NORMAL SAMPLES WITH LINEAR CONSTRAINTS AND GIVEN VARIANGES

D. A. S. FRASER

1. Summary. In Biometrika (1948) a paper [1] by H. L. Seal contained a theorem applying to " n random variables normally distributed about zero mean with unit variance, these variables being connected by means of k linear relations." ${ }^{1}$ Arising from this is the question of how to obtain a set of normal variates connected by k linear relations and such that each variate has unit variance: or, more generally, connected by k linear relations and such that each variate has a given variance. The procedure for obtaining such a set of variates when existent from a set of independent normal deviates with unit variances is given in $\S 5$. In $\S \S 2,3$ and 4 , we shall consider various conditions necessary for the existence and construction of such a set.
2. Normal distribution in a linear subspace. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ designate a point in an n-dimensional Euclidean space R^{n}. A set of variates x_{1}, x_{2}, \ldots, x_{n} can be considered as a random point in R^{n}. In the present problem we shall assume the set has a multivariate normal distribution.

Consider k homogeneous and independent linear relations

$$
\sum_{j=1}^{n} a_{p j} x_{j}=0 \quad(p=n-k+1, \ldots, n)
$$

A variate satisfying these relations and these only will belong to an $(n-k)$ dimensional linear subspace. By taking linear combinations of the above k relations, an equivalent set of k relations can be obtained such that they are orthogonal and normalized:

$$
\sum_{j=1}^{n} b_{p j} x_{j}=0 \quad(p=n-k+1, \ldots, n)
$$

and

$$
\sum_{j=1}^{n} \quad b_{p j} b_{q j}=\delta_{p q} .
$$

By adding $n-k$ rows, the matrix $\left\|b_{p j}\right\|$ can be completed to an n by n matrix $\left\|b_{i j}\right\|(i, j,=1,2, \ldots, n)$ satisfying the orthogonality conditions

$$
\sum_{k=1}^{n} b_{i k} b_{j k}=\delta_{i j} .
$$

[^0]This matrix can now be considered as the matrix of an orthogonal rotation of n-space. Consider coordinates $y_{1}, y_{2}, \ldots, y_{n}$ with respect to the new axes: then

$$
y_{i}=\sum_{j=1}^{n} b_{i j} x_{j} .
$$

Since normality is invariant under linear transformations, a set of normally distributed x variates yields a set of normally distributed y variates, and conversely. A set of variates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfying k linear relations

$$
\sum_{j=1}^{n} a_{p j} x_{j}=0
$$

is transformed by the above to set a of variates ($y_{1}, y_{2}, \ldots, y_{n-k}$) satisfying no linear constraints where y_{n-k+1}, \ldots, y_{n} are identically zero.
3. Conditions on the variance. We have solved the problem of linear constraints by working in an $(n-k)$-dimensional subspace. How do we interpret in this subspace the original variance conditions:

$$
\begin{aligned}
\operatorname{var}\left\{x_{i}\right\} & =v_{i} \\
y_{r} & =\sum_{j=1}^{n} b_{r j} x_{j} \\
x_{i} & =\sum_{r=1}^{n-k} b_{r i} y_{r}
\end{aligned}
$$

Each x_{i} is seen to be a linear combination of the $n-k$ variates y_{r} and consequently the variance of x_{i} can be expressed in terms of the elements of the variance covariance matrix of the y_{r}. Consider now a multivariate normal distribution in the subspace with covariance matrix $\left\|\tau_{r s}\right\|$ with respect to the axes $y_{1}, y_{2}, \ldots, y_{n-k}$.

Thus the variance conditions after rotation into the subspace become

$$
\sum_{r, s=1}^{n-k} b_{r i} \tau_{r s} b_{s i}=v_{i} \quad(i=1,2, \ldots, n)
$$

4. Existence. Our problem has now reduced itself to that of finding a multivariate normal distribution in $n-k$ dimensions with covariance matrix $\left\|\tau_{r s}\right\|$ such that

$$
\sum_{r, s=1}^{n-k} b_{r i} \tau_{r s} b_{s i}=v_{i} \quad(i=1,2, \ldots, n)
$$

or

$$
\sum_{r, s=1}^{n-k} c_{r i} \tau_{r s} c_{s i}=1 \quad(i=1,2, \ldots, n)
$$

where $c_{r i}=v_{i}{ }^{-\frac{1}{2}} b_{r i}$.

