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inkage disequilibrium (LD), the association in popu-

lations between genes at linked loci, has achieved
a high degree of prominence in recent years, primar-
ily because of its use in identifying and cloning genes
of medical importance. The field has recently been
reviewed by Slatkin (2008). The present article is
largely devoted to a review of the theory of LD in
populations, including historical aspects.
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The Terminology of LD

It has been clear for many years that LD is prevalent
across much of the human genome (e.g., Conrad
2006), and presumably any other organism when it is
looked for (e.g., Farnir et al., 2000, in cattle). Given
the widespread occurrence of the phenomenon, one
might ask why such a term as ‘disequilibrium’ should
be associated with it.

The term ‘linkage disequilibrium’ dates back to
Lewontin & Kojima (1960). The term was introduced
at a time when known genes were necessarily major
genes, unknown at the molecular level, but known to
have phenotypic, and potentially selective, conse-
quences. Examples of LD among such major genes
were even rarer, consisting of tightly linked ‘super-
genes’ such as D, C, E in the Rh blood groups and the
MNSs blood group system, and examples of genes tied
up in inversions in Drosophila. The possibility of data
from large numbers of closely linked single nucleotide
human polymorphisms would have seemed remote.

Dominating 2-locus theory at that time was the
finding dating back to Robbins (1918), reinforced in
greater generality by the noted mathematician Hilda
Geiringer (1944), that linked genes are, in the long
run, expected to be associated at random in the popu-
lation, regardless of the strength of the linkage. The
theory behind this is given in the next section. Thus
the default expectation, in the absence of any special
force such as selective interactions (Lewontin &
Kojima, 1960; Franklin & Lewontin, 1970), was for
‘linkage equilibrium’, the antithesis of LD. Essentially
it was the class of genes being studied in the premolec-
ular era that led to the emphasis on LD as some sort
of abnormal expectation.

By the time that the possibility of LD mapping was
realized (e.g., Ikonen, 1990) the terminology of LD
was well established. Currently the term is increas-
ingly used, with many thousands of PubMed
references and over 100 Wikipedia references. Note
also the confusion with ‘lethal dose’, ‘learning disabili-
ties’ and other terms in literature searches involving
the LD acronym. The chance of any more appropriate
terminology seems to have passed, even if a simple
and suitable term could be suggested. ‘Allelic associa-
tion’ would seem a desirable term (e.g., Morton et al.,
2001) but for the fact that the genes involved are, by
definition, non-allelic. Other authors have preferred to
use the term ‘gametic phase disequilibrium’ (e.g.,
Falconer & Mackay, 1996; Denniston, 2000) to take
account of the possibility of LD between genes on dif-
ferent, a situation that can arise when many unlinked
loci affect a selected quantitative character (Bulmer,
1971). From a utilitarian point of view, however, par-
ticularly in regard to LD mapping, it is the
‘disequilibrium’ rather than ‘linkage’ part of the termi-
nology that needs to be replaced.

The Theory of LD

Robbins (1918) introduced the currently accepted
measure of the departure from independence.
Frequencies can be defined as follows:

The frequency of allele A at one locus is p,.
The frequency of allele B at a second locus is p,,
The frequency of the allele pair, or haplotype, AB is p ,5,.

If the genes are combined at random in the popula-
tion, then

Pap =Dals

Robbins used the symbol A to measure the departure
from this expectation,

A= Pap = Pabs

It is this statistic, usually indicated as D, d or D,, for
genes A and B, that is nowadays used to measure LD,
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and given the name ‘coefficient of LD’ by Lewontin &
Kojima (1960).

What Robbins showed in 1918 is that if the recom-
bination frequency between the two loci is ¢, then

D'=(1-¢).D (1)

where D’ is the corresponding coefficient one genera-
tion later (not to be confused with another LD
measure introduced below). Robbins showed this by
complete enumeration of matings, using symbols dif-
ferent to those used here.

