —2 . 

Our next result shows tha t any semigroup of the form (6) for which bw < °° 
is quasicyclic. 

LEMMA 2. Let w(t) be a positive, continuous function on (0, °° ) such that 
bw < o°. For any b > \bw, let gb(t) = e~bt. Then gb(t — s) £ L2(mw) for every 
s > 0, and {gt>(t — s)js>o is a quasicyclic family for Tw(s). 

Proof. Given b, choose b' with b > b' > \bw. Then for any s > 0, 
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I \g*(f ~ s)\2w(t)dt = I e~2btw(t + s) dt 

oo (*n+l 

= E e-2blw(t + s) dt 
n=0 J n 

co f i 

= Z e-2bn I e~2»'w(t + n + s)dt 
rc=0 J 0 

oo , ri 
^M'Y, e-Unenn e~2btw(t + s)dt 

w.=0 «^ 0 

= const. 2 ^ ^ 
rc=0 

Since the series on the right converges, it follows tha t gb{t — s) £ L2(mw). T o 
prove tha t {gb(t — s)}s>o is a quasicyclic family, s u p p o s e / £ L2(mw) satisfies 
</, gb(t- s)) = 0 for all J > 0. Then for all s > 0, 

) e-htf(t)w(t)dt = e~bs J g*(t- s)f{t)w(t)dt = 0. 

Differentiating with respect to s, we then h a v e / ( s ) = 0 a.e. The lemma follows. 

We point out tha t if w(t) is right hand continuous a t 0, the proof of Lemma 2 
implies t ha t e~bt £ L2(mw) for any b > \bw, and tha t e~bt is a cyclic vector for 
Tw(s). If w{i) is not right hand continuous a t 0, this need not happen. For 
example, if w(t) = 1/t, then bw = 0, but e~bt d L2(mw) for any real number b. 

We turn next to an examination of the spectra of the semigroups Tw(s). If one 
considers these semigroups to be the natural continuous analogue of weighted 
shifts, it is reasonable to expect tha t for any given w, the spectrum of the 
operator Tw(s) should be a disk for any s > 0. Our next result bears out this 
expectation. 

T H E O R E M 2. Let w(t) be a positive, continuous function on (0, °° ) with bw < °° . 
Then for each s > 0, a(Tw(s)) = {z\ \z\ ^ e^bwS). 

Proof. We show first t ha t the spectral radius of Tw(s) is e*bwS. Note tha t 

r(Tw(s)) = lim sup Mw(ns)1/2n, 
W->co 

which is equivalent to saying tha t 

log r(Tw(s)) = - lim sup - log Mw(ns). 

In view of this, it suffices to show tha t 

lim sup — log Mw(ns) = bws. 
n_im n 
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Evidently, 

lim sup — log Mw(ns) ^ bws. 

Now given any positive number u, let n = [u]. Then for any positive number 
b > bw, we have 

Mw(su) = \\Tw(s(u - n))Tw{sn)\\2 Û \\Tw(s(u - n)) | |2 | | r„(5n)| |2 

= Mw(s(u - n))Mw(sn) 

S Mebs^u-n^Mw(sn) 

S MebsMw(sn). 
Thus 

- log Mw(su) ^ - [log M + bs + log Mw(sn)l 

from which the reverse inequality follows easily. 
Next suppose that X belongs to the resolvent set of Tw(s). Then XI — Tw(s) 

is bounded below, and maps L2(mw) onto itself. So given any h £ L2(mw), there 
is a unique function g Ç L2(mw) such that Xg(t) — g(t — s) = h(t). It can be 
proved by mathematical induction that 

g(t + ns) = \-(w+1) è **h(t + ks) 

for 0 ^ t < s and any integer n §: 0. 
Now since XI — Tw(s) is bounded below, there is a constant K > 0 inde­

pendent of h, such that 

/

•oo Too 

o •/ o 
oo Ps 

= ^ Z I |g(' + ns)\2w(t + ns)dt 
n = 0 *^ 0 

= K £ |X|-2(n+1) f ' I £ X*ft(* + £s) 
n = 0 •/ 0 I k=0 

w(t + Ws)d/. 

Given any w > 0, let m be the unique nonnegative integer for which ms ^ u < 
{m + l)s. Choose e > 0 such that u + e < (m + l)s, and let /&(/) be the 
characteristic function of the interval [u, u + e]. Then we have 

/

u+e oo f*u—ms+t 

w{t)dt ^KJ2 IXl2^-"-1' I w(t + ns)dt 
a n=m ** u—ms 

oo ru+e 

= K £ |x|2(m-B-1) I w(* + ns - ms) dt 
n=m ** u 

= 1 1 |X|-2U+1) I w^/ + fo) dt. 
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T h u s for any u > 0 and any integer k ^ 0, we have 

w(t + ks) dt S const. I wit) dt. 
u J u 

Dividing by e and letting e —> 0, we obtain 

\\\~2{]c+l)w(u + ks) :g const. w(u). 

I t follows tha t for any k ^ 0, 

M w ( ib ) ^ const. |A|2^+1>. 

So also 

ehbwS = \imsuvMw(ks)l,u ^ |X|. 

Since the resolvent set is open, this inequality must actually be strict. T h e 
result follows. 

We conclude this section with some analysis of the point spectrum of Tw(s)* 
which will be vital in what follows. Evidently, the point spectrum of Tw(s)* 
always contains 0. More important ly, suppose tha t a is a real number for which 

do) fV*"4x<°°. 
J o W{t) 

Then for any complex number f = a + i/3, the function g(t) = e~^/w(t) £ 
£ 2 ( w w ) , and it is a simple mat te r to show tha t Tw(s)*g(t) = e~?sg(t) for any 
s > 0. Thus e~ts belongs to the point spectrum of Tw(s)*. We define a formal 
Laplace integral <pw(z) by 

(11) *,(*) = fV"-^r. 
The foregoing discussion shows tha t if <rw is the abscissa of convergence of 
çw(z), then e~ts belongs to the point of Tw(s)* whenever Re f > l o v Moreover, 
it follows from Schwarz' inequality tha t if / G L2(mw), the Laplace Transform 

(i2) Hz) = re-"f(t)dt 
J 0 

converges absolutely and uniformly in the half plane x ^ rj for any 77 > \vw. 
Indeed, we may observe tha t 

(13) | / ( z ) | ^ *„(2*)*| | / | | 

for a n y / £ L2(mw) and any s with x > \<JW. If we denote by J£2(w) the linear 
space of Laplace transforms of functions in L2(mw), we observe tha t the map­
ping /—>f is a linear isomorphism of L2(mw) onto oSf2(w). We may use this 
isomorphism to transfer the metric s tructure of L2(mw) to J£2(w). Wi th this 
understanding, <$£2(w) becomes a functional Hilbert space. I t is easily shown 
tha t the reproducing kernel oi^2{w) is given by KW(Ç, z) = <pw(Ç + z). 
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3. Subnormal weighted translation semigroups. In this section, we 
study the problem of when a semigroup of the form (6) will be subnormal. 
This question has previously been considered by Embry and Lambert [4] in the 
special case when w(t) is right hand continuous at 0. Our analysis proceeds 
from Theorem 1 together with the results of the previous section, and eliminates 
this restriction. We obtain an extension of Embry and Lambert's result, together 
with a realization of subnormal weighted translation semigroups as multiplica­
tion semigroups on certain Hilbert spaces of Laplace integrals. 

We first introduce one additional scrap of terminology. Given a positive 
Borel measure v defined on a half line x ^ rj, we set av = mi{a\i>([a, c]) > 0 
for all c > a}. Then the support of v is contained in [av, °°). We can now 
state 

THEOREM 3. Let w(t) be a positive, continuous function on (0, °°), with 
bw < o°. Then in order for the semigroup Tw(s) to be subnormal it is necessary 
and sufficient that there exist a positive Borel measure v defined on a half line 
x ^ ri such that 

- JV"' (14) w(t) = e~Uxdv{x), t> 0. 

In this case, av = —%bw. Furthermore, for any b > \bw the semigroup Tw(s) is 
unitarily equivalent to the semigroup of multiplication by e~sz on H2(fxb), where 

/ IK\ ,7 / \ * dv(x)dy 
(15) d^y)--^-—,-^. 

