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Abstract
This study reveals the morphological evolution of a splashing drop by a newly proposed feature extraction method,
and a subsequent interpretation of the classification of splashing and non-splashing drops performed by an explain-
able artificial intelligence (XAI) video classifier. Notably, the values of the weight matrix elements of the XAI that
correspond to the extracted features are found to change with the temporal evolution of the drop morphology. We
compute the rate of change of the contributions of each frame with respect to the classification value of a video as
an importance index to quantify the contributions of the extracted features at different impact times to the classifi-
cation. Remarkably, the rate computed for the extracted splashing features of ethanol and 1 cSt silicone oil is found
to have a peak value at the early impact times, while the extracted features of 5 cSt silicone oil are more obvious
at a later time when the lamella is more developed. This study provides an example that clarifies the complex
morphological evolution of a splashing drop by interpreting the XAI.

Impact Statement
This study reveals how a drop splashes on a surface by a newly proposed explainable artificial intelligence
(XAI) method, which provides an alternative to the conventional investigation methods. In this method, an
XAI is first trained to classify videos of splashing and non-splashing drops, then the classification process is
analysed and interpreted by finding out which frame of the video has the most influence on the classification
of the XAI. The findings of the study showed the fundamental aspects of drop impact, which can be leveraged
to enable devices and systems that benefit humankind with various applications such as aeronautics, biology,
chemical and mechanical engineering, materials, acoustics, and combustion.

1. Introduction

The impact of a liquid drop on a solid surface is a high-speed phenomenon that is encountered in a
variety of contexts, such as spray cooling (Breitenbach, Roisman & Tropea 2018) and aircraft icing
(Zhang & Liu 2016; Lavoie et al. 2022). Under certain impact conditions, splashing can occur, i.e. the
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impacting drop breaks up and ejects secondary droplets (Gordillo & Riboux 2019; Hatakenaka et al.
2019; Yokoyama, Tanaka & Tagawa 2022) instead of just spreading over the surface until it reaches
its maximum radius (Clanet et al. 2004; Gordillo, Riboux & Quintero 2019). Splashing has various
consequences, such as soil erosion (Fernández-Raga et al. 2017), propagation of contaminants (Gilet
& Bourouiba 2015; Waite, Whitelaw-Weckert & Torley 2015), and visible decreases in printing and
painting quality (Lohse 2022). Therefore, it is necessary to understand the dynamics of a splashing drop
from the morphological evolution that occurs during the impact process. Owing to the multiphase nature
of this phenomenon, which involves the liquid drop, the solid surface and the ambient air, many physical
parameters strongly influence the occurrence of splashing (Rioboo, Tropea & Marengo 2001; Yarin
2006; Josserand & Thoroddsen 2016). For instance, a given parameter can either promote or suppress
splashing, depending on other parameters (Usawa et al. 2021; Zhang et al. 2021, 2022). Furthermore,
the spreading dynamics of a splashing drop are very complex, because the ejected secondary droplets
add more morphological features, such as their ejection angle (Burzynski, Roisman & Bansmer 2020),
ejection velocity (Mundo, Sommerfeld & Tropea 1995; Thoroddsen, Takehara & Etoh 2012), number
(Lin et al. 2022) and size (Juarez et al. 2012; Riboux & Gordillo 2015; Wang & Bourouiba 2018).

To aid observations of splashing drops, attention has turned to artificial intelligence (AI), which has
been widely adopted and has proved effective in carrying out tasks in different fields, such as image
and video processing (Krizhevsky, Sutskever & Hinton 2012; He et al. 2016; Voulodimos et al. 2018),
aeronautical and aerospace engineering (Hou, Darakananda & Eldredge 2019; Li et al. 2020; Brunton
et al. 2021), and fluid mechanics (Colvert, Alsalman & Kanso 2018; Brunton, Noack & Koumoutsakos
2020; Erichson et al. 2020; Igarashi et al. 2024). Although the underlying reasoning that leads AI to a
specific decision is often unknown or not correctly understood (Adadi & Berrada 2018; Arrieta et al.
2020), by solving the problems of explainability and interpretability, AI can become a powerful tool for
advancing knowledge of physical phenomena. In particular, in studies of turbulence, AI has been widely
used for the reconstruction of turbulence fields (Fukami, Fukagata & Taira 2019; Kim et al. 2021), for
inflow turbulence generation in numerical simulations (Kim & Lee 2020a; Yousif et al. 2023) and to
gain physical insight from data (Kim & Lee 2020b; Lu, Kim & Soljačić 2020; Kim, Kim & Lee 2023).
However, the application of AI to the investigation of multiphase flows is relatively recent. With regards
to drop impact, several AI-based studies have been published since 2021 on the prediction of post-
impact drop morphology (Yee et al. 2023), impact force (Dickerson et al. 2022), maximum spreading
(Tembely et al. 2022; Yancheshme et al. 2022; Yoon et al. 2022) and splashing threshold (Pierzyna
et al. 2021). Notably, by image feature extraction using explainable artificial intelligence (XAI), Yee,
Yamanaka & Tagawa (2022) observed that the contour of a splashing drop’s main body is higher than
that of a non-splashing drop. Although Yee et al. (2022) established a foundation for feature extraction
methodology using XAI, the relationship between morphological features and physical parameters has
not been discovered. This is because the classification was conducted solely on a single snapshot at a
specific impact time, which does not enable comparison of morphological evolution between splashing
and non-splashing drops. However, because the temporal evolution of the morphology is related to the
acceleration of the drop, it contains important information about physical parameters, such as the impact
force.

In the present study, a classification of videos or image sequences is proposed, based on which
the morphological evolution of splashing drops can be compared with that of non-splashing drops.
Although recurrent neural networks (RNNs) and long short-termmemory (LSTM) networks are the two
types of AI that are most widely used to process sequential data such as audio and video data (Güera
& Delp 2018; Ma et al. 2019; Sherstinsky 2020), their complex architectures cause difficulties when
attempts are made to analyse their decision-making processes. Instead, a feedforward neural network
(FNN) model has been developed as an XAI video classifier, comprising a single fully connected layer.
Classification is performed on image sequences processed from high-speed videos of splashing and non-
splashing drops recorded during an experiment. The methodology of this study, including descriptions
of the dataset and the implementation of the FNN, is explained in § 2. After high accuracy has been
attained in the classification of image sequences of splashing and non-splashing drops, an analysis of
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the FNN’s classification process is performed to extract the features of the splashing and non-splashing
drops. An importance index is introduced to quantify the contributions of the extracted features to the
classification of the FNN model. These results and a discussion of the morphological features of a drop
impact are presented in § 3. The conclusions of this study are presented in § 4

2. Methodology

In this section, the dataset of image sequences showing the temporal evolution of drop morphology
during impact (§ 2.1) and the implementation of the FNN developed for image-sequence classification
(§ 2.2) are explained.

2.1. Experiment set-up and image processing

With the experimental set-up shown in figure 1, videos of drop impact were collected using a high-
speed camera (Photron, FASTCAM SA-X) at a rate of 45 000 s−1, a spatial resolution of (1.46±0.02) ×
10−5 m px−1 and a shutter speed of 1/48 539 s. Each of the videos shows an ethanol drop (Hayashi Pure
Chemical Ind., Ltd; density 𝜌 = 789 kgm−3, surface tension 𝛾 = 2.2×10−2 Nm−1 and dynamic viscosity
𝜇 = 1.0 × 10−3 Pa s) impacting on the surface of a hydrophilic glass substrate (Muto Pure Chemicals
Co., Ltd, star frost slide glass 511611) after free-falling from a height H ranging from 0.04 to 0.60m.
The resulting contact angles is approximately 2.02◦. The area-equivalent diameter of the drop, which
was measured before impact, was D0 = (2.59 ± 0.10) × 10−3 m. Note that instead of volume-equivalent
diameter, the more direct measurement method in area-equivalent diameter was adopted because drop
diameter is not a manipulating variable in this study. The impact velocity U0 and Weber number We
(= 𝜌U2

0D0/𝛾) ranged between 0.82 and 3.18m s−1, and between 63 and 947, respectively. The splashing
thresholds in terms of impact height and Weber number were H = 0.20m and We = 348, respectively.
Note that some impacting drops with H or We equal to or greater than the splashing threshold did not
splash. The H and We of the non-splashing drop with the highest values of H and We were H = 0.22m
and We = 386, respectively. Thus, there was a splashing transition at 0.20m ≤ H ≤ 0.22m or
348 ≤ We ≤ 386. After a frame-by-frame inspection for the presence of secondary droplets by human
eyes, each of the videos was labelled according to the outcome: splashing or non-splashing. In other
words, if secondary droplets are present in one of the frames of the video, it is labelled splashing. How-
ever, if secondary droplets did not present in any of the frames of the video, it is labelled non-splashing.
There are a total of 249 videos: 141 of splashing drops and 108 of non-splashing drops.

From each video, seven frames, showing the temporal evolution of the drop morphology from the
start of the impact until before the drop collapsed into a pancake-like morphology, were extracted to
form the image sequences for classification. The seven frames were extracted when the normalized drop
apex z0/D0 = 0.875, 0.750, 0.625, 0.500, 0.375, 0.250 and 0.125, respectively. The definition of the
drop apex z0 is illustrated in figure 2. Therefore, z0/D0 can be understood as the portion of the drop that
has yet to impact the surface. For example, when z0/D0 = 0.250, the remaining one-quarter of the drop
has yet to impact the surface. Here, z0/D0 is plotted against the normalized impact time tU0/D0, which
was averaged among all collected data of ethanol drops in figure 3. The error bars show the standard
deviation of all 249 video data points. The black and red dashed lines show the pressure impact and
self-similar inertial regimes proposed by Lagubeau et al. (2012), which are plotted using

z0/D0 = 1 − tU0/D0, (2.1)
z0/D0 = A1/(tU0/D0 + A2)2, (2.2)

respectively, where A1 and A2 are fitting parameters, which are 0.492 and 0.429, respectively, according
to the fitting results by Lagubeau et al. (2012). As shown in the figure, z0/D0 = 0.875, 0.750 and 0.625
cover the pressure impact regime; z0/D0 = 0.500 lies on the transition between the pressure impact and
self-similar inertial regimes; and z0/D0 = 0.375, 0.250 and 0.125 cover the self-similar inertial regimes.
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Figure 1. Schematic of experimental set-up used to collect high-speed videos of drop impact.
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Figure 2. Apex of an impacting drop: (a) at the start of the impact when z0/D0 = 1.000; (b) during the
impact when z0/D0 = 0.500.

An in-house MATLAB code was used to extract these seven frames and to trim the background so
that the impacting drop was located at the centre of each frame. Several examples of the image sequences
of ethanol drops, including a non-splashing drop with H = 0.08m and We = 149, a non-splashing drop
at the splashing threshold with H = 0.20m and We = 348, a splashing drop at the splashing threshold
with H = 0.20m and We = 348, and a splashing drop with H = 0.60m and We = 919, are shown in
figures 4 and 5. Note that all images of the drops presented in this paper have their backgrounds trimmed
using the in-house MATLAB code.

Fivefold cross-validation was performed to ensure the generalizability of the trained FNN. For this,
the image sequences of eachH were segmented into five combinations of training–validation and testing
data in a ratio of 80:20 to ensure that the data of each H were included in both training–validation and
testing, andwere distributed evenly among the data combinations. This is reflected in the similar numbers
of splashing and non-splashing data for training–validation or testing among all data combinations, as
shown in table 1.

2.2. Feedforward neural network

Figure 6 illustrates the training and architecture of the FNN developed for the extraction of the critical
impact time and the morphological features through the classification of splashing and non-splashing
drops based on the image sequences showing the temporal evolution of the drop morphology. The FNN
was implemented in the Python programming language on Jupyter Notebook (Kluyver et al. 2016)
using the libraries of TensorFlow (Abadi et al. 2016). The code is available at GitHub (https://github.
com/yeejingzuTUAT/ImageAndImageSequenceClassificationForSplashingAndNonsplashingDrops).
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Figure 3. Normalized drop apex versus normalized impact time averaged among all collected data of
ethanol drops.
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Figure 4. Examples of image sequences of non-splashing ethanol drops combined from seven frames
at different normalized impact times.
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Figure 5. Examples of image sequences of splashing ethanol drops combined from seven frames at
different normalized impact times.

Table 1. Numbers of splashing and non-splashing data for training–validation and testing in each data
combination of ethanol drops.

Number of data

Training–validation Testing

Combination Splashing Non-splashing Total Splashing Non-splashing Total Total

1 114 87 201 27 21 48 249
2 112 86 198 29 22 51 249
3 113 85 198 28 23 51 249
4 114 85 199 27 23 50 249
5 111 89 200 30 19 49 249

In the input layer, the input image sequence is flattened into a one-dimensional column vector sin ∈ RM

for M = Nimghimgwimg, where Nimg is the total number of frames in an image sequence, himg is the height
of an image in pixels and wimg is the width of an image in pixels. In this study, the values of himg and
wimg are 200 and 640, respectively.

Each element of sin in the input layer (red circles in figure 6) is fully connected to each element of
qout in the output layer (blue circles) by a linear function:

qout = Wsin + b, (2.3)
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Update W, b:
Mini-batch gradient descent

Feedforward neural network

Output layerInput layer
Splashing: ytrue = [0,1]

(Non-splashing: ytrue = [1,0])

Sin

qout

W

Loss function:
Binary cross-entropy

b

Backpropagation:
Compute loss gradient

l(ytrue, ypred)

ypred

ytrue

Figure 6. Training and architecture of the FNN that was used to extract the morphological features of
splashing and non-splashing drops.

where qout ∈ RC is the output vector, which can be interpreted as a vector containing the prediction
values, W ∈ RC×M is the weight matrix and b ∈ RC is the bias vector. Note that bold italic symbols
like s indicate vectors and bold sloping sans serif symbols like W indicate matrices. Here, C is the total
number of classes for classification, which are splashing and non-splashing in this case, and so C = 2.
The value of each element in W and b, which is initialized using the Glorot uniform initializer (Glorot
& Bengio 2010), is determined through the training.