Crow & Kimura in their 1970 textbook have a
two-line derivation of the relationship as follows (see
also Falconer & Mackay, 1996). With probability ¢
any gamete produced in the current generation is a
recombinant. The A gene is therefore combined with a
random B gene, assuming random mating, giving the
probability of AB in the gamete, and the next genera-
tion, as p,p,. Among gametes with no recombination,
the frequency of the AB haplotype stays the same.
Overall the frequency of the AB haplotype in the next
generation is

Piap = cPuly + (1 =)y

Noting that allele frequencies do not change between
generations, so that p’p% = p,p,, this equation
rearranges to give equation (1). Note that equation (1)
predicts that unlinked genes, for which ¢ = %, are not
expected to go to linkage equilibrium in a single gener-
ation. The reason for this apparently counter-intuitive
result is that recombination is only effective in reduc-
ing LD in double heterozygote genotypes, and such
genotypes occur with a maximum frequency of 50%
in random mating populations, even with complete
LD. All of these calculations assume that the popula-
tion size is infinite. As becomes increasingly evident
when dealing with human data, this is a crucial, and
unlikely, assumption. The consequences of finite size
are considered in detail in Section 2.

Measures of LD

The parameter D is the most straightforward measure
of LD, but is very dependent on allele frequencies. The
maximum range of D values is —0.25 to 0.25 when
allele frequencies are 0.5. However, when allele fre-
quencies are closer to 0 or 1, the range of values of D
becomes much more restricted.

Numerous other parameters have been suggested.
All of these normalize D in some way, so that the
parameter is of the form D/C, where C is some func-
tion of gene frequencies or haplotype frequencies.

Perhaps the best known of these parameters is the
correlation of frequencies, 7, introduced by Hill &
Robertson (1968). This is

D
o
Vpa(l = pa)ps(l — ps)
The parameter #* relates directly to a 1 degree-of-

freedom y? testing the independence of frequencies at
the two loci. It extends directly to a muliple degree-of-

freedom y? statistic for multiple alleles (Zhao et al.,
20035). A desirable property of the correlation is that
the 7? parameter directly measures the strength of
association between a causal variant and a genotyped
(neutral) variant (e.g., Sved, 1968; Ardlie et al., 2002).

A second frequently used parameter is D’
(Lewontin, 1964), in which D is divided by its
maximum absolute value for the observed allele fre-
quencies. The range of D’, as for r, is -1 to 1.

Hedrick (1987) in an influential review has argued
against the use of r and in favour of D’, on the
grounds that 7 cannot take the full range of values if
allele frequencies are unequal. For example, for the
case p, = 0.4, p, = 0.1, D has the range -0.04 to +
0.06, and 7 has the range -0.27 to + 0.41. D’, on the
other hand, still by definition has the range -1 to 1.
See Wray (20035) for constraints on 7? implied by allele
frequencies.

Opposed to this view is the question of whether a
measure of LD ought to be able to take the full range
of values for this set of allele frequencies. The fact that
allele frequencies at the two loci are unequal is not
without information. It implies that there cannot be a
complete correlation of frequencies. The D’ parameter
discards this information, whereas the r parameter
takes it into account.

The question of which parameter should be used
thus comes down to a question of whether it is neces-
sary to take allele frequencies into account. From the
point of view of understanding the dynamics of two
loci in a population, it is not clear that it is useful to
calculate LD conditional on allele frequencies. On the
other hand for mapping purposes it is important to
take into account the allele frequencies.

The question of what parameter is optimal for
disease gene mapping has been widely debated. Devlin

& Risch (1995) recommend the use of the parameter
9, defined as

: D
0=
PaPaB

where p_ is the frequency of a disease gene and p,, is
the frequency of the haplotype involving the normal
gene and the more common allele at a linked marker
locus. Morton et al. (2001), however, claim an advan-

tage for p, defined as
D
, DaPB

Both & and p are closely related to D’ in the situation
of a rare disease gene arising in a population closely
linked to an informative marker.

LD Estimated From Diploid Data

A problem in most cases of LD measurement comes
from the diploid nature of the data. All of the above LD
statistics assume that haploid data are available.
Usually, therefore, computer programs are needed to
infer haplotypes. Adkins (2004) for small data sets and
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Marchini et al. (2006) for large data sets have shown
that most such computer programs; for example,
PHASE (http://www.stat.washington.edu/stephens/
phase), perform well. However, the error rate can be as
much as 5% to 6% if family data are not available.

Two methods are available for estimating LD
directly from diploid data. The first uses the correla-
tion between the number of alleles at each of two loci.
The values at each of two loci, 0, 1 or 2, are respec-
tively the x and y values. Under conditions of random
mating or of simple inbreeding this correlation has the
same expectation, r, as the correlation between alleles
in haplotypes. The method is implemented in the com-
puter program PLINK (http://pngu.mgh.harvard.edu/
purcell/plink/).

A second, related, method, is the ‘composite LD
measure’ (Weir, 1979 — attributed to P. M. Burrows).
In converting genotype numbers to haplotype numbers,
each possible haplotype is counted once. Genotypes
such as A /A ;B B, contribute haplotypes 1/4A B ;
1/4A B,; 1/4A,B, and 1/4A,B,. Two of these will be the
actual haplotypes and two incorrect. However, the
incorrect haplotypes are expected to be present at the
product of the allele frequencies, and will thus dilute,
but not bias, the actual haplotype frequencies.

Calculating haplotypes in this manner, assuming
random mating, the expected coefficient of LD among
these composite haplotype frequencies is expected to
be just D/2. Similarly the expected correlation is 7/2.

Furthermore numbers, rather than frequencies, of
composite haplotype can be cumulated, with each
genotype giving four possible haplotypes. This leads
to a valid ¥? test for association with 1d.f., even
though the marginal numbers are necessarily multi-
ples of 2. The same applies to a test for independence
of two loci with multiple alleles, which gives a x?
with (m — 1)(n — 1) df where there are 7 and # alleles
at the two loci respectively.

The composite LD measure has been tested using
the Hapmap data set (see next section). One such
study (unpublished) used the data from chromosome
21. The average correlations for particular recombina-
tion values obtained using the diploid data set,
doubled to take account of the diluting effect, were
essentially indistinguishable from the r values calcu-
lated from the haploid data set assigned by Hapmap
(Figure 1).

It should be noted that these two methods are only
feasible for two loci. For more than two loci the
number of possible haplotypes becomes large, and it is
necessary to rely on assigned haplotypes.

Human Population Data

Sequencing of the human genome has opened up the
possibility of studying LD between markers with
known nucleotide positions. Earlier data sets on
human polymorphism have been superseded by the
Hapmap study (The International Hapmap Con-
sortium, 2005, 2007). This study currently involves
3.1 million SNPs in 270 individuals from four popula-
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Figure 1
Comparison of values of r,r, calculated using diploid data and assigned

haploid data for the comparison of YRI (Africa) vs. CEU (Europe) using
Hapmap chromosome 21 data.

tions (YRI — Yoruba in Ibadan, Nigeria; CEU —
Northern and Western European ancestry from Utah;
CHB — Han Chinese in Beijing; JPT — Japanese in
Tokyo). The data are available for download at
http://www.hapmap.org.

Many conclusions related to LD have already
emerged from the Hapmap study. For example it has
been possible to identify pairs of individuals within
populations who share a segment that can be traced as
coming from a recent common ancestor, less than
10% of all sequence pairs in YRI but 20% to 30% in
the other populations. Similarly large regions of
homozygosity have been identified within individuals.

It has led to the identification of around 200 regions
where natural selection has been identified by hitchhik-
ing of linked SNPs (Sabeti et al., 2007). A genome-wide
comparison of a subset of nonsynonymous versus syn-
onymous mutations has also shown higher levels of
differentiation for the nonsynonymous mutations. This
has been interpreted as showing higher levels of purify-
ing selection for protein-coding genes.

Regions of high and low recombination have also
been identified. This has led to estimates of the distrib-
ution of crossing-over over the genome at the
nucleotide level (Myers et al., 2005).

The main utility of the Hapmap study is in disease
gene identification. Early studies using LD to identify
disease genes; for example, MacDonald et al., (1991)
for Huntington’s disease, were necessarily based on
markers with relatively low LD values. The Hapmap
coverage is now sufficient that there is a high likeli-
hood that a genome-wide assay for a single nucleotide
disease gene will detect a mapped SNP in almost com-
plete LD with the disease gene. Genome-wide
association (GWA) studies now appear for a wide
variety of traits including cancer susceptibility, dia-
betes, Alzheimer’s, nicotine dependence and so on,
with a PubMed ‘GWA’ search identifying more than
100 such studies in the past year.
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Although the Hapmap study provides the most
comprehensive set of SNPs, it is restricted to four
samples. Other data sets have considered a wider set
of populations, concentrating on smaller chromo-
somes or chromosome regions. Service et al. (2006)
surveyed 200 individuals from 12 populations or iso-
lates of various size for chromosome 22. They found
fewer ‘holes’, regions of low LD, in the smaller iso-
lates. Conrad et al. (2006) surveyed 927 individuals
from 52 populations for 12 Mb of sequence from
various chromosomal locations. Both studies support
the Hapmap conclusions of higher levels of LD in
non-African populations. Conrad et al. found that the
four Hapmap populations contain more than 80% of
the haplotypes found in their wider study.