Proof. First suppose that Tw(s) is a subnormal semigroup. By Lemma 2, for 
anyfr > \bw, {gb(t — s)} S>Q is a quasicyclic family for Tw(s), where g&(0 = e~ht. 
Thus by Theorem 1, there is a measure /x& defined on a half plane 
11̂  = {z\x ^ r]} and having minimal exponential type, such that the semigroup 
Tw(s) is unitarily equivalent to the semigroup of multiplication by e~sz on 
H2{fLh) via the map Ub which sends gb(t — s) to e~sz, s > 0. Let dvb(x) = 
dpib(r~1(x)), and let dv(x) = 2(x + b)dvb(x). We assert that v satisfies (14). 
To see this, note that for any s, h > 0, 

f " k>(t - *)2 - g»(t - s - hf] w{t) dt= f le~2sx - e-2U+h)*]dfib(z) 

e~'isx[l - e-ihx]dvb{x). 
J V 

i rs+h 
}w(t)dt + l[l -

h 
-eUh] f" e-2Ht-s) w(t)dt 

J s+h 

-i.C'""[1 
e-inx]dn(x). 
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Letting h —-> 0 and applying dominated convergence, we obtain 

w(s)-2b | e~iHt~s) w(t)dt = 2 | xe~2sxdh(x). 

Thus 

w(s) = 2b I gb(t - s)2w(t)dt + 2 I xe~2sx dvb{x) 
J 0 J 7? 

/

'co /^°° 

e~2sx dï„(x) + 2 ï r î o ( i î » ( i ) 

e_2s* </«(*) < 

as claimed. In particular, we observe that the measure v is independent of b. 
We show next that if w(t) satisfies (14), then av = — \bw. First note that for 

any s, t > 0, 

w(t+s)= r e-
2u+s)xdv(x) ^e-

2avs re~
2txdv(t) 

Jav J av 
-2avs , . 

= e w(t). 

It follows easily that av ^ — Jô^. On the other hand, for any a > av, we have = ^ e~2txdv(x) ^ f —2tx 7 / \ - ^ / r i \ — 2at w(t) = I e~itxdv{x)^ \ e-"xdv(x)^v([a„,a\)e 

Therefore w(t)~l = 0(e2at) as / —> °°, for any a > a„. It follows easily that the 
Laplace integral <pw(z) defined by (11) converges whenever Re z > 2a„. So for 
any such z, e~sz G a(Tw(s)). It then follows from Theorem 2 that av ^ — %bw. 

Next we assert that if w(t) satisfies (14), then for any b > \bw, the linear 
mapping Ub that sends gb(t — s) to e~sz extends to an isometric isomorphism of 
L2(mw) onto H2(nb). To prove this, it evidently suffices to show that 

I gb(u- s) gb(u - t) w(u)du = I e~
{sz+t~z) diib(z), 

for all s ^ / > 0. We have 

) gb(u- s) gb(u - t) w(u)du = I °° e~Hu~s) e~Hu-° w(u)du 
J 0 J s 

/

'co 

e w\ii)du 
s 

= e~Hs-

= e-
Hs~t} r°° e~

2sx dv(x) 
J av 2(x + b) ' 
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On the other hand, 

f e-{sz+fz) d»b{z) 
J n„ 

where h(z) = e~{s~t)v. By the Poisson representation, 

Therefore 

Thus Ub extends to an isometric isomorphism of L2(mw) onto H2(^b), and 
clearly Ub intertwines the semigroup Tw(s) with the semigroup of multiplication 
by e~sz on H2(ixb). The theorem follows. 

We remark in passing that if w(t) is as in (14), then w(t) is right hand 
continuous at 0 if and only if v is a finite measure. This observation yields Embry 
and Lambert's result [4]. 

One of the most unfortunate aspects of the H2(iib) model for Tw(s) is its 
dependence upon b. We shall therefore replace H2(nb) by a model which elimi­
nates this dependence. To do this, we set d^(x, y) = (2T)~1dv(x)dy, and observe 
that the linear mapping V which sends gb(t — s) to e~sz/(z + b) extends to an 
isometric mapping of L2(mw) onto the L2(JU)-closed linear span of the functions 
e~sz/(z + b), s > 0, which we denote by ffi2(\x). Moreover, V intertwines the 
semigroup Tw(s) with the semigroup of multiplication by e~sz onjf2(ju). It will 
be shown in the sequel that the space J ^ 2 ( M ) is actually independent of the 
choice of b. 

We now focus our attention upon the space ££2(w). We shall give an alterna­
tive description of ££2{w), and establish a concrete connection between J?f 2(w) 
andJ^2(ju). To motivate what follows, we point out that in the special case 
w(t) = l,J^2(w) is actually H2 of the half plane x > 0, and J4f2(w) the space 
of boundary functions. See Hoffman [9], Duren [2]. 

In general, suppose that v is a positive Borel measure defined on a half line 
x ^ 7], and assume that the function w(i) defined by (14) is finite valued for 
all / > 0. Let the measure /x be defined on the half plane n„ by dn(x, y) = 
(2Tr)~1dv(x)dy. Let p > 0, and let F(z) be a function analytic in the half plane 
II = {z\x > av). We make the assumption that for any u > 0 there exists a 
constant Mu > 0 such that 

e-m-vdy f°° x(s+t) dv(x) (x + b) f 
Jav

6 2(x + b) ir J.œyz+(x + b) 

Cœ^x(s+t) dv{x) (x + b) f°° h(iy)dy 
J av 2(X + b) 7T J -2(x + b) T J.œy2 + (x + by' 

-y -x(s+t) -(s-t)(x+b) dv(x) 
2(x + b) 

= e J'oo 
- 2 s z 

av ! 

dv(x) 
2(x + b) 
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/ fco \l/p 

(16) Jtv(u + x) F) = I J |F(w + x + fy) 1 ^ I ^ Mw 

for all x > av. For any such function F(z), we set 

(i7) jtv{v\F\ù = ( J _ i ^ + ^r^(^)) / P , 

w > 0. We then denote by Svi\x) the collection of all functions F(z) analytic in 
II and satisfying (16) for which 

(18) \\F\\Ptll = sup^p(w, F\ii) < 00. 
w>0 

We remark tha t S'vi\i) is always nontrivial, and is a normed linear space for 
p ^ 1. We are primarily concerned with the casep = 2. Specifically, we prove 

T H E O R E M 4. If \x and w are as defined above, then J£2(w) and <^2(/i) are 
identical. 

Proof. We note first tha t the proof of Theorem 3 guarantees us thatoèf 2(w) is 
a Hilbert space of functions analytic in the half plane II. If / G L2(mw), let 
fuit) = e~utf{t) for any u > 0, and observe that f(u + z) = fu(t). Now 

/

'oo /*oo /*co 

T h u s 
0 e~2tx\fuit)\

2dt < oo for all x > av 
1 o 

So by Plancherel 's Theorem, we have 

fae-t,i^\f(t)\2dt = ~ f" |/(« + x + *»|2^ 
•/ 0 Z 7T J _OT 

for all x > av. Clearly, then, f(z) satisfies (16). Integrat ing with respect to v, 
we obtain, 

^2(M;/;M)2= f \f(ti + z)\2d„(z) = fV 2 , " | / (0 lV^ 
«/ n «^ o 

|2w(/)d/. 

/ ; 

f"l/(0l2 

•/ o 
T h u s / G <^ 2 (M) . 

Conversely, suppose F Ç S2^). Then by (16), F ( w + z + a ") belongs to i / 2 

of the right half plane x > 0 for all w > 0. Thus by the Paley-Wiener theorem, 
for any u > 0, there is a function /M Ç L 2 (wi) such tha t 

F(w + s + a,) = ) e~z%{t)dt 
J o 

for x > 0. Evidently, for any w, v > 0, we have fu+v(0 = e~vtfuit) almost 
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everywhere. Therefore we may unambiguously define a measurable function 
f(t) on (0, o°) by setting 

for any u > 0. Then 

F(Z) = r fym 
J 0 

for any z £ n , and by Plancherel 's Theorem, 

~ r I F ( M + X + ^ ) I 2 ^ = r e-^xu\f(t)\2dt 
ZT J -œ J o 

for all u > 0 and x > av. In tegrat ing with respect to v, we obtain 

I e~2ut\f(t)\2w(t)dt =~£2(u; F- /x)2 ^ const. 
J o 

for all M > 0. I t follows easily from monotone convergence t h a t / £ L2(mw). 
T h e theorem is proved. 

On account of this result, we observe tha t the Laplace Transform is an 
isometric isomorphism of L2(mw) onto <^ 2 (M) which intertwines the semigroup 
Tw(s) with the semigroup of multiplication by e~sz on <^2(/z). On the other 
hand, for any given b > \bw we have an isometric isomorphism of L2(mw) onto 
Jt?2(n) which carries gb(t — s) onto e~sz/(z + b), s > 0. By composing this 
mapping with the inverse Laplace Transform, we obtain an isometric mapping 
of S>2iK\x) onto J^2( /x) . Given F £ <^2(/x), we denote the image of F inJ^ 2 ( /u) 
by F. In the case when v has no mass a t avi it is not difficult to see t ha t F = 
F jit — a.e. On the other hand, if v has mass at av, then F(z + av) belongs t o i / 2 

of the right half plane x > 0 for any i7 £ <^2(/x). T h u s in this case, F(av + fy) = 
limw_^o F(u + a„ + fy) dy — a.e., and F(z) = F(z) \x — a.e. on supp \x C\ II. On 
account of these correspondences, ^ 2 ( M ) is natural ly embedded as a subspace 
of L2(IJL). Loosely speaking, a function in <^ 2 (M) may be identified with its 
representat ive i n ^ 2 ( / x ) in much the same way as an H2 function is identified 
with its boundary function. 

T h e spaces <fp(ii), p > 0, appear to be the natura l half plane analogue of the 
spaces Ep(a), p > 0, defined and studied in [5; 6] in connection with sub­
normal weighted shifts. For the convenience of the reader, we recall the definition 
of these la t ter spaces. Let p be a finite positive Borel measure defined on [0, °° ), 
having compact support and no mass a t 0. We set cp = sup{c\v([a, c]) > 0 for 
all 0 ^ a < c], and let D = {z\ \z\ < cp\. W e then define a measure a on D 
by da(r, 6) = (2TT)~1 dp(r)dd. If f(z) is any function analyt ic in D, for any 
p > 0 and any 0 ^ r < 1, we write 

(19) Mp(r;f;a) = ( f |/(rf)|*dff(f) 
, 1/P 
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We then denote by Ep(a) the collection of all functions f(z) analytic in D such 
tha t 

(20) | | / | | , „ = sup Mp(r;f;a) < oo. 

I t was proved in [5] t ha t Ep{a) is a complete linear metric space for all p > 0, 
a Banach space for p = 1, and a functional Hilbert space for p = 2. The 
spaces E2(a) provide a functional model for subnormal weighted shifts. 

In the classical case of Hp spaces, it is well known tha t Hp of the disk is 
isometrically isomorphic to Hp of the half plane, the isomorphism being 
induced by a conformai mapping of the half plane to the disk. Unfortunately, 
in general no such simple relationship can exist between the spaces (?p(ix) and 
EP((T). However, it is possible to obtain a variety of nonisometric embeddings of 
any Ep(a) space into an S>p{\x) space, as the following result serves to indicate. 

T H E O R E M 5. Let p and a be as described above, and let v be the measure defined on 
a half line by dvix) = — dp{e~x). Let dp,(x, y) = (2ir)~ldvix)dy. Then for any 
b > h°w, any p > 0, and any f £ Ep(a), the function F(z) = f(e~z)/(z + b)2/p 

belongs to <^p(^), and 

/ 9 1 N i iffi i < fco th (av + b) 

(2i) i m u ^ L flF + — ll/IU 

Proof. We note first tha t v is a finite positive Borel measure, so t ha t w(t) is 
finite valued for all / ^ 0. Hence $p{p) is meaningful. We also point out for the 
record t ha t bw = — 2av = 2 log cp. 

Now if / Ç Ep(a), then for any u > 0 and x > av, we have 

LlF{u + x + iy)]Pdy = £ ( iw^ 
ln+1)T | / ( e ~ V z ) |p dy 

(x + b)2+ y2 

\f(e-*e~')\' dy 

oo /*(n+l 

W=-oo ^ (71-1) 

OO / ^ 7 T 

= £ J 7-(x + b)2 + (y + nirf 

X 1/rOI'iy 

[^rP]£j/(,-"Or^. 
I t follows easily tha t F(z) satisfies (16). Multiplying by (2ir)~l and integrating 
with respect to v, we obtain 
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L &v ~T" 0 J Z 7T «/ a „ »/ _ 7T 

c q t h i ^ f ô)l L f 'dp(0 f \f(rte«)\'dy 
J Z 7T J o *^ -7T 

• j M , ( ^ ; / ; f f ) ' . 

a, + b 

coth (a, + b) 
av + b 

The result follows. 

As a particular consequence of Theorem 5, we note that if v is a finite positive 
Borel measure defined on a half line x ^ rj, and if the periodic Dirichlet series 
G{z) = J2n=oane~nz satisfies J2n=ow(n)\an\

2 < o°, then the function F(z) = 
G(z)/(z + 6) belongs to <^2(/x) for any 6 > ^ , and 

(22) 
coth (gv -f- 6) 

2,M ~ L a , T ^ . 
2 ^(^) |an |2 . 

We conclude this section by listing some curious examples to illustrate the 
foregoing material 

(a) We consider the case when w(t) is a Dirichlet series with positive 
coefficients and abscissa of convergence :g 0. Thus 

w 

oo r 

(0 = Z ^<rx"< = - 2 w dv{x), 

where are > 0 for all n ^ 1, Xw —> oo as w —> °°, and the measure v is the com­
pletely atomic measure defined by v({\\n\) = an, n ^ 1. Clearly bw = — Xi. 
For any p > 0, S>v{yî) is the collection of all functions ^(s) analytic for x > Xi 
and satisfying 

(23) SUp X) On^p(u + £Xn; F)P < 00 . 
w>0 n = l 

In particular, if Xi = 0, we observe that ^ P ( M ) is contained in Hp of the half 
plane x > 0. The containment is proper if and only if J2 an. = °° • F ° r if 
S an < °°, then 

/

oo oo /*oo 

|F(« + iy)\p dy ^ £ an \F(u + iX„ + iy)\' dy 
-oo W = l J - o o 

\ n =l / J - o o 

so that T7 G <^P(M) if and only if F(z) belongs to # p of the half plane x > 0. On 
the other hand, if E «n = °°, then (2 + &)"2/p g <f*(/z) for all fe > 0. 

As a special case, these observations may be applied to the series 

w 

00 1 

(0 = £ V " o g K = f 0 + D-
w = l W 
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where f (s) is Riemann's zeta function. In this case (23) reduces to 

00 1 — 
(24) sup X) -^p(u + log\/n; F)v < oo. 

u>0 n=l M 

In particular, a measurable function/(0 on (0, oo) satisfies J? |/(0l2f (/ + l)dt 
< o° if and only \ij{z) satisfies (24) with p = 2. By monotone convergence, 

/

oo oo -1 f*co 

\f(t) \*ttt + W = 1 ; |/(log Vn + iy) |2 dy. 
(b) Next we consider the example w(t) = t~aellt, a > 0. In this case, 

w(t) = ] e~tu u(a~1)/2 /a_x (2y/u) ^ 
•/ o 

= 2 (a+1) /2 f °° e-iu x(a-1)/2 /„_! (2 V ^ ) rfx, 

where /„(s) is a modified Bessel function. See Watson [12]. Therefore 
dv{x) = 2^+1) / 2x^-1) / 2 / a_i(2v

/2x)^ for x > 0. The space (f p(/x) consists of all 
functions .F(z) analytic in the half plane x > 0 and there satisfying (16), such 
that 

(26) sup I " ^ ( w + x; F)v x (a_1)/2 7«_i (2 \ / 2 s ) <& < oo . 
w>0 J 0 

In particular, a measurable function f(t) on (0, °°) satisfies Jo 1/(012t~ael,tdt 
< oo if a n c | only iif(z) satisfies (16) and (26) with p = 2. Moreover, 

/

*co /^°° 

imfrV'dt = 2<a"1)/2 I JKt{x; /0V a " 1 ) / 2 J._i (2V2x) dx. 
0 v 0 

We can also explicitly compute the reproducing kernel of f̂ 2(jii). Indeed, 

(28) «,„(*)= re-"-1/lfdt = 2z-(a+1)/2K_(a+1)(2Vz), 
J 0 

where Kv(z) is a modified Bessel function. See Watson [12, p. 183]. Therefore 
#«G-, z) = 2(f + 2)-<«+1>/2ii:_ (a+1)(2^/^^^^ 

(c) As a final illustration, wTe consider the simple example w{i) = t~2. In this 

= 4 I e~2txxdx. 
J o 

case, 

w(0 

Thus dv{x) = 4xdx for x > 0. The space <^2(/x) is of particular interest. To see 
this, we have only to note that the mapping f(t) —* —tf(t) is an isometric 
isomorphism of L2{mx) onto L2(mw). It then follows that G Ç <^2(M) if and only 
if G(z) = F'' (z) for some F(z) in i72 of the right half plane. Moreover, for any 
F(z) in H2 of the right half plane, 
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/

co r> T o o /*co 

\F(x)\2dx = - xdx \F'(x + iy)\2dy. 
TT J 0 J-oo • 

We note for the record that 

ow(z) = I e 
J o 

(30) <pu(z) = e~ztfdt = 
zt ,2 j , _ 2 

z 

Thus the reproducing kernel of ^2(/x) is KW(Ç, z) = 2(f + z) - 3 . 
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