In the output layer, each element of qout is activated by a sigmoid function, which saturates negative
values at 0 and positive values at 1, as follows:

ypred,i =
1

1 + exp(−qout,i)
(2.4)

for i = 1, . . . ,C, where the activated value ypred,i is an element of ypred ∈ RC · ypred = [ypred,1, ypred,2]
and can be interpreted as a vector containing the probabilities ypred,1 and ypred,2 of an input image
sequence to be classified as a non-splashing drop and as a splashing drop, respectively. Throughout
this paper, the subscripts ‘nonspl’ and ‘spl’ are used instead of the subscripts ‘1’ and ‘2’, respectively.
Thus, ypred = [ypred,1, ypred,2] = [ypred,nonspl, ypred,spl]. For training, ypred is computed for all training
image sequences and compared with the respective true labels ytrue ∈ RC. The true labels for the image
sequences of a splashing drop and a non-splashing drop are ytrue = [0, 1] and [1, 0], respectively.

Note that although it is a binary classification: splashing or non-splashing, two different values are
stored to compensate the possibility of an image sequence not belonging to splashing or non-splashing,
such as an empty image sequence does not contain any drop. Having mentioned that, the classification of
storing only one value was also performed. However, when only one value was stored, the computation
did not work well, where the training loss did not reduce at all.

A binary cross-entropy loss function is used for the comparison between ypred and ytrue as follows:

l(ytrue, ypred) =
C∑

i=1
[−ytrue,i ln(ypred,i) − (1 − ytrue,i) ln(1 − ypred,i)] (2.5)
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Figure 7. Training and validation of the FNN for image-sequence classification of ethanol drops: (a)
losses and (b) accuracies, averaged among every 50 epochs. Comb., combination; train., training; val.
validation.

for i = 1, . . . ,C, where l is the computed loss. From this equation, the value of l approaches 0 as ypred
approaches ytrue and increases significantly as ypred varies away from ytrue. Additionally, l is computed
during training and validation, but not during testing.

Through a backpropagation algorithm (Rumelhart, Hinton & Williams 1986), the gradient of l with
respect to each element of W and b of the FNN is computed. The computed gradient determines
whether the value of an element should be increased or decreased and the amount by which this should
be done, when W and b are updated using the mini-batch gradient descent algorithm (Li et al. 2014).
Regularization of early stopping (Prechelt 1998) is applied to determine when to stop updatingW and b.

The percentage accuracy of the trained FNN is also evaluated as follows:

accuracy =
number of correct predictions
total number of predictions

× 100. (2.6)

The number of correct predictions is determined by the classification threshold. The trained FNN
classifies an image sequence based on the element of ypred that has a value equal to or greater than that of
the classification threshold. In this study, the classification threshold is fixed at 0.5. For example, if the
prediction of an image sequence by the trained FNN is ypred = [0.25, 0.75], then the image sequence will
be classified as an image sequence of a splashing drop. Accuracy is computed during training, validation
and testing. The training–validation of the FNN for image-sequence classification was evaluated from
the plots of losses and accuracies averaged among every 50 epochs, which are shown in figure 7.
Here, the number of epochs indicates how many times all training–validation image sequences were fed
through the FNN for training. As the number of epochs increases, losses decrease and approach 0, while
accuracies increase and approach 1. Early stopping prevents overfitting by stopping the updating of W
and bwhen the losses reach their minimum values. These trends confirm that the training and validation
have been carried out properly and the trained FNN has achieved the desired classification performance.
The trained FNN is then used to classify test image sequences to check their generalizability.

3. Results and discussion

In § 3.1, the testing of the trained FNN is explained. In § 3.2, the process for extracting the features
used by the FNN to classify splashing and non-splashing drops is elaborated. In § 3.3, the importance
index for quantifying the contributions of the extracted features in each frame of an image sequence is
introduced and discussed. The same analysis was performed using liquid drops of different viscosities:
silicone oil of 1 and 5 cSt. The analyses are discussed in §§ 3.4 and 3.5, respectively.
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Table 2. Test accuracy of FNN trained with different data combinations in classifying image sequences
of splashing and non-splashing ethanol drops.

Test accuracy

Combination Splashing Non-splashing Total

1 26/27 96% 21/21 100% 47/48 98%
2 29/29 100% 22/22 100% 51/51 100%
3 27/28 96% 22/23 96% 49/51 96%
4 26/27 96% 23/23 100% 49/50 98%
5 28/30 93% 19/19 100% 47/49 96%
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Figure 8. (a) Splashing probability ypred,spl and (b) splashing prediction value qout,spl versus Weber
number We for test image sequences of combination 1 of ethanol drops.

3.1. Testing of feedforward neural network

Testing is the evaluation of the ability of a trained FNN to classify image sequences that were not used
to train the FNN. The results for all data combinations of ethanol drops are shown in table 2. Among all
combinations, the test accuracy in classifying image sequences of splashing and non-splashing drops is
higher than 96%. The confidence of the classifications performed by the trained FNN can be analysed
from the plot of the splashing probability ypred,spl computed by the trained FNN for the test image
sequences. Since similar results were obtained for all data combinations of ethanol drops, only the plot
for combination 1 is shown in figure 8(a). For most image sequences of splashing and non-splashing
drops, the values of ypred,spl computed by the trained FNN are ≥0.8 and ≤0.2, respectively. In other
words, most of the computed ypred,spl differ by at least 0.3 from the classification threshold, which is
fixed at 0.5, indicating relatively high confidence of the classifications performed by the trained FNN.
An analysis on the wrongly classified data of ethanol drops can be found in Appendix A.

The high accuracy and confidence in image-sequence classification by the simple but highly explain-
able FNN architecture is possible because of the high similarity of the image sequences. As mentioned
in § 2, the drop size and the spatial resolution of the frames in each image sequence were kept constant,
with a low standard deviation. Moreover, the background of the image data was trimmed to ensure
that the impacting drop was positioned at the centre of each frame. As can be seen in figures 4 and 5,
regardless of H, We and the outcome of the impact, the image sequences are very similar but still retain
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the important distinguishing characteristics of splashing and non-splashing drops. The classification
process of the well-trained FNN can now be visualized and analysed.

The splashing probability ypred,spl is calculated from the splashing prediction value qout,spl using a
sigmoid function (see (2.4)), where ypred,spl = 0.5 when qout,spl = 0. In other words, the trained FNN
classifies an image sequence based on qout,spl = 0, where an image sequence is classified as a splashing
drop if qout,spl ≥ 0 and as a non-splashing drop if qout,spl < 0. Since qout,spl is not saturated to between 0
and 1 like ypred,spl, it has a linear relationship with We, as shown in figure 8(b). Such a linear relationship
indicates the potential for measuring physical quantities from the image sequence using the FNN.

3.2. Extraction of morphological features

In this subsection, the extraction of the features of the morphological evolution of splashing and non-
splashing drops is explained. As mentioned in § 3.1, the trained FNN classifies an image sequence
based on qout,spl = 0, where an image sequence is classified as a splashing drop if qout,spl ≥ 0 and as
a non-splashing drop if qout,spl < 0. The analysis of the classification process (see Appendix B) shows
that qout,spl ≈ wspl · sin =

∑
wspl,z0/D0 · sin,z0/D0 , where wspl ∈ RM is the row vector of the weight matrix

W that corresponds to qout,spl, wspl,z0/D0 ∈ Rm is the vector that contains the elements of the splashing
weight vector wspl that corresponds to a frame, sin,z0/D0 ∈ Rm is a frame flattened into a vector and
m (= himgwimg) is the total number of pixels in a frame. Thus, the value of wspl,z0/D0 · sin,z0/D0 of each
frame has to be as high as possible for a splashing drop to have qout,spl ≥ 0. However, the value of
wspl,z0/D0 · sin,z0/D0 of each frame has to be as low as possible for a non-splashing drop to have qout,spl < 0.

For the analysis ofwspl,z0/D0 ·sin,z0/D0 , thewspl,z0/D0 vector of each frame is reshaped in row-major order
into a two-dimensional himg × wimg matrix wspl,z0/D0 , which is the shape of a frame: wspl,z0/D0 ∈ Rm →
wspl,z0/D0 ∈ Rhimg×wimg . The reshaped matrices wspl,z0/D0 are visualized as colour maps. For explanation,
the colour maps of the reshaped matrices of wspl,z0/D0 of the FNN trained with combination 1 of ethanol
drops are presented in figure 9. The values of the elements in wspl,z0/D0 are normalized by the maximum
absolute values in wspl, and thus the blue–green–red (BGR) scale is from −1.0 to 1.0. Note that only the
colour maps of combination 1 are shown, because those for the other combinations are similar.

In the colour maps, the distributions of the extreme values, i.e. values with large magnitudes, show
the important features that the FNN identifies to classify splashing and non-splashing drops. The
extreme negative values shown in blue are the features of splashing drops, and the extreme positive
values shown in red are the features of non-splashing drops. This is because the high-speed videos
were captured using shadowgraphy, where the normalized intensity value of a pixel occupied by the
drop is zero (sin,z0/D0 ,i = 0), while the normalized intensity value of a pixel not occupied by the drop
but capturing the backlight is near to one (sin,z0/D0 ,i → 1). Hence, the FNN assigned negative values
to those pixel positions occupied by a splashing drop but not by a non-splashing drop, and so those
negative values would be cancelled out by a splashing drop (win,z0/D0 ,isin,z0/D0 ,i = 0) to increase the value
of wspl,z0/D0 · sin,z0/D0 . However, for a non-splashing drop, those negative values would not be cancelled
out and would remain (win,z0/D0 ,isin,z0/D0 ,i → win,z0/D0 ,i), thereby reducing the value of wspl,z0/D0 · sin,z0/D0 .
Instead, the FNN assigned positive values to those pixel positions occupied by a non-splashing drop but
not by a splashing drop, and so those positive values would be cancelled out by a non-splashing drop
(win,z0/D0 ,isin,z0/D0 ,i = 0), reducing the value of wspl,z0/D0 · sin,z0/D0 . However, for a splashing drop, those
positive values would not be cancelled out and would remain (win,z0/D0 ,isin,z0/D0 ,i → win,z0/D0 ,i), thereby
increasing the value of wspl,z0/D0 · sin,z0/D0 .

By comparing the distribution of the extreme values in the colour maps of the reshaped matrices of
wspl,z0/D0 with the image sequences of typical splashing and non-splashing drops (see figures 4 and 5),
it is found that the distribution of the values of large magnitudes, i.e. the splashing and non-splashing
features, resembles the morphology of an impacting drop. The distributions of the splashing and non-
splashing features indicate that the main morphological differences are the lamella, the contour of the
main body and the ejected secondary droplets.
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Figure 9. Colour maps of the reshaped matrices of wspl,z0/D0 of the FNN when trained with combination 1
of ethanol drops. The distributions were similar for the FNN when it was trained with other combinations
of ethanol drops.

In terms of the lamella, that of a splashing drop is ejected faster before lifting and breaking into sec-
ondary droplets, while that of a non-splashing drop is ejectedmore slowly before developing into a thicker
film. The differences in the ejection velocity can be seen from the reshaped matrix of wspl,z0/D0=0.875,
where the splashing features are distributed around the ejected lamella while the non-splashing features
are distributed around the contact line. Riboux & Gordillo (2017) found that in the limit of Ohne-
sorge number Oh (= 𝜇/√𝜌𝛾D0) much smaller than one, the ejection time of the lamella scales with
Weber number as We−2/3. In this study, Oh is of the order of 10−3, which is small enough for the scal-
ing found by Riboux & Gordillo (2017) to be valid. Therefore, owing to the higher We of a splashing
drop, the ejection time of the lamella is shorter than in the case of a non-splashing drop. Furthermore,
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Philippi, Lagrée & Antkowiak (2016) reported that the pressure peak is near the contact line, causing a
bypass motion of the flow. As a result of a slower ejection of the lamella of a non-splashing drop, more
of the volume of the drop is concentrated near the contact line.

From the distribution of the splashing features inwspl,z0/D0 of 0.625 ≤ z0/D0 ≤ 0.875, we can see that
the lamella of a splashing drop is lifted higher. A lifted lamella has been identified as being characteristic
of a splashing drop by Riboux & Gordillo (2014), who noted that splashing occurs as a result of the
vertical lift force imparted by the air on the lamella. As z0/D0 reduces to z0/D0 ≤ 0.500, the lamella of
a splashing drop descends and the ejected secondary droplets are too scattered to be captured easily by
the FNN.

The distributions of the non-splashing features in wspl,z0/D0 for 0.125 ≤ z0/D0 ≤ 0.375 show that the
lamella of a non-splashing drop develops into a film thicker than that of a splashing drop. This can be
explained using the studies by Lagubeau et al. (2012) and Eggers et al. (2010), who reported that in the
viscous plateau regime, the asymptotic film thickness scales with Re−2/5D0. Here, Re = 𝜌U0D0/𝜇 is the
Reynolds number. In this study, D0 and 𝜇 are the same for all splashing and non-splashing drops, and
thus the non-splashing drops have a thicker film owing to the lower U0.

Splashing features can also be found around the contour of the main body, even when z0/D0 = 0.875.
This indicates that once the impact has commenced, the contour of the main body of a splashing drop
is already higher than that of a non-splashing drop. Most previous studies approximated that during the
pressure impact regime, the upper free surface of the drop kept moving towards the solid surface at the
impact velocity U0, together with the drop apex, while retaining its original shape (Eggers et al. 2010;
Gordillo, Sun & Cheng 2018; Mitchell et al. 2019). Nevertheless, such small differences in the contour
of the main body between splashing and non-splashing drops could be captured using the FNN and were
first reported by Yee et al. (2022), who classified images of splashing and non-splashing drops using an
FNN.

It is important to mention that as z0/D0 reduces to z0/D0 ≤ 0.500, the distribution of the splashing
features around the contour of the main body becomes less obvious. This is different from the reshaped
weight vectors trained using image classification in the study by Yee et al. (2022). In their study,
they trained three different FNNs to classify splashing and non-splashing ethanol drops using images
extracted when z0/D0 = 0.750, 0.500 and 0.250, respectively. As shown in figure 10, the distributions
of the splashing and non-splashing features in the reshaped weight vectors trained by Yee et al. (2022)
are found at similar pixel positions to those in the current study. Note that in this study, each of the
seven frames in the image sequences was cropped to 200 px × 640 px and thus the weight vector has
896 000 elements, whereas Yee et al. (2022) cropped their images to 160 px × 640 px and thus each of
the weight vectors has only 102 400 elements. However, the distributions are much more obvious for
the reshaped vectors trained using only images of z0/D0 = 0.250 than for wspl,z0/D0=0.250 trained using
image sequences. This is because the FNN image classifier can only extract information from a single
image, whereas the FNN image-sequence classifier of this study can extract information from seven
frames in an image sequence. In other words, the FNN image-sequence classifier can pick and choose
the frame fromwhich it wants to extract the information. As a result, the test accuracy of the FNN image-
sequence classifier (≤96%) is higher than that of the FNN image classifiers (≤92% for z0/D0 = 0.750;
≤94% for z0/D0 = 0.500; and ≤90% for z0/D0 = 0.250). Although it could possibly miss important
morphological features of splashing and non-splashing drops, quantification of the contribution of
each frame and the extracted features to the classification by the FNN image-sequence classifier could
provide deeper insights into the morphological evolution of splashing and non-splashing drops, which
is discussed in the next section.