Finite Size Effects

The theory given in Section 1.2 shows a slow rate of
approach to linkage equilibrium for the most closely
linked loci, when the multiplier term in equation (1) is
very close to 1. However in the absence of any system-
atic force opposing the effect of recombination, such
as selective interactions (Lewontin, 1964), there
seemed no reason to doubt that linkage equilibrium
would eventually be reached. This situation changed
in 1968-1969 when three papers (Hill & Robertson,
1968; Ohta & Kimura, 1969; Sved, 1968) showed
that finite-size effects (haplotype segregation) could
potentially swamp the effects of recombination.

This effect now seems so obvious that it is difficult
to believe that it was once ignored. It appears most
starkly in the case of human disease genes in small iso-
lates. Where the two mutant alleles of a homozygote
are likely to have descended from a single original
mutation, it is clear that homozygosity is also to be
expected at any very closely linked locus. The
increased frequency of double homozygotes implies
that there cannot be linkage equilibrium, an argument
that is expanded in a following section.

It is of interest to note that, as in much else of pop-
ulation genetics theory, the first statement of this effect
goes back to one of the three founders of population
genetics, R. A. Fisher, J. B. S Haldane and S. Wright;
in this case, Haldane (1949). He showed that inbreed-
ing, in general, leads to the association of homozygous
genotypes at linked loci. This effect was investigated
in detail by Bennett & Binet (1956) for the inbreeding
system of mixed self-fertilization and random mating.
However, it was not extended at the time to the case
of inbreeding due to finite size.

The Expectation of LD in a Finite Population

Each of the three papers cited above gave expressions
for the amount of LD expected in a finite population
under the Wright-Fisher model. Hill & Robertson
(1968) produced a very simple solution, noting that
LD is increased by drift and decreased by recombina-
tion. They showed that a balance between the two
forces occurs when

o 1
rt=—
4;\"(:

This equation becomes infinite for small values of N ¢,
whereas the upper bound of 7 should be 1. However
Hill (personal communication) has shown that a small
correction to the derivation leads to the equation

1
~ 1+4Nc
which is similar for large values of N ¢ and has the
correct upper bound for small values.
Sved (1968) considered a model in which the allele

frequencies are held at 50% by heterozygote advan-
tage at both loci. This led to the equation

E[D? - 1
W= 16(1 + 4N¢)

(2)

which is the same as equation (2) for the special case
when all allele frequencies are one half. This result
was extended by Avery (1978).

Ohta & Kimura (1969) considered the same model
as Hill & Robertson. Using difiusion equations, they
calculated the expected values of 62 = E[D?/E[p,(1 -
P )Ps(1 = py). The ratio of the expectations is not the
same as the expectation of the ratio, although Ohta &
Kimura noted that the two are not very different.
Differences between the two were further explored by
Hill (1977) and Song & Song (2007).

Ohta & Kimura (1969a) further calculated the
mean steady state value of 6> under a two-locus infi-
nite allele mutation model. The model makes the
implicit assumption that only two alleles segregate at a
locus at one time, making it equivalent to an infinite-
site mutation model. Ohta & Kimura calculated that
the limiting value for very low recombination values
was 5/11, a value also derived by Hill & Weir (1988)
and McVean (2002).

It is convenient to express the expected steady state
value of the ratio of expectations in the form

1

%] = —— —
k(o) o +4Ne

(3)
where o is equal to 11/5 for the mutation model con-
sidered above. Note that equation (2) gives a value of
7* = 1, assuming that o? is equivalent to 72. This is a
limiting value, assuming that a steady state has been
reached at all loci. Under a mutation model, however,
some locus pairs will have reached the limiting value
while others have lower values of 62 or 72, leading to a
mean value of around 1/2.

Calculations using Hapmap (Tenesa et al., 2007,
Figure 1) confirm that the mean value of 7> asymptotes
to around 1/2 for closely linked loci on all chromo-
somes. However the most closely linked locus pairs
were not considered in this calculation, and the limit-
ing value may be somewhat higher (see The
International Hapmap Consortium, 2007).
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Fixation Bias

The ratio of expectations calculation conceals a diffi-
culty of the calculation of the expected ratio. When
fixation occurs at either locus, the value of 7 is indeter-
minate. Strictly speaking, therefore, any recurrence
relationship between generations for a quantity such
as 7* needs to be made conditional on non-fixation
(Hill & Robertson, 1968; Hill, 1977). There is no
such requirement for the calculation of the ratio of
expectations.

As argued above, LD develops because of chance
fluctuations in a finite population. Such fluctuations
can, by definition, sometimes be large and sometimes
small. The larger fluctuations are those which lead to
higher values of 2. Correspondingly, however, higher
fluctuations are also likely to lead to fixation, in
which case 72 cannot be measured. The rise in 7> will
therefore be less than expected if this effect is not
taken into account.

A second, related, effect due to fixation, described
as ‘fixation bias’ by Sved et al. (2008), can be seen
when 72 starts at a non-zero value in a population.
This is most easily seen in a numerical example, taking
haplotype frequencies as:

AB 0.4
Ab 0.1
aB 0.1
ab 0.4

The value of 7 in such a case comes to 0.6.

What is expected to happen in a finite population
some generations after it has such values? Assuming
that the loci are sufficiently closely linked so that
recombination can be ignored, haplotypes can be
treated as analogous to multiple alleles at a single
locus. The four haplotypes will eventually be reduced
to three by fixation, and then to two and eventually
one. If there is only one haplotype, then no calculation
of r values is possible. However at the preceding stage,
when there are two haplotypes, r values can be calcu-
lated if the remaining haplotype pairs are either AB
and ab, or alternatively Ab and aB. Any other haplo-
type pair involves fixation at either the A or B locus,
in which case 7 is indeterminate.

Clearly the relative probability that AB and ab will
be the last remaining haplotypes, as opposed to the Ab
and aB haplotypes, is very high. Calculations given by
Sved et al. (2008), based on theory by Littler (1975),
show that the mean value of 7, given that only two
haplotypes remain, is #(7 — 72) / (3 + 57%), which comes
to 0.92. Thus the value of r has increased very signifi-
cantly. Note that reversing the haplotype frequencies
to give an initial value of r = 0.6 would predict a
final value of r = -=0.92. It is the absolute value of r
that is predicted to rise.

The value of 7? increases in this case to its
maximum value of 1, as predicted by (2). But the cal-
culations leading to (2) predict only a rise in the mean
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value of 72, not in the mean value of r. The effect of
fixation bias is complementary to the well-established
effect of haplotype segregation.

Estimating Effective Population Size

Equations (2) and (3) provide a means of estimating
population size using levels of LD in a population.
Hill (1981) discussed in detail the theory for doing
this, including correcting for sample size. The equa-
tion in this case, modified from equation (3), is
approximately

i . 3

Blr]= a+4Ne * n *)
where 7 is the sample size. When dealing with values
of 4N ¢ > 1, the 1/n term can make a substantial con-
tribution. This term can be somewhat inaccurate,
particularly for high values of 72, for which a more
accurate correction is given by Sved et al. (2008).

A problem in applying equation (4) is the large
variance in 72 values (Hill, 1977; Golding, 1984). This
has been overcome to some extent by the large
number of locus pairs available in such data sets as
Hapmap, of the order of 2 x 107 pairs of loci with esti-
mated recombination less than 0.1cM. Such a figure
exaggerates the power of the data since most such
locus pairs are not independent of each other, and the
data set relies on a much smaller number of crossovers
since the common ancestors.

Tenesa et al. (2007) calculated from the Hapmap
data set an effective population size for YRI (Yoruba
— Africa) of 7,500. This estimate is highly influenced
by ancestral population sizes. Recent size expansion
would be expected to reduce the value of 72, but for
the most closely linked loci any change in 7> would be
very slow. The estimated size for the CEU sample
(Central European) was 3,100, presumably reflecting
bottlenecks in the founder populations.

Note that these estimates are dependent on having
the correct estimates for ¢, the recombination fre-
quency. While overall estimates of recombination per
chromosome are well characterized from counting of
chiasmata (Kong et al., 2004), the known occurrence of
recombination hotspots, and particularly recombina-
tion coldspots, can have marked effects on estimates of
¢. A fine scale map is available, the Oxstats map, taking
into account population data (Myers et al., 2005).

Estimating Separation Times

LD estimates can also be used to estimate separation
times of human populations. The theory, given by de
Roos et al. (2008), is essentially infinite-size popula-
tion theory, but relies on chance LD occurring in the
ancestral population.

When separation between populations occurs, as in
the out-of-Africa hypothesis, each individual locus
pair is expected to show a certain level of LD. Overall
levels of 7* are expected to be maintained in the sepa-
rate populations, perhaps even rising because of
bottlenecking. However independently of population
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size, levels of r are expected to fall by a fraction (1 - ¢)
in each generation as given by equation (1). The value
of r,r, from two independent populations is expected
to fall by a fraction (1 — ¢)>. After T generations, the
value of r,7, is expected to fall by a fraction (1 - ¢)*".

Sved et al. (2008) used this theory to estimate T,
the number of generations separating the current
African and European populations. They assumed that
the current levels of 7 reflect ancestral values of 7* for
the most closely linked loci in the YRI African popula-
tion. The calculation led to estimates of T of lower
than 1,000 generations, less than one-half of current
estimates (Fagundes et al., 2007). Migration between
populations was suggested as a possible reason for the
low T estimate.

Fixation bias was an important factor in the calcu-
lation of separation times. The lowest recombination
frequencies gave negative estimates of separation time,
reflecting the fact that 7,7, values are greater than
72, Values. Just such an effect is expected if fixation
occurred during bottlenecking leading to the current
CEU population. The fixation bias effect becomes
smaller as recombination increases, although it still
causes an approximate 10% bias for the largest
recombination frequencies for which a positive 7,7 .,
signal could be detected (Sved et al., 2008).

LD, LIBD and Homozygosity

The main focus of attention to date has been on mea-
sures of LD such as r. As pointed out above, there is a
second, rather different, way of looking at LD. Where a
disease gene is associated with a SNP or other genotype
marker in a small population, this is clearly because the
two genes have been inherited through the same path-
ways. In the case of recessive genes, this association is

noted because of homozygosity at the disease gene
locus, implying descent from a recent ancestor.

How is this passage of genes through the same
pathways related to LD? And where does homozy-
gosity come into the picture?

Linked Identity-by-Descent (LIBD)

The concept of Linked Identity-by-Descent, although
not the specific name, was introduced in Sved (1971)
and Sved & Feldman (1973). It is similar to the
concept of chromosome segment homozygosity (CSH
— Hayes et al., 2003).

Figure 2 shows the inheritance of linked markers.
LIBD of two haplotypes implies the identity at both
loci through the same pathways. Note the difference
with the parameter F,, of Cockerham & Weir (1973),
denoting IBD at each of two linked loci, but where
either the same or different pathways can be involved.

The probability of LIBD can be given the symbol
L. On each of the pathways of Figure 2 the probabil-
ity of no crossovers is defined as f,,. Since events in
the two pathways are independent,

L= fZAB (5)
The Relationship Between LIBD and LD
It is well known that for a single locus, inbreeding can
be defined either in terms of probability or correla-
tion, specifically the probability of IBD or the
correlation between uniting gametes. The simple rela-
tionship between the two can be seen, related to the
argument of Crow & Kimura (1970), p 66. IBD
implies a correlation of one. Conversely, non-IBD
implies a correlation of zero. Assuming additivity, the
overall correlation is simply the probability of IBD
(Figure 2).

A similar argument can be made for the two-locus
parameters. Amongst haplotypes descended from an

A
—

r =);.1 +(I-j;).0

Figure 2

A comparison of single locus and two locus correlation and probability parameters.
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ancestral haplotype, absence of crossingover ensures a
correlation of one. Assuming random mating, any
crossover is sufficient to connect the A locus to a
random B locus, implying a correlation of zero.
Opverall, therefore, the expected correlation, E[r,,], is
equal to the probability of no crossingover f,,. Taking
into account Equation (§),

L= fih" = E["fm‘!'- (6)

The difference between the parameters L and 7* needs
to be emphasized. One is a probability parameter
referring to the probability of no crossing over in a
genealogy, the other is a correlation parameter refer-
ring to frequencies in the current population. Equality
between the two implies that the probability and cor-
relation parameters give alternative descriptions of the
same LD process.

In fact, Hayes et al. (2003) pointed out that with the
high density of markers now available, it is possible to
directly estimate a parameter analogous to L. They
showed that this can be estimated with greater accuracy
in populations than possible for estimating 72

Equation (6) allows a simple calculation for E[r?],
since the recurrence relationship for L under the
Wright-Fisher model can readily be written down. At
equilibrium, the value of L is approximately 1/(1 + 4N
¢). Equating 72 and L then gives the same steady state
expectation as given in equation (2).

The Relationship Between Homozygosity and LIBD

When considering joint homozygosity, the obvious para-
meter to use is the frequency of double homozygotes
(Sabatti & Risch, 2002; Hayes et al., 2003).
Alternatively, this frequency can be thought of as the
probability that two haplotypes sampled from the popu-
lation are identical in state. Sabatti & Risch considered
in detail the frequency of double homozygotes in terms
of the LD parameter D. The expectation includes terms
in D? and also in D(p, — 1/2)(p, — 1/2). No simple rela-
tionship can be found just in terms of D or 7.

The present author (Sved, 1971) attempted to over-
come this problem by looking at joint homozygosity
in a different way. The definition again involved
selecting pairs of haplotypes from a population with
two alleles at each of two loci. However, the definition
was in terms of homozygosity at the B locus condi-
tional on selecting homozygous genes at the A locus.
And rather than selecting homozygotes AA and aa
with relative frequencies p?, and p?,, the definition
required selecting homozygous genotypes with fre-
quency p, and p, respectively. The probability of
homozygosity at the B locus was then calculated in
two ways, (1) using frequency parameters, (2) using a
conditional LIBD probability. Equating the two led to
the same relationship as equation (6), except that the
LIBD probability was conditioned on selecting the
same allele at the A locus in the pair of haplotypes.

Linkage Disequilibrium in Human Populations

Coalescence arguments (e. g. Hudson, 1985) are
based on models incorporating both mutation and
recombination. The above model assumes that all A
alleles coalesce to a single ancestral allele, and simi-
larly all a alleles to a different ancestral allele. A
two-allele two-locus model thus has the contradictory
requirement of low probabilities of mutation at both
loci while at the same time requiring segregation at
both loci. The necessity for conditioning thus appears
to come from attempting to coerce a two-allele model
into a coalescence framework.

Homozygosity Mapping

Although not directly related to any homozygosity
measure, the topic of homozygosity, or autozygosity,
mapping should be mentioned here. In this case reces-
sive disease-causing loci are identified through
increased homozygosity in a particular region (e.g.,
Wang et al., 2008).

Autozygosity mapping is now less precise than LD
mapping, given the number of SNPs currently avail-
able for genome-wide association studies. It does
possess one advantage, in that chromosomal regions
of interest can be identified by studying just affected
individuals, rather than needing a direct comparison
with unaffected individuals.

Junctions and Identity of Chromosome Regions

In dealing with finite size LD, it is clear that two-locus
measures can provide only a partial description. The
use of multi-locus coefficients can partly overcome
these deficiencies, and Hill & Weir (2007) have calcu-
lated expectations of three-locus LD measures under a
Wright-Fisher model.

Ultimately, however, the LD structure of a popula-
tion is determined by the lengths of identical segments
in the population. In the terminology of Fisher (1954),
it is the mapping of ‘junctions’, points of recombina-
tion between nonidentical segments, that is important.
Theory of the number of recognisable junctions in a
finite population has been given by Stam (1980) (see
also Macleod et al., 2005). As mentioned above, the
Hapmap study provides information at a sufficiently
detailed level to allow determination of such junc-
tions. This should allow the theory of Stam to be
applied to obtain more detailed insights than currently
available on the ancestry of present-day populations.
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