NORMAL SAMPLES WITH LINEAR CONSTRAINTS AND GIVEN VARIANCES

D. A. S. FRASER

1. Summary. In Biometrika (1948) a paper [1] by H. L. Seal contained a theorem applying to "n random variables normally distributed about zero mean with unit variance, these variables being connected by means of k linear relations."¹ Arising from this is the question of how to obtain a set of normal variates connected by k linear relations and such that each variate has unit variance: or, more generally, connected by k linear relations and such that each variate has a given variance. The procedure for obtaining such a set of variates when existent from a set of independent normal deviates with unit variances is given in §5. In §§2, 3 and 4, we shall consider various conditions necessary for the existence and construction of such a set.

2. Normal distribution in a linear subspace. Let (x_1, x_2, \ldots, x_n) designate a point in an *n*-dimensional Euclidean space \mathbb{R}^n . A set of variates x_1, x_2, \ldots, x_n can be considered as a random point in \mathbb{R}^n . In the present problem we shall assume the set has a multivariate normal distribution.

Consider k homogeneous and independent linear relations

$$\sum_{j=1}^{n} a_{pj} x_j = 0 \qquad (p = n - k + 1, \dots, n).$$

A variate satisfying these relations and these only will belong to an (n - k)dimensional linear subspace. By taking linear combinations of the above krelations, an equivalent set of k relations can be obtained such that they are orthogonal and normalized:

$$\sum_{j=1}^{n} b_{pj} x_j = 0 \qquad (p = n - k + 1, \dots, n),$$
$$\sum_{j=1}^{n} b_{pj} b_{qj} = \delta_{pq}.$$

and

By adding n - k rows, the matrix $||b_{pj}||$ can be completed to an n by n matrix $||b_{ij}||$ (i, j, = 1, 2, ..., n) satisfying the orthogonality conditions

$$\sum_{k=1}^{n} b_{ik}b_{jk} = \delta_{ij}.$$

Received July 8, 1950.

¹It is to be noted that the statement of the theorem in [1] is incorrect. The theorem applies to the *residuals* of n normal variables after fitting k linear constraints.

This matrix can now be considered as the matrix of an orthogonal rotation of *n*-space. Consider coordinates y_1, y_2, \ldots, y_n with respect to the new axes: then

$$y_i = \sum_{j=1}^n b_{ij} x_j.$$

Since normality is invariant under linear transformations, a set of normally distributed x variates yields a set of normally distributed y variates, and conversely. A set of variates (x_1, x_2, \ldots, x_n) satisfying k linear relations

$$\sum_{j=1}^{n} a_{pj} x_j = 0$$

is transformed by the above to set a of variates $(y_1, y_2, \ldots, y_{n-k})$ satisfying no linear constraints where y_{n-k+1}, \ldots, y_n are identically zero.

3. Conditions on the variance. We have solved the problem of linear constraints by working in an (n - k)-dimensional subspace. How do we interpret in this subspace the original variance conditions:

$$\operatorname{var} \{x_i\} = v_i \qquad (i = 1, 2, \dots, n),$$
$$y_r = \sum_{j=1}^n b_{rj} x_j,$$
$$x_i = \sum_{r=1}^{n-k} b_{ri} y_r.$$

with

Each x_i is seen to be a linear combination of the n - k variates y_r and consequently the variance of x_i can be expressed in terms of the elements of the variance covariance matrix of the y_r . Consider now a multivariate normal distribution in the subspace with covariance matrix $||\tau_{rs}||$ with respect to the axes $y_1, y_2, \ldots, y_{n-k}$.

Thus the variance conditions after rotation into the subspace become

$$\sum_{i,s=1}^{n-k} b_{ri}\tau_{rs}b_{si} = v_i \qquad (i = 1, 2, \dots, n).$$

4. Existence. Our problem has now reduced itself to that of finding a multivariate normal distribution in n - k dimensions with covariance matrix $||\tau_{rs}||$ such that

$$\sum_{r,s=1}^{n-k} b_{ri}\tau_{rs}b_{si} = v_i \qquad (i = 1, 2, \dots, n),$$

or

$$\sum_{r,s=1}^{n-k} c_{ri}\tau_{rs}c_{si} = 1 \qquad (i = 1, 2, \dots, n)$$

where $c_{ri} = v_i^{-\frac{1}{2}} b_{ri}$.

We have *n* equations with $\binom{n-k+1}{2}$ unknowns. If $\binom{n-k+1}{2} \ge n$, a solution will exist and can best be obtained by solving the equation directly. If $\binom{n-k+1}{2} < n$, an application of linear regression theory would be indicated.

To find a matrix $||\tau_{rs}||$, if one exists, is equivalent to finding a generalized ellipsoid

$$\sum_{r,s=1}^{n-k} z_r \tau_{rs} z_s = 1$$

passing through the n points

$$(c_{1i},\ldots,c_{n-k,i})$$
 $(i = 1, 2, \ldots, n).$

This is accomplished using linear regression theory by fitting to the constant 1 the functions $z_r z_s$ (r, s = 1, 2, ..., n - k) for the *n* "sample" values given above of the vector $(z_1, z_2, ..., z_{n-k})$. If the sum of squares for residuals is zero then a quadratic surface exists. However, to have a solution to our distribution problem, the matrix of the quadratic form must be positive. If it is not positive definite, then our variance conditions have imposed a further linear constraint on the set of variates.

5. Conclusions. The problem may be stated: to find normal variables x_1, x_2, \ldots, x_n satisfying k homogeneous and independent linear relations

$$\sum_{j=1}^{n} a_{pj} x_j = 0 \qquad (p = n - k + 1, ..., n),$$

and with

$$\operatorname{var} \{x_i\} = v_i$$
 $(i = 1, 2, ..., n).$

The solution can be described in five steps.

5.1. Find a matrix $||b_{pj}||$ with $p = n - k + 1, \ldots, n$ and $j = 1, 2, \ldots, n$ with orthogonal and normalized rows equivalent to $||a_{pj}||$ as described in §2.

5.2. Complete $||b_{pj}||$ to an orthogonal matrix $||b_{ij}||$ (i, j = 1, 2, ..., n).

5.3. Find a quadratic equation

$$\sum_{r,s=1}^{n-k} z_r \tau_r z_s = 1$$

satisfied by the n points

$$(b_{1i}v_i^{-\frac{1}{2}},\ldots,b_{n-ki}v_i^{-\frac{1}{2}})$$
 $(i = 1, 2, \ldots, n),$

if it exists, directly or by regression theory as in §4. If the equation does not exist or if it exists with a non-positive matrix then the problem has no solution.

5.4. If the matrix $||\tau_{rs}||$ is positive, then find random variates $y_1, y_2, \ldots, y_{n-k}$ with zero means and $||\tau_{rs}||$ as covariance matrix. (If $||\tau_{rs}||$ is positive

definite, take the square root matrix of $||\tau_{rs}||$ and apply as a linear transformation to n - k independent normal variates with means 0 and variances 1. If positive but not definite, then the previous method will work in a subspace of $y_1, y_2, \ldots, y_{n-k}$.)

5.5. Obtain the set of x variates, thus solving the problem, by applying the transformation

$$x_i = \sum_{r=1}^{n-k} b_{ri} y_r$$

to the y variates obtained in 5.4.

References

1. H. L. Seal, A note on the χ^2 smooth test, Biometrika, vol. 35 (1948), 202.

University of Toronto