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Active suspensions encompass a wide range of complex fluids containing microscale
energy-injecting particles, such as cells, bacteria or artificially powered active colloids.
Because they are intrinsically non-equilibrium, active suspensions can display a number
of fascinating phenomena, including turbulent-like large-scale coherent motion and
enhanced diffusion. Here, using a recently developed active fast Stokesian dynamics
method, we present a detailed numerical study of the hydrodynamic diffusion in apolar
active suspensions of squirmers. Specifically, we simulate suspensions of active but
non-self-propelling spherical squirmers (or ‘shakers’), of either puller type or pusher
type, at volume fractions from 0.5 % to 55 %. Our results show little difference between
pulling and pushing shakers in their instantaneous and long-time dynamics, where the
translational dynamics varies non-monotonically with the volume fraction, with a peak
diffusivity at around 10 % to 20 %, in stark contrast to suspensions of self-propelling
particles. On the other hand, the rotational dynamics tends to increase with the volume
fraction as is the case for self-propelling particles. To explain these dynamics, we provide
detailed scaling and statistical analyses based on the activity-induced hydrodynamic
interactions and the observed microstructural correlations, which display a weak local
order. Overall, these results elucidate and highlight the different effects of particle
activity versus motility on the collective dynamics and transport phenomena in active
fluids.
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1. Introduction

Flowing suspensions of non-Brownian particles often display a stochastic, diffusive-like
motion known as hydrodynamic diffusion (Davis 1996). Common examples include
sheared suspensions, where particles driven by an externally imposed velocity gradient
undergo chaotic and anisotropic displacements (Drazer et al. 2002; Pine et al. 2005), and
sedimentation, where long-range velocity correlations result in tortuous and loopy falling
paths (Guazzelli & Hinch 2011). In both cases, the apparent random motions arise not from
thermal fluctuations but rather from flow-induced multiparticle interactions, determined
by the relative positions and orientations of many particles, leading to complex dynamