
1
Introduction

The object of the analysis presented in this book is discrete systems with a
large number of nodes, whose overall behavior is driven by what can be con-
sidered a surface energy. Many of these systems have some origin or analogy
in models in science and technology. It is not our intention to attempt here an
impossible list and description of the many problems leading to such models.
We only describe a few paradigmatic examples in order to highlight the width
of the field of applications. A first clarifying example is variational models in
computer vision such as the one by Blake and Zisserman (1987). There, the
unknown, representing the output picture, is a real-valued function defined on
pixels, whose ensemble can be regarded as a portion of a lattice. Pairs of pixels
on which the difference of the values of this function exceeds some threshold
are regarded as separated by an interface. This model has a counterpart in the
continuum variational approach to image processing by Mumford and Shah
(1989). Among the many other examples, we may single out another key model
coming from atomic physics with similar features. This regards atomistic pair
potentials such as the Lennard–Jones potential. Even though the overall behav-
ior of systems energetically driven by such potentials is extremely complex,
such types of energies can be analyzed close to absolute minima (physically,
at zero temperature), showing a phenomenon of crystallization; that is, ground
states tend to arrange on a regular lattice. Even this expected property of mini-
mizers is a very subtle issue and can be formalized as the stability under finite
perturbations of the arrangement of atoms in a lattice. It has been proved to hold
only in dimension two and for a limited class of interatomic potentials (Theil,
2006). If crystallization holds, then the energies can again be parameterized
on an underlying lattice. A possible continuum approximation gives rise to
theories of brittle fracture (Braides et al., 2006; Friedrich and Schmidt, 2014),
where the main unknown is the crack site, whose atomistic interpretation can
be again given in terms of neighboring nodes with large relative displacements.
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2 Introduction

In variational theories for data science, data are sometimes regarded as randomly
distributed objects and are often labeled by parameters on which interfacial en-
ergies are used in order to separate families of similar data (García Trillos and
Slepčev, 2016), which is a typical problem of machine learning. Such energies
are then thought as defined on some type of random lattices. Also spin systems
are a classical issue in statistical mechanics, and often the energies driving
their behavior are defined on a regular lattice, with a random dependence that
can be interpreted as a property of the interactions. Many of the energies just
mentioned can be studied within a multiscale perspective, deriving a number
of large-scale behaviors depending on the energy level of the system (Blanc
et al., 2005; E and Ming, 2007; Le Bris and Lions, 2005).
Early analyses of variational problems involving nonconvex functionals de-

fined on lattices were mainly carried on from the perspective of numerical
analysis in order to implement finite-difference or finite-element schemes. As
examples we refer to the discretization of the Ambrosio and Tortorelli (1990)
functional in computer vision (Bellettini andCoscia, 1994), or the analysis of the
Blake–Zisserman model (Chambolle, 1995). A systematic analysis of classes
of discrete energies was performed with different techniques and scopes almost
at the same time in a number of papers such as the ones by Blanc et al. (2002),
Braides and Gelli (2002), E and Ming (2007), and Friesecke and Theil (2002).
The first purely variational analysis of surface energies alone was later carried
out by Caffarelli and de la Llave (2005), and shortly after by Alicandro et al.
(2006), followed by a number of applications and results. In some cases, as in
computer vision theories or brittle fracture, these results involve at the same
time an interface energy and some bulk energy; nevertheless, in such analyses
the surface part can be studied separately and, conversely, results involving
bulk and surface energies can be specialized and refined for purely superficial
energies. Moreover, note that in order to describe interfacial energies it is not
restrictive to assume that discrete systems are defined only on functions taking
a finite number of values; for fracture, for example, this amounts to considering
interfaces at a scale where the displacement is approximately constant on the
two sides of the crack, which can be justified by a blow-up argument.
In view of these considerations, the object of our analysis is energies whose

domain is functions defined on a lattice L in Rd , or a portion of that lattice, and
taking values in a finite setY . The abundance of techniques and results obtained
directly for such types of energies, or for problems where these energies are
part of the description, has stimulated the need of a systematization both for
a unitary formal structure and in order to highlight in a clear way completely
novel directions both applied and theoretical, such as links with discrete dy-
namical systems and graph theory. The book is intended to be a proposal for the
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Introduction 3

formalization of a common language both within the rich and various subject
of variational methods, and toward quite different lines of research, which are
essentially discrete. The choice of focusing on discrete interfacial energies is
due to the ease of expressing in their terms problems that are intrinsically dis-
crete and not only a discretization of a continuous analog, and at the same time
to the generality of the methods and results, which can be exported to problems
with other scalings and physical interpretations.

The simplest lattice functions are spin functions, where the set of values Y
has cardinality two, and is usually taken to be {−1,1}. Note that here and after
we borrow some terminology from the physical literature – “spin” is one of such
terms – but we highlight that we claim no direct application to physical theories,
the terminology serving just as a suggestion for the writer and hopefully to the
reader. The prototypical energies defined on spin functions depend on pair
interactions; that is, the overall energy is the sum of the energy between pairs
of nodes. Analytically, if we denote by ui the value of a function u at a node i in
L, the energy is a sum of terms depending only on ui and u j . A class of energy
densities is those minimized when ui = u j , which are called ferromagnetic,
here using a terminology borrowed from statistical mechanics. In this case, we
may suppose that the energy between two points is proportional to (ui − u j)

2.
A typical spin energy is of the form

E(u) =
∑
i, j

ai j(ui − u j)
2. (1.1)

Note that in statistical mechanics energies usually take the form −
∑

i j ai juiu j ,
which is equivalent to the one just shown since the two expressions only differ
by constants independent of u and only depending on the set of nodes that are
taken into account. Other analytical expressions can be equivalently used, such
as

∑
i j ai j |ui − u j |.

The overall properties of such an energy can be studied using a discrete-to-
continuum approach. We introduce a small parameter ε, and consider a portion
of the scaled lattice εL contained in a fixed bounded Lipschitz open subset Ω
of Rd . In this way we allow the number of nodes under analysis to diverge as
ε → 0. Correspondingly, we consider energies

Eε(u) =
∑
i, j

εd−1aεi j(ui − u j)
2, (1.2)

where now u is a spin function defined onΩ∩ εL and ui = u(εi). Accordingly,
the sum is taken for i, j such that εi, ε j ∈ Ω ∩ εL. Such functions u can be
identified with their piecewise-constant interpolations on the Voronoi cells of
the lattice, so that the domain of Eε can be seen as a subset of L∞(Ω), and
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the behavior of minimum problems related to Eε can be stated in terms of a
continuum approximation defined in a Lebesgue space. Discrete-to-continuum
limits in this spirit have been analyzed in many contexts both in terms of
pointwise expansions (e.g. Blanc et al., 2005), numerical approximations (e.g. E
and Ming, 2007), and variational limits (e.g. Braides and Gelli, 2002). The
scaling εd−1 (surface scaling) highlights that we expect the relevant limit
contribution as ε → 0 to be described by a surface energy. This is in accord
with the constraint that u ∈ {−1,1}, which allows us to identify u with the set
{u = 1}. Note that in (1.2) we include a dependence of the coefficients aεi j on
the parameter ε in order to allow for the maximal freedom on the modeling
assumptions of our energies.
Under a positiveness assumption on aεi j , energies Eε(uε) along a sequence

of lattice spin functions uε can be interpreted as interfacial energies taking
into account the interactions through the boundary of the sets {uε = 1}, after
introducing a continuum interpolation of the discrete spin functions. The re-
quirement that such sets converge to a set A defines the discrete-to-continuum
convergence of lattice functions uε to A. The problem of the computation of the
Γ-limit of energies Eε can then be set within the framework of such interfacial
energies (perimeter energies), which have the form

F(A) =
∫
∂∗A

ϕ(x, ν)dH d−1, (1.3)

where A is a set of finite perimeter representing the continuum counterpart of
{u = 1}; ∂∗A denotes its reduced boundary, whose normal at H d−1-almost
every point is denoted by ν; andH d−1 denotes the d − 1-dimensional (surface)
Hausdorff measure. In this way a limit set of finite perimeter and a continuum
energy are obtained from a family of discrete energies defined on scaled copies
of a lattice, as the scaling parameter tends to 0. The limit energies capture
the behavior of the discrete ones in the sense of the convergence of minimum
problems: the solutions of minimum problems at a discrete level can be seen
as discretizations of an effective continuum problem. Typically, such minimum
problems areminimal-cut problems for discrete interactions, which are approx-
imated by minimal-perimeter problems on the continuum. In particular, we can
consider minimum problems in the whole space, in which case the minimizers
are the so-called Wulff shapes.
Wulff shapes are connected to classical problems of Statistical Mechanics

regarding the collective behavior of microscopic spin systems when the number
of configurations diverges, and to the analysis of some crystallization problems
involving the asymptotic behavior as N diverges of ensembles of N points
in Rd whose location is such that some energy is minimized involving the
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distances between points. The minimal configurations tend to arrange as a
portion of a lattice whose overall shape is a Wulff shape for some surface
energy. Even though closely related to our analysis, we do not examine in detail
the connections with such interesting problems.

Back to the description of our discrete-to-continuum approach, once an ana-
lytic framework has been established, the focus is on conditions that allow one to
prove existence of a Γ-limit and characterize the resulting perimeter functional.
A first class of energies that can be analyzed elementarily is homogeneous
ferromagnetic energies defined on Bravais lattices, of the form

Eε(u) =
∑
i, j

εd−1αi−j(ui − u j)
2; (1.4)

that is, when the interaction coefficients are independent of ε and are homoge-
neous, in the sense that aεi j = αi−j . We may assume that the indices are taken
in Zd since all Bravais lattices can be identified with that lattice, up to a change
of variables. We may regroup the interactions as

Eε(u) =
∑
k

∑
i

εd−1αk(ui+k − ui)2 (1.5)

and study separately the terms
∑

i ε
d−1αk(ui+k − ui)2 at fixed k. Usually, the

Γ-limit of a sum is not the sum of a Γ-limit, but in this case a superposition
principle holds due to the fact that a recovery sequence for a planar interface is
simply its discretization, independently of k. The outcome is that in this case
ϕ is x-independent and is given by

ϕ(ν) = 4
∑
k∈Zd

αk |〈ν, k〉|, (1.6)

the factor 4 coming from the fact that (ui − u j)
2 ∈ {0,4}. This superposition

property can be interpreted as an interfacial version of a Cauchy–Born rule,
which states that macroscopic energies correspond to a regular arrangement of
discrete values. This property is often crucial for computational and modeling
reasons and is often analyzed in problems in continuum mechanics (Friesecke
and Theil, 2002; E and Ming, 2007; Schmidt, 2008).

In order to obtain the convergence just mentioned, two conditions are neces-
sary:

(i) (coerciveness on nearest neighbors) αk > 0 if ‖k ‖ = 1;
(ii) (decay of the coefficients)

∑
k αk ‖k ‖ < +∞.

Condition (i) allows one to estimate the perimeter of the interpolated sets
{u = 1} by the energy Eε(u) and thus guarantees compactness of families of
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functions with equibounded energies. Condition (ii) guarantees that indeed the
limit energy is finite only on sets of finite perimeter.
The next level in complexity is periodic systems on Zd; that is, when the

coefficients ai j in (1.2) are still ε-independent, but are periodic of some integer
period K; that is,

ai j = akl if i = k and j = l modulo K, (1.7)

the case K = 1 reducing to that of homogeneous coefficients. This is a first
case of homogenization, in which the Γ-limit exists and the limit energy den-
sity ϕhom is homogeneous, that is, x-independent. The main issue here is the
characterization of ϕhom, which can be achieved in various ways. We present
a characterization through an asymptotic homogenization formula, which turns
out to be flexible to treat systems with other geometrical assumptions. If the
range of interactions is R, then this formula is

ϕhom(ν) = lim
T→+∞

1
Td−1 min

{ ∑
i, j∈Qν

T

ai j(ui − u j)
2 : u : Zd ∩Qν

T → {−1,+1},

ui = 1 if and only if 〈i, ν〉 ≥ 0 in Qν
T \Qν

T−2R,
}
,

where Qν
t denotes a cube of side length t centered in 0 and one face orthogonal

to ν. Note that, while analog formulas are valid for the homogenization of
continuum energies, here the nonlocal character of discrete energies must be
taken into account in the definition of boundary values, which are imposed
in a “cubic annulus” close to the boundary. This is a technical point that
is often present when defining boundary values for discrete systems, and is
slightly more complex if the range of the interaction is infinite. We present
two different techniques to obtain such a formula. The first one is based on
the Fonseca and Müller (1992) blow-up method adapted to lattice problems,
and the second one follows De Giorgi’s localization method. Both methods
are relatively self-contained, up to general measure-theoretical arguments, and
do not need further functional notions beside the ones related to perimeter
functionals. Other arguments that can be used in this context are Caffarelli and
de la Llave’s (2005) plane-like minimizer arguments, or extensions to convex
one-homogeneous functionals as by Ambrosio and Braides (1990b) in the
continuum and by Chambolle and Kreutz (2023) for lattice energies, the latter
requiring bulk-scale homogenization techniques.
The blow-up technique is useful to provide lower bounds along a discrete-

to-continuum converging sequence of functions and is based on the idea of
interpreting functionals as measures. The key point is then to describe the
relevant density of a limit measure concentrated on the perimeter of the limit set
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in terms of ϕhom. Note that, for discrete problems such as the one just presented,
the measures to study are

µε =
∑
i

(∑
j

εd−1ai j(ui − u j)
2
)
δεi . (1.8)

The coefficient of the Dirac delta at εi describes the interaction of such points
with the remaining points of the lattice. It is therefore a nonlocal quantity,
even though its nonlocality is vanishing with ε. This method allows one to
clearly separate the estimate of a lower bound and the construction of recovery
sequences for the upper bound, which are directly obtained from the homogeni-
zation formula and the density of polyhedral sets. An essential technical point
in both computations is the use of discrete coarea arguments that are used to
match boundary data with asymptotically negligible energetic expense cost.

It is worth noting the flexibility of the blow-up method, which is not lim-
ited to Bravais-lattice energies or periodic coefficients. In particular, coupling
it with a projection method, we may use it to derive homogenization theo-
rems for aperiodic lattices obtained by projection from higher-dimensional
Bravais lattices on incommensurate lower-dimensional linear spaces, such as
quasicrystals or Penrose lattices. This is a genuinely discrete setting with only a
partial counterpart on the continuum. Such lattices are not periodic but they re-
tain some quasiperiodicity properties: for a relatively dense set of translations,
lattices superpose up to well-separated isolated points whose presence does
not invalidate the proof of the asymptotic homogenization formula. A simpler
setting, corresponding to the case when the projection is on a commensurate
lower-dimensional linear space gives rise to a theory of homogenized surface
energies on thin objects. Even though this has a counterpart in the continuum,
the nonlocal nature of discrete energies gives rise to new phenomenon such as
a nonadditive dependence of the thin-film thickness, and is closer to a rigorous
treatment of atom deposition theories.

Another issue particularly suited to a lattice formulation is that of a random
dependence on the interactions for systems of independently distributed coeffi-
cients, which again can be studied using the blow-up technique. The existence,
and deterministic nature, of the homogenization formula in this case is an al-
most sure property of the system and is closely connected to percolation theory
(Kesten, 1982; Grimmett, 1999). For systems with coercive and bounded inter-
actions this can be interpreted as a first-passage percolation formula (Boivin,
1990). We also can study some percolation-threshold variational phenomena
depending on some probability parameter. One such case is obtained by con-
sidering a system whose interaction coefficients take a positive finite value
with probability p ∈ [0,1] and the value +∞ with probability 1 − p. In the
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latter case the coefficients define what we call rigid bonds; for such a bond,
having finite energy amounts to requiring that the corresponding pair ui and
u j have the same value. The corresponding homogenization formula is linked
to asymptotic metric properties on the cluster of points with no rigid bonds.
In the two-dimensional setting this cluster is almost surely infinite if and only
if p > 1/2, which is the case when ϕhom is finite, and it only depends on p.
Its form is related to the so-called chemical distance of the system (Garet and
Marchand, 2007). Another case in which a variational percolation phenomena
occurs is that of the so-called dilute systems, whose coefficients mix a positive
value with probability p and the value 0 (weak bonds) with probability 1− p. In
this case, in two dimensions the cluster of points with weak bonds is infinite for
p > 1/2, which is the case when ϕhom is identically 0, while otherwise ϕhom is
given by a first-passage percolation formula only depending on p, which holds
also in this case (Wouts, 2009; Cerf and Théret, 2011). In these types of results,
percolation techniques are used to describe the geometry of the infinite clusters
of coercive interactions, when they exist, proving the existence of “lattice-like”
subsets, which are sufficient in order to carry on the discrete-to-continuum
process.
De Giorgi’s localization method allows one to obtain general compactness

and integral-representation results under minimal conditions. In the context
of ferromagnetic energies Eε of the form (1.2) it allows one to prove that,
upon extraction of subsequences, the discrete-to-continuum limit of every such
family exists and is a possibly inhomogeneous perimeter energy of the form
(1.3). The localization method consists in introducing a set variable U and
considering localized functionals

Eε(u,U) =
∑

εi,ε j∈U∩εL

εd−1aεi j(ui − u j)
2, (1.9)

and studying their behavior both as functionals of the function u and of the
set U. By proving abstract properties on the dependence on U we obtain the
Γ-convergence to a measure, which then can be represented as an integral. The
extension of this method to lattice energies, which are nonlocal by definition,
requires some care, since, for example, the functionals in (1.9) are not subad-
ditive in the set variable, contrary to their continuum counterpart. In order for
this procedure to work, besides coerciveness assumptions we have to require a
uniform decay condition, without which easy examples show that the Γ-limit
may fail to be represented by a surface energy.
The generality and flexibility of the localizationmethod allow one to abandon

Bravais lattices, spin functions, and pair interactions and guarantee the exten-
sion to very general environments and energies. The domain of the energies
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can be any infinite discrete set with a minimal distance between its points and
no balls with a large diameter in its complement; we call such a set L an
admissible lattice. The functions we consider are defined on portions of scaled
copies of L with values in a discrete set Y . If Y = {−1,1}, we recover spin
systems, but we can also consider, for example, ternary systems by choosing
Y = {−1,0,1} or Y = {e1, e2, e3} ⊂ R

3. The energies can take into account
many-body interactions or also interactions between all possible sites. To that
end we may rewrite energies as

Eε(u) =
∑

εi∈Ω∩εL

εd−1φεi ({ui+j}j), (1.10)

where the function φεi takes into account interactions involving the site i; for
example, in the case of ferromagnetic interactions,

φεi ({zk}k) =
∑
k

aεi i+k(zk − z0)
2. (1.11)

If the functions φεi satisfy suitable coerciveness and growth conditions, which
reduce to the abovementioned conditions on aεi j for ferromagnetic interactions,
then the Γ-limit exists up to subsequences and can be represented as a functional
defined on partitions of sets of finite perimeter parameterized by a subset Y0
of Y , and represented as a sum of integrals on the boundary of the elements
of the partition. Note that the notions of nearest-neighbor and of discrete-to-
continuum convergence must be suitably modified, which can be done using
Voronoi tessellations. The compactness result can be applied, for example, to
ensure that mixtures of two (or more) types of bonds can be represented on
the continuum by a perimeter functional, the property of whose integrand can
be then described by computing suitable energy bounds. This is a fundamental
step in the field of Optimal Design of networks.

The range of applications of the compactness theorem makes it necessary
to allow for the greatest generality, as the geometry of the lattice and the
parameters involved are concerned. This is the case both when dealing with
pair interactions in random environments that can be described by admissible
lattices and when the assumption of positiveness of ferromagnetic interactions
is removed, allowing for a multiplicity of ground states, whose overall behavior
can be described by partitions. As for random sets, a notion of stochastic lattices
can be given, which are almost surely admissible lattices and on which we can
define random energies

Eω
ε (u) =

∑
εi,ε j∈U∩εLω

εd−1aωi j (ui − u j)
2, (1.12)
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with coefficients depending on the distance between sites of the lattices. In
(1.12) we highlight the dependence on ω, the realization of a suitable random
variable. Under conditions of stationarity and ergodicity the Γ-limit is almost
surely deterministic and described by an asymptotic homogenization formula
that is the stochastic version of the asymptotic homogenization formula. A key
ingredient in the proof of the validity of such a formula is a subadditivity theorem
for discrete stochastic processes. We note that the hypothesis of admissibility
of the lattice can sometimes be removed; for example, for Poisson random sets,
for which compactness properties are achieved by using Percolation techniques
(more precisely, a lemma on polyominos covering of Voronoi cells). Note that
for the simplest nearest-neighbor energies on scaled Poisson random sets the
isotropy of the Poisson process guarantees the isotropy of the limit energy;
that is, almost surely we have Γ-convergence to a multiple of the Euclidean
perimeter, in contrast with the crystallinity of short-range homogenization in
Bravais lattices.
We note that the general compactness theorem sometimes must be integrated

with other techniques in order to better describe the limit behavior of the system.
One example is that of systems with many parameters Y of which only a subset
Y0 participate in the limit description. In this case the effect of the variablesY \Y0
is minimized out in the computation of the interfacial energy ϕhom given by
the compactness theorem. If we want to better keep track of those parameters,
we introduce their measure of concentration at the interface. This can be done,
for example, for ternary systems giving rise to surfactants. Such systems can
be parameterized on {−1,0,1}, and their ground states are only the constant
states −1 and 1. The effect of the 0-phase can be described by adding to ϕhom a
dependence on the density of a measure µ describing the limit amount of that
phase on the interface∫

∂∗A
ϕhom

( dµ
dH d−1 ∂∗A

, ν
)
dH d−1. (1.13)

This energy density can be explicitly computed, for example, for the Blume–
Emery–Griffiths model for surfactants. Similarly, a correction to the description
by simple interfaces, but more for reasons of a geometric origin, is needed for
systems with high-contrast energies. Models with such types of energies in the
continuum case are used in applications, for example, to the study of the flow
in a naturally fractured reservoir (Arbogast et al., 1990). In this case, coercive-
ness conditions are satisfied on one or more admissible sublattices (perforated
domains) to each of which the compactness theorem can be applied. The re-
maining connectionsmay give rise to an additional interaction term of bulk type
describing the separate effect of the lower-coerciveness interactions between
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the higher-coerciveness sublattices (double-porosity energies). Another type of
correction can be necessary if the uniform-decay assumption on the interac-
tions is relaxed, in which case an additional term of nonlocal type may appear
besides the surface energy of the form∫

∂∗A
ϕhom(ν)dH d−1 +

∫
A×(Ω\A)

K(x, y) dµ(x, y), (1.14)

such as a nonlocal perimeter or an Ohta–Kawasaky type functional. Another
case, in which the methods of the compactness theorem can be applied after an
initial modeling analysis, is that of systems describing (chiral ) molecules. In
the simplest case these systems can be described by homogenous ferromagnetic
interactions where the sites of the relevant parameter (say, where ui = 1) must
be arranged as unions of sets of given shape (molecules). The analysis of the
possible minimal configurations of such ensembles gives then a way to obtain
a set of parameters that play the role of the set Y0 in the compactness theorem,
and obtain a description in terms of partitions into sets of finite perimeter.

The complexity of the compactness theorem is also justified by its applica-
tion to frustrated systems; that is, to spin systems of pair interactions mixing
positive and negative coefficients where there is no ground state that mini-
mizes separately all pair interactions. As a consequence, such systems cannot
by reduced to a ferromagnetic system and often possess many periodic ground
states. If this is the case, the ground states themselves parameterize the set Y0
of the compactness theorem, up to a coarse-graining process at the level of a
period, considering Y as all possible arrays of values in such a period. This
allows one to describe the behavior of the system again as an interfacial energy
on partitions of sets of finite perimeter, which describe different microscopic
patterns, ormodulated phaseswithin the same pattern. Note that the number of
the limit parameters can be arbitrarily high even though the systemwe start with
only takes the two values −1 and 1 into account. Note also that not all systems
can be asymptotically described in this way: some present some degeneracies
due to the possibility of having interfaces with zero energy between variants
of ground states, and some others present a total frustration with an infinite
family of periodic and nonperiodic ground states.

In the terminology of Graph Theory, the graphs with vertices and edges
corresponding to the systems we have just described are essentially sparse;
that is, the number of (relevant) edges is much lower than the total number
of possible connections. More precisely, the assumptions of the compactness
theorem are stated in terms of a decay condition, which implies that the relevant
connections are of equibounded range. This assumption can be relaxed by a
coarse-graining approach if the connections give a locally strongly dense graph;
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that is, a graph where all connections are considered at a scale much larger than
that of the lattice dimensions but still infinitesimal as ε → 0. If this assumption
is relaxed, we may have sparse systems with diffuse interfaces; that is, whose
behavior is determined by the presence of many interfaces that give an overall
bulk energy in the limit. These interfaces also are at the basis of the behavior
of dense graphs; that is, for which the number of edges is of the same order as
the total number of possible connections. In this case the geometry of the set of
vertices is irrelevant, and we may parameterize the graph as a discrete subset of
[0,1]. The theory of graphons (Lovász, 2012; Janson, 2013) in Combinatorics
allows us then to study the Γ-limit with respect to the weak∗ L∞-convergence
of the interpolations, which is of the form

F(u) =
∫
[0,1]2

W(x, y)(u(x) − u(y))2 dx dy, (1.15)

where u now takes values in [−1,1] andW is a symmetric positive function, the
limit graphon of the dense graphs. Even though the resulting energy is of bulk
type, the parameter u is interpreted as a limit density of sets and W describes
the overall effect of the diffuse interfaces of such sets.
For general discrete systems, as remarked at the beginning of this chapter, the

surface-energy description must be placed in a proper multiscale framework,
together with effects related to other types of scaling. Note that, even when only
energetic contributions are taken into account in a static picture described by a
Γ-limit process, the same type of functionals can be considered with different
scaling depending on the energy level. For the same quadratic energies we may
have, for example,

(i) (bulk scaling)
∑

i j ε
daεi j |ui −u j |

2 giving integral energies
∫

f (x,u(x)) dx;
(ii) (surface scaling)

∑
i j ε

d−1aεi j |ui−u j |
2 giving surface energies as described

in the preceding presentation;
(iii) (vortex scaling)

∑
i j ε

d−2 | log ε |−1aεi j |ui − u j |
2 giving vortex energies de-

fined on point singularities;
(iv) (gradient scaling)

∑
i j ε

d−2aεi j |ui−u j |
2 giving integral energies depending

on gradients
∫

f (x,∇u(x)) dx, and so on.

Such effects, and others, may be present at the same time. For some of
them, methods corresponding to those described for surface energies have
been developed and used. In general, the different scalings can be analyzed
in a multiscale setting, in which the single scaling is a part of a whole (see
e.g. Braides and Truskinovsky, 2008).
The unitary description of a subject with such a complexity and number

of methods, results, and applications necessarily requires one to make some
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choice between the possible approaches. In this book we have chosen one that
to us seems open enough to enclose the most standpoints and directions of
research.

Bibliographical Notes to the Introduction

The Introduction focuses on problems for lattice systems with an emphasis
on the surface energies discussed in this book from the standpoint of the
direct approach to the Calculus of Variations. For an account of atomistic-to-
continuummethods for Computational Materials Science we refer to the review
articles by Blanc et al. (2007) and Le Bris and Lions (2005). Computational
problems for which details of interfacial interactions are important to obtain a
coupling between continuum discretization procedures and atomistic fine-mesh
analysis are quasicontinuum models (see e.g. Tadmor et al., 1996; Blanc et al.,
2005; Ortner and Süli, 2008). Multiscale Γ-convergence issues in the passage
discrete-to-continuum are also dealt with in Section 11 of the handbook by
Braides (2006) and are related to the concepts of Γ-development (see Anzellotti
et al., 1994) or Γ-expansion (see Braides and Truskinovsky, 2008).

The discrete-to-continuum description of surface energies is also connected
to a problem of crystallization, where now this is interpreted as the analysis of
the asymptotic arrangement as N diverges of ensembles of N points inRd whose
location is such that some energy is minimized involving the distances between
points. The points tend to arrange in a configuration close to a portion of a
lattice, whose asymptotic shape is driven by the boundary interactions, which
is then connected to a perimeter energy on that lattice. Again, the analysis
of such asymptotic behavior has been carried out only in various simplified
settings (see e.g. Heitmann and Radin, 1980; Radin, 1981; E and Li, 2009;
Theil, 2011; Blanc and Lewin, 2015; De Luca and Friesecke, 2017).

Another classical problem in Statistical Mechanics connected to the emer-
gence of macroscopic Wulff shapes is the analysis of the collective behavior
of microscopic spin systems when the number of configurations diverges. In
that context, a different point of view is usually taken and instead of minimiz-
ers, whose role is mainly relevant when, in the terminology the temperature
is “close to zero,” the object of the analysis is “typical configurations”; that
is, sets of configurations with high probability according to a properly defined
probability measure (see Dembo and Zeitouni, 1998 and the references therein
and Cerf, 2006).

Interfacial problems are connected with problems defined on curves and
related to metric properties of graphs. This is evident in dimension 2 where
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interfaces are one-dimensional objects, and the analogy can be further pushed
to higher dimension (see e.g. Braides and Piatnitski, 2013). This analysis can be
applied to problems on graphs from the standpoint of Hamilton–Jacobi equa-
tions (see e.g. Achdou et al., 2013; Imbert et al., 2013; Lions and Souganidis,
2020; Ishii and Kumagai, 2021), traffic flow (Garavello and Piccoli, 2006), or
Aubry–Mather Theory (Siconolfi and Sorrentino, 2021).
Lattice systems can be seen as a particular case of nonlocal energies, and in

particular as discretizations of double-integral energies such as in peridynamics
(Macek and Silling, 2007; Silling and Lehoucq, 2010). In that perspective the
discrete-to-continuum process is connected to what is called the limit of peridy-
namics “when the horizon goes to zero” (Bellido et al., 2015). We also mention
the connection with repulsive-attractive interaction energies (e.g. Carrillo et al.,
2014).
Reference texts for theory of graphons are Lovász (2012) and Janson (2013).

For complex graphs of a fractal form, a different standpoint could be to consider
a multiscale approach, for which we refer to Heida et al. (2020).
Dynamical problems on lattices can be framed in a variational setting using

modern techniques of gradient-flow type as in the book of Ambrosio et al.
(2008). Their analysis is related to issues in the study of motion in heterogenous
media, which is a very wide and largely unexplored territory. For some results
on evolutions of interfaces in planar lattices we refer to the recent book by
Braides and Solci (2021).
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