We have n equations with $\binom{n-k+1}{2}$ unknowns. If $\binom{n-k+1}{2} \geqslant n$, a solution will exist and can best be obtained by solving the equation directly. If $\binom{n-k+1}{2}$ $<n$, an application of linear regression theory would be indicated.

To find a matrix $\left\|\tau_{r s}\right\|$, if one exists, is equivalent to finding a generalized ellipsoid

$$
\sum_{r, s=1}^{n-k} z_{r} \tau_{r s} z_{s}=1
$$

passing through the n points

$$
\left(c_{1 i}, \ldots, c_{n-k, i}\right) \quad(i=1,2, \ldots, n)
$$

This is accomplished using linear regression theory by fitting to the constant 1 the functions $z_{r} z_{s}(r, s=1,2, \ldots, n-k)$ for the n "sample" values given above of the vector $\left(z_{1}, z_{2}, \ldots, z_{n-k}\right)$. If the sum of squares for residuals is zero then a quadratic surface exists. However, to have a solution to our distribution problem, the matrix of the quadratic form must be positive. If it is not positive definite, then our variance conditions have imposed a further linear constraint on the set of variates.
5. Conclusions. The problem may be stated: to find normal variables $x_{1}, x_{2}, \ldots, x_{n}$ satisfying k homogeneous and independent linear relations

$$
\sum_{j=1}^{n} a_{p j} x_{j}=0 \quad(p=n-k+1, \ldots, n)
$$

and with

$$
\operatorname{var}\left\{x_{i}\right\}=v_{i} \quad(i=1,2, \ldots, n)
$$

The solution can be described in five steps.
5.1. Find a matrix $\left\|b_{p j}\right\|$ with $p=n-k+1, \ldots, n$ and $j=1,2, \ldots n$ with orthogonal and normalized rows equivalent to $\left\|a_{p j}\right\|$ as described in §2.
5.2. Complete $\left\|b_{p j}\right\|$ to an orthogonal matrix $\left\|b_{i j}\right\|(i, j=1,2, \ldots, n)$.
5.3. Find a quadratic equation

$$
\sum_{r, s=1}^{n-k} z_{r} \tau_{r s} z_{s}=1
$$

satisfied by the n points

$$
\left(b_{1 i} v_{i}^{-\frac{1}{2}}, \ldots, b_{n-k i} v_{i}^{-\frac{1}{2}}\right) \quad(i=1,2, \ldots, n),
$$

if it exists, directly or by regression theory as in §4. If the equation does not exist or if it exists with a non-positive matrix then the problem has no solution.
5.4. If the matrix $\left\|\tau_{r s}\right\|$ is positive, then find random variates y_{1}, y_{2}, \ldots, y_{n-k} with zero means and $\left\|\tau_{r s}\right\|$ as covariance matrix. (If $\left\|\tau_{r s}\right\|$ is positive
definite, take the square root matrix of $\left\|\tau_{r s}\right\|$ and apply as a linear transformation to $n-k$ independent normal variates with means 0 and variances 1 . If positive but not definite, then the previous method will work in a subspace of $y_{1}, y_{2}, \ldots, y_{n-k}$.)
5.5. Obtain the set of x variates, thus solving the problem, by applying the transformation

$$
x_{i}=\sum_{r=1}^{n-k} b_{r i} y_{r}
$$

to the y variates obtained in 5.4.

References

1. H. L. Seal, A note on the χ^{2} smooth test, Biometrika, vol. 35 (1948), 202.

University of Toronto

[^0]: Received July 8, 1950.
 ${ }^{1}$ It is to be noted that the statement of the theorem in [1] is incorrect. The theorem applies to the residuals of n normal variables after fitting k linear constraints.