3.3. Importance index of the extracted features

The importance index for quantifying the contributions of the extracted features in each frame of an
image sequence to the classification of the FNN is introduced and discussed in this subsection. The
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classification of ethanol drops in the current study and image classification of ethanol drops in the study
by Yee et al. (2022).

analysis of the classification process (see Appendix B) shows that the value of wspl,z0/D0 · sin,z0/D0 for
each frame shows the respective contribution to the computation of qout,spl. Denoted by qout,spl,z0/D0 , the
values of wspl,z0/D0 · sin,z0/D0 for each value of z0/D0 are plotted against qout,spl. In figure 11(a), only the
plot for combination 1 of ethanol drops is shown, because similar results were obtained for the other
data combinations of ethanol drops. The black dashed line shows qout,spl = 0, which corresponds to
the classification threshold ypred,spl = 0.5. To the left of this line where qout,spl ≥ 0, an image sequence
is classified as that of a splashing drop, while to the right of this line where qout,spl < 0, an image
sequence is classified as that of a non-splashing drop. To identify the importance of each z0/D0 for the
classification of the FNN, least squares fitting is performed for each z0/D0 and shown in figure 11(a)
by the dotted lines with the same colours as the respective markers. Along with the values of qout,spl,
the values of qout,spl,z0/D0 of all z0/D0 exhibit an increasing trend, where the slopes of all the fitted lines
are positive. Here, we argue that the z0/D0 with the slope of the highest value has the most influence on
the classification of the FNN. This is because if the slope has a low value, then the value of qout,spl,z0/D0

remains constant regardless of the value of qout,spl. In other words, qout,spl,z0/D0 is similar regardless of
whether the classification is splashing or non-splashing. In contrast, if the slope has a high value, the
change in the value of qout,spl,z0/D0 contributes significantly to the change in the value of qout,spl. Thus, the
classification of an image sequence as that of a splashing or a non-splashing drop is highly dependent
on the value of qout,spl,z0/D0 .

Here, the slope of a fitted line is introduced as the importance index for quantifying the contribution
of each frame in an image sequence to the classification of the FNN. Denoted by 𝛽z0/D0 , the slopes of
the fitted lines are plotted against tU0/D0 for the respective z0/D0 for all data combinations of ethanol
drops in figure 11(b). As can be seen, all data combinations have peak values at tU0/D0 = 0.24 and 0.38,
corresponding to z0/D0 = 0.750 and 0.625. These peak values, which range between 0.25 and 0.30, are
more than approximately double the values at other tU0/D0, which are less than 0.15. This indicates
that the two frames at tU0/D0 = 0.24 and 0.38 have significantly more influence on the classification by
the FNN than the frames at other tU0/D0. This is also why the distributions of the splashing and non-
splashing features are most obvious in the reshaped matrices of wspl,z0/D0 at tU0/D0 = 0.24 and 0.38, as
shown in figure 9. Therefore, the morphological differences between splashing and non-splashing drops
are most pronounced at tU0/D0 = 0.24 and 0.38, rather than at the earlier impact time. These findings
are interesting because, for human eyes, splashing drops might look more different from non-splashing
drops at later impact times.

https://doi.org/10.1017/flo.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2024.28


E33-14 J. Yee, S. Kumagai, D. Igarashi, Pradipto, A. Yamanaka and Y. Tagawa

10

z0/D0 = 0.875 z0/D0 = 0.500

z0/D0 = 0.375

z0/D0 = 0.250

z0/D0 = 0.125

qout,spl = 0z0/D0 = 0.750

z0/D0 = 0.625

β (Comb. 1) β (Comb. 3)

β (Comb. 4)

β (Comb. 5)

β (Comb. 2)

5

0

–5

–10

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75

tU0/D0 (–)

–20 –10 0 10 20 30

qout,spl (–)

q o
ut

,s
pl

,z
0
/D

0
 (

–
)

β
z 0

/D
0
 (

–
)

(b)

(a)

Figure 11. (a) qout,spl,z0/D0 versus qout,spl of test image sequences of combination 1 of ethanol drops.
(b) Slopes of fitted lines 𝛽z0/D0 versus normalized impact time tU0/D0 of all data combinations of ethanol
drops.
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After reaching peak values at tU0/D0 = 0.238 and 0.375, 𝛽z0/D0 decreases until tU0/D0 = 0.971.
However, 𝛽z0/D0 slightly increases at tU0/D0 = 1.473. A possible reason for this is the lamella of a non-
splashing drop, which emerges later than that of a splashing drop and develops into a film thicker than
that of a splashing drop, as mentioned in § 3.2. In particular, at tU0/D0 = 1.473, when z0/D0 decreases
to 0.125, this difference in terms of the lamella is the most obvious and thus could easily be picked up by
the FNN. This reasoning was discussed by analysing the contributions of splashing and non-splashing
features to the computation of qout,spl,z0/D0 . The explanation of the contribution of the splashing and
non-splashing features can be found in Appendix C.

The results and discussion presented in this section are not affected by the number of frames and
the choice of z0/D0. This is validated by additional analysis performed on image sequences with more
frames, specifically twenty-two frames extracted when z0/D0 = 0.120–0.960 at an interval of 0.040.
The results and discussion of the analysis are presented in Appendix D.

3.4. Analysis using silicone oil of 1 cSt

The same analysis was performed using liquid drops of silicone oil of 1 cSt. The area-equivalent diameter
of the drop of 1 cSt silicone oil (Shin-Etsu Chemical Co., Ltd.; density 𝜌 = 816 kgm−3, surface tension
𝛾 = 1.7 × 10−2 Nm−1 and dynamic viscosity 𝜇 = 0.82 × 10−3 Pa s) was D0 = 2.16 × 10−3 m. The
resulting contact angle on the surface of the same type of hydrophilic glass substrate used for ethanol
is approximately 2.98◦. The splashing thresholds in terms of impact height and Weber number were
H = 0.20m and We = 335, respectively. Thus, there was a splashing transition at 0.20m ≤ H ≤ 0.22m
or 335 ≤ We ≤ 411. There are a total of 234 videos: 94 of splashing drops and 140 of non-splashing
drops.

The colour maps of the reshaped matrices of wspl,z0/D0 of the FNN trained with combination 1 of
1 cSt silicone oil are presented in figure 12(a). The values of the elements in wspl,z0/D0 are normalized
by the maximum absolute values in wspl, and thus the BGR scale is from −1.0 to 1.0. Note that only
the colour maps of combination 1 are shown, because those for the other combinations are similar. The
morphological features shown in the figure are similar to those of the wspl,z0/D0 trained using ethanol.

Denoted by 𝛽z0/D0 , the importance index is plotted against tU0/D0 for the respective z0/D0 for all data
combinations in figure 12(b). As can be seen, all data combinations have peak values at tU0/D0 = 0.253
and 0.392, corresponding to z0/D0 = 0.750 and 0.625. Upon reaching the peak, 𝛽z0/D0 decreases until
tU0/D0 = 0.375, corresponding to z0/D0 = 0.375. After that, 𝛽z0/D0 increases until tU0/D0 = 1.495,
corresponding to z0/D0 = 0.125, when it reaches a value as high as the peak values at tU0/D0 = 0.253
and 0.392. Such an increase is much higher than that shown in the analysis using an ethanol drop. A
possible explanation for this is that 1 cSt silicone oil is less viscous, and thus has a lower Re than ethanol.
Although 1 cSt silicone oil ejects more secondary droplets than ethanol (Thoroddsen et al. 2012), the
secondary droplets have higher velocity and smaller diameter than those by ethanol (Riboux & Gordillo
2015), making them more scattered and more difficult to be captured by the FNN. Thus, the FNN relies
more on the lamella with asymptotic thickness to classify splashing and non-splashing drops of 1 cSt
silicone oil.

3.5. Analysis using silicone oil of 5 cSt

The same analysis was performed using liquid drops of silicone oil of 5 cSt. The area-equivalent diameter
of the drop of 5 cSt silicone oil (Shin-Etsu Chemical Co., Ltd.; density 𝜌 = 912 kgm−3, surface tension
𝛾 = 2.0 × 10−2 Nm−1 and dynamic viscosity 𝜇 = 9.12 × 10−3 Pa s) was D0 = 2.22 × 10−3 m. The
resulting contact angle on the surface of the same type of hydrophilic glass substrate used for ethanol
is approximately 3.13◦. The splashing thresholds in terms of impact height and Weber number were
H = 0.16m and We = 300, respectively. Note that all impacting drops with H or We equal to or greater
than the splashing threshold splash. Thus, there was no splashing transition for 5 cSt silicone oil. There
are a total of 326 videos: 154 of splashing drops and 172 of non-splashing drops.
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Figure 12. (a) Colour maps of the reshaped matrices of wspl,z0/D0 of the FNN when trained with
combination 1 of 1 cSt silicone oil. The distributions were similar for the FNN when it was trained
with other combinations. (b) Importance index 𝛽z0/D0 versus normalized impact time tU0/D0 of all data
combinations of 1 cSt silicone oil.

The colour maps of the reshaped matrices of wspl,z0/D0 of the FNN trained with combination 1 of
5 cSt silicone oil are presented in figure 13(a). The values of the elements in wspl,z0/D0 are normalized
by the maximum absolute values in wspl, and thus the BGR scale is from −1.0 to 1.0. Note that only
the colour maps of combination 1 are shown, because those for the other combinations are similar. The
morphological features of 5 cSt silicone oil show some similarities and some significant differences
compared with those of the wspl,z0/D0 trained using ethanol and 1 cSt silicone oil. They are similar in
terms of the splashing features around the main body and the non-splashing features around the contact
line and the lamella, but significantly different in terms of the splashing features around the lifted lamella
and the ejected secondary droplets. For the splashing features distributed around the contour of the main
body, they can be observed as early as tU0/D0 = 0.111, corresponding to z0/D0 = 0.875. These features
can be observed until tU0/D0 = 0.747, corresponding to z0/D0 = 0.375, before they fade away. Such
observation confirms that the high contour of the main body as a feature of a splashing drop is not
limited to ethanol, but is also valid for 1 and 5 cSt silicone oils. For the non-splashing features around
the contact line, they can be observed as early as tU0/D0 = 0.111. Similar to those of ethanol and 1 cSt
silicone, they slowly develop into a lamella with asymptotic thickness at tU0/D0 = 1.790 corresponding
to z0/D0 = 0.125. In terms of the splashing features around the lamella and the ejected secondary
droplets, 5 cSt silicone oil is significantly different from ethanol and 1 cSt silicone oil. The splashing
features around the lifted lamella of 5 cSt silicone oil only start to appear when z0/D0 = 0.750. This is
later than those of ethanol and 1 cSt silicone oil, which start to appear when z0/D0 = 0.875. As time
goes by, instead of becoming less obvious, like what happens in the case of ethanol and 1 cSt silicone
oil, the splashing features around the lamella of 5 cSt silicone oil become more obvious with tU0/D0.
Also, the splashing features of the ejected secondary droplets did not appear in the case of 5 cSt silicone
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Figure 13. (a) Colour maps of the reshaped matrices of wspl,z0/D0 of the FNN when trained with
combination 1 of 5 cSt silicone oil. The distributions were similar for the FNN when it was trained
with other combinations. (b) Importance index 𝛽z0/D0 versus normalized impact time tU0/D0 of all data
combinations of 5 cSt silicone oil.

oil. This can be explained by the higher viscosity of 5 cSt silicone oil, which leads to a smaller range
of Re. Due to the smaller Re, the ejection time of the lamella of a splashing drop of 5 cSt silicone oil
is later than that of the other two liquids (Riboux & Gordillo 2017), thus is not captured by the FNN
when z0/D0 = 0.875. Also, the lamella has a thicker asymptotic film thickness (Eggers et al. 2010;
Lagubeau et al. 2012) and a smaller vertical velocity (Riboux & Gordillo 2015), thus the splashing
features around the lamella of 5 cSt silicone oil become more obvious with tU0/D0 and accumulate
near the solid surface. In terms of the ejected secondary droplets of 5 cSt silicone oil, although they
have larger diameters than those of ethanol and 1 cSt silicone oil, the number of ejected droplets is less
than the other two liquids (Thoroddsen et al. 2012). Consequently, the frame-by-frame inspection for
the presence of secondary droplets in the videos of 5 cSt silicone oil by human eyes, in the opinion of
the authors, is more difficult than the case of the other two liquids. Interestingly, the test accuracy of
the FNN in classifying splashing and non-splashing drops of 5 cSt silicone oil is the highest: 100%
for all data combinations. This is because the FNN could easily classify the image sequences based
on the splashing and non-splashing features around the lamella, while it is difficult for human eyes to
intuitively perform classification based on the length of the lamella. This is why the morphological
difference between the splashing and non-splashing drops of 5 cSt silicone is more obvious at a later
tU0/D0.

Denoted by 𝛽z0/D0 , the importance index is plotted against tU0/D0 for the respective z0/D0 for all
data combinations in figure 13(b). As can be seen, the value of 𝛽z0/D0 is lowest at tU0/D0 = 0.111 and
increases with tU0/D0 until tU0/D0 = 1.790.

https://doi.org/10.1017/flo.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2024.28


E33-18 J. Yee, S. Kumagai, D. Igarashi, Pradipto, A. Yamanaka and Y. Tagawa

4. Conclusions and outlook

The morphological evolution of splashing and non-splashing drops during impact has been compared
using an XAI. An FNN model has been developed as the XAI, comprising a single fully connected
layer. After high classification accuracy had been attained, an analysis of the FNN’s classification
process was performed. Feature extraction revealed that the XAI distinguished splashing drops on the
basis of a lifted lamella and a higher contour of the main body, while it identified non-splashing drops
by a higher asymptotic film thickness of the lamella. An importance index has been introduced to
quantify the contribution of the extracted splashing and non-splashing features to the classification of
the XAI model. The results of this study show that for ethanol and 1 cSt silicone oil, the morphological
differences between splashing and non-splashing drops are most pronounced when the impacting drop’s
apex decreases to 0.750 and 0.625 of the area-equivalent diameter. This shows that for ethanol and
1 cSt silicone oil, the splashing features are most pronounced at early impact times, rather than at later
impact times, when they appear most pronounced to human eyes. However, the extracted features of
5 cSt silicone oil are more obvious at a later time when the lamella is more developed. This study has
provided an example that clarifies the relationship between the complex morphological evolution of a
splashing drop and physical parameters by interpreting the classification of an XAI video classifier.
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Appendix A. Wrongly classified data

The wrongly classified data are analysed. In figure 7, the test data of splashing drop of We = 382 from
combination 1 of ethanol drops are wrongly classified as non-splashing data. The image sequence of the
wrongly classified test data and the colour map that shows the pixel-by-pixel multiplication of the image
sequence and the weight matrix are shown in figure 14. Although the ejected secondary droplets of the
drop in the image sequence can be easily detected and clearly identified as a splashing drop using the
human eye, the ejected secondary droplets are too little and the contour of the drop is not high enough.
As a result, many elements of the weight matrix with negative values are not cancelled out, and thus the
value of wspl · sin becomes smaller, qout,spl becomes less than zero and ypred,spl less than 0.5. Eventually,
the FNN wrongly classifies it as a non-splashing drop.

Appendix B. Analysis of the classification process

To extract the features of the morphological evolution of splashing and non-splashing drops during the
impact, and the importance index of the extracted features, it is necessary to analyse the classification
process of the FNN. In (2.3), the two elements of the prediction values vector qout are the splashing
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(b)(a)

Figure 14. (a) Image sequence of the test data of splashing drop of We = 382 from combination 1 of
ethanol drops. (b) Colour map that shows the pixel-by-pixel multiplication of the image sequence and
the weight matrix.

prediction value qout,spl and the non-splashing prediction value qout,nonspl. Also, the weight matrix W
can be decomposed into two row vectors wspl ∈ RM and wnonspl ∈ RM , while the bias vector b can be
decomposed into two elements bspl and bnonspl. Hence, the elaborated form of (2.3) can be expressed as

qout =

[
qout,nonspl
qout,spl

]
=

[
wnonspl · sin
wspl · sin

]
+
[
bnonspl
bspl

]
≈

[
wnonspl · sin
wspl · sin

]
, (B.1)

where sin is an image sequence flattened into a vector. The products wspl · sin and wnonspl · sin are given by

wspl · sin = wspl,1sin,1 + wspl,2sin,2 + · · · + wspl,Msin,M =
M∑
i=1

wspl,isin,i, (B.2)
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wnonspl · sin = wnonspl,1sin,1 + wnonspl,2sin,2 + · · · + wnonspl,Msin,M =
M∑
i=1

wnonspl,isin,i, (B.3)

respectively, for M = Nimghimgwimg. Here, qout ≈ Wsin, because the elements of the trained b are
negligible. Among the test image sequences of all data combinations of ethanol drops, the element of
qout with the smallest absolute value computed by the trained FNN is 0.0327. However, the elements of b
are of the order of 10−4, which is much smaller than the element of qout with the smallest absolute value.

Despite qout having two elements, an analysis based on either element is sufficient, because the
absolute values of the two elements are approximately equal. In binary classification, the probabilities
of both output classes should sum to one, which in this case means that ypred,spl + ypred,nonspl ≈ 1, where
the approximately equals sign is used to compensate for the truncation error. Owing to the use of the
sigmoid function (see (2.4)), when ypred,spl + ypred,nonspl ≈ 1, the values of the two elements of qout are
approximately equal: qout,spl ≈ −qout,nonspl.

For the analysis of qout,spl, the elements wspl,isin,i in (B.2) are grouped according to each frame:

wspl,z0/D0 · sin,z0/D0 = wspl,z0/D0 ,1sin,z0/D0 ,1 + · · · + wspl,z0/D0 ,msin,z0/D0 ,m

=
m∑

i=1
wspl,z0/D0 ,isin,z0/D0 ,i, (B.4)

where sin,z0/D0 ∈ Rm is a frame flattened into a vector, wspl,z0/D0 ∈ Rm is the vector that contains the
elements of the splashing weight vector wspl that corresponds to a frame and m (= himgwimg) is the total
number of pixels in a frame. Thus, (B.2) can be expressed as

wspl · sin = wspl,z0/D0=0.875 · sin,z0/D0=0.875 + · · · + wspl,z0/D0=0.125 · sin,z0/D0=0125

=
Nimg∑
i=1

wspl,z0/D0 · sin,z0/D0 . (B.5)

Since qout,spl ≈ wspl · sin, the value of wspl,z0/D0 · sin,z0/D0 for each frame shows the respective contribution
to the computation of qout,spl. The morphological features and the importance index can be extracted
using wspl,z0/D0 and wspl,z0/D0 · sin,z0/D0 , respectively.

Appendix C. Contribution of splashing and non-splashing features

As mentioned in § 3.3, after reaching peak values at tU0/D0 = 0.238 and 0.375, 𝛽z0/D0 decreases
until tU0/D0 = 0.971. However, 𝛽z0/D0 slightly increases at tU0/D0 = 1.473, because the lamella of a
non-splashing drop develops into a film thicker than that of a splashing drop, as mentioned in § 3.2. In
particular, at tU0/D0 = 1.473,when z0/D0 decreases to 0.125, this difference in terms of the lamella is the
most obvious and thus could easily be picked up by the FNN. To check this reasoning, the contributions
of splashing and non-splashing features to the computation of qout,spl,z0/D0 were analysed. Since the
negative values in a wspl,z0/D0 vector correspond to the features of a splashing drop, the contribution
of the splashing features can be computed by summing the products of the elements of wspl,z0/D0 that
have negative values with the corresponding pixel positions in an image. Similarly, the contribution
of the non-splashing features can be computed by summing the products of the elements of wspl,z0/D0

that have positive values with the corresponding pixel positions in an image. Thus, let qout,spl,z0/D0 ,neg
and qout,spl,z0/D0 ,pos be the contributions of the splashing and non-splashing features, respectively, to
qout,spl,z0/D0 :

qout,spl,z0/D0 = qout,spl,z0/D0 ,neg + qout,spl,z0/D0 ,pos. (C.1)

The values of the contribution of the splashing features qout,spl,z0/D0 ,neg are plotted against qout,spl of
test image sequences of combination 1 of ethanol drops in figure 15(a). Only the plots for combination
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Figure 15. (a) Contribution of the splashing features to qout,spl,z0/D0 versus qout,spl of the test image
sequences of combination 1 of ethanol drops. (b) Slopes of fitted lines 𝛽neg versus normalized impact
time tU0/D0 of all data combination of ethanol drops.

1 are shown, because similar results were obtained for the other data combinations of ethanol drops.
Similar to figure 11(a), least squares fitting is performed for each z0/D0 and shown by the dotted lines
with the same colours as the respective markers. Denoted by 𝛽neg, the slopes of the fitted lines are plotted
against tU0/D0 for the respective z0/D0 for all data combinations of ethanol drops in figure 15(b). As
can be seen, 𝛽z0/D0 does not increase at tU0/D0 = 1.473.

The values of the contribution of non-splashing features qout,spl,z0/D0 ,pos, which are obtained from
(C.1), are plotted against qout,spl from test image sequences of combination 1 of ethanol drops in
figure 16(a). Only the plots for combination 1 are shown, because similar results were obtained for the
other data combinations of ethanol drops. Similar to figure 11(a), least squares fitting is performed for
each z0/D0 and shown by the dotted lines with the same colours as the respective markers. Denoted
by 𝛽pos, the slopes of the fitted lines are plotted against tU0/D0 for the respective z0/D0 for all data
combinations of ethanol drops in figure 16(b). As can be seen, the values have much smaller magnitudes
than 𝛽neg and are negative except for tU0/D0 = 1.473. This indicates that the non-splashing features
have less influence on the classification of the FNN than the splashing features. In addition, the values
should not be negative, because this would reduce the classification accuracy.

To explain this, the data markers in figure 16(a) are reproduced in figure 17(a), but this time with
two separate least squares fits: one in the splashing regime where qout,spl,z0/D0 ≥ 0 and the other in the
non-splashing regime where qout,spl,z0/D0 < 0. As can be seen from figure 17(a), in the non-splashing
regime, along with the values of qout,spl, the values of qout,spl,z0/D0 for all z0/D0 exhibit an increasing
trend, where the slopes of all the fitted lines are positive. The values of the slopes 𝛽pos,nonspl are plotted
in figure 17(b), from which it can be seen that 𝛽pos,nonspl exhibits an increasing trend along with tU0/D0
until reaching its maximum value at tU0/D0 = 1.473. This indicates that although they have less
influence on the classification of the FNN than the splashing features, the influence of the non-splashing
features increases with tU0/D0. As described in § 3.2, the main non-splashing feature is the evolution of
the lamella of a non-splashing drop from a pre-ejected lamella at the contact line when tU0/D0 = 0.110
to a film with an asymptotic thickness when tU0/D0 = 0.110 (see figure 9). The findings here support
the argument that the difference between splashing and non-splashing drops in terms of the lamella is
greatest at tU0/D0 = 1.473, and thus could easily be picked up by the FNN. In fact, Lagubeau et al.
(2012) and Eggers et al. (2010) reported that the asymptotic film thickness scales with Re−2/5D0, and
thus the evolution of the lamella of a non-splashing drop is dominated by the viscous force acting on the
drop, owing to its low impact velocity U0. We argue that the value of the viscous force increases with
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Figure 16. (a) Contribution of the non-splashing features to qout,spl,z0/D0 versus qout,spl from the test
image sequences of combination 1 of ethanol drops. (b) Slopes of fitted lines 𝛽pos versus normalized
impact time tU0/D0 of all data combinations of ethanol drops.
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Figure 17. (a) Contribution of the non-splashing features to qout,spl,z0/D0 versus qout,spl from test image
sequences of combination 1 of ethanol drops, plotted with two sets of fitted lines: one in the splashing
regime where qout,spl,z0/D0 > 0 and the other in the non-splashing regime where qout,spl,z0/D0 < 0.
(b) Slopes of the fitted lines in the non-splashing regime.

tU0/D0 as the drop spreads over the surface. Since there are no data available to support our argument
at the moment, we believe that it is important for future work to measure the viscous force that acts on
a drop during impact.

Note that thenon-splashing and splashing regimes show different trends in figure 17(a). In the non-
splashing regime, when a drop has a higher value of Re, the asymptotic film thickness is small, as a
consequence of which the drop exhibits fewer non-splashing features (i.e. there are fewer elements of
wspl,z0/D0 with positive values that would be cancelled out), which increases the value of qout,spl,z0/D0 .
However, in the splashing regime, along with the values of qout,spl, the values of qout,spl,z0/D0 for all z0/D0
exhibit a decreasing trend, with the slopes of all the fitted lines being negative. This is because, in the

https://doi.org/10.1017/flo.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2024.28


Flow E33-23

Dynamical

regime

Dynamical

regime

Pressure

impact

Self-similar

inertial

Normalized

drop apex

z0/D0

Normalized

drop apex

z0/D0

0.72

0.68

0.64

0.60

0.56

0.52 0.494

0.444

0.396

0.35

0.306

0.263

0.220

0.179

0.138

0.097

0.058

0.018 0.480 0.555

0.440 0.611

0.400 0.673

0.360 0.74

0.320 0.814

0.280 0.899

0.240 0.996

0.200 1.118

0.160 1.273

0.120 1.482

0.76

0.80

0.84

0.880

0.920

0.960

Normalized

impact time

tU0/D0

Normalized

impact time

tU0/D0

Reshaped matrices of

wspl,z
0
/D

0

Reshaped matrices of

wspl,z
0
/D

0

Non-splashing
features

Splashing
features

–1.0 –0.5 0 0.5 1.0

0.25 0.50 0.75 1.00 1.25 1.50 1.75

tU0/D0 (–)

0.10

0.08

0.06

0.04

0.02

0

β
z 0

/D
0

 (–
)

β (Comb. 1)

β (Comb. 2)

β (Comb. 3) β (Comb. 5)

β (Comb. 4)

(b)

(a)

Figure 18. (a) Colour maps of the reshaped matrices of wspl,z0/D0 of the FNN when trained with
combination 1 of image sequences of ethanol drops of 22 frames. The distributions were similar for the
FNN when trained with other combinations. (b) Importance index 𝛽z0/D0 versus normalized impact time
tU0/D0 of all data combinations of image sequences of ethanol drops of 22 frames.

splashing regime, the projected area of a splashing drop is larger owing to the ejected secondary droplets
and the higher contour of the main body. Some of this increased area overlaps with the non-splashing
features, and thus causes the values of qout,spl,z0/D0 to decrease.
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Appendix D. Analysis using image sequences of ethanol drops with 22 frames

The results and discussion presented in § 3.3 are not affected by the number of frames and the choice
of z0/D0. This is validated by additional analysis performed on image sequences of ethanol drops with
more frames, specifically 22 frames extracted when z0/D0 = 0.120–0.960 at an interval of 0.040.

The colour maps of the reshaped matrices ofwspl,z0/D0 of the FNN trained with combination 1 of these
image sequences of ethanol drops are presented in figure 18(a). The values of the elements in wspl,z0/D0

are normalized by the maximum absolute values in wspl, and thus the BGR scale is from −1.0 to 1.0.
Note that only the colour maps of combination 1 are shown, because those for the other combinations
are similar. The morphological features shown in the figure are similar to those of the wspl,z0/D0 trained
using image sequences of seven frames.

The importance index for quantifying the contribution of each frame in an image sequence to the
classification of the FNN, which is denoted by 𝛽z0/D0 is plotted against tU0/D0 for the respective z0/D0
for all data combinations in figure 18(b). As can be seen, all data combinations have peak values at
tU0/D0 = 0.306, corresponding to z0/D0 = 0.680. Upon reaching the peak, 𝛽z0/D0 decreases until
tU0/D0 = 0.996 and 1.118, corresponding to z0/D0 = 0.240 and 0.200. After that, 𝛽z0/D0 slightly
increases until tU0/D0 = 1.120, corresponding to z0/D0 = 0.120. These results show the same trend
as the analysis using the image sequences of ethanol drops of seven frames, and thus confirms that the
analysis is not affected by the number of frames and the choice of z0/D0.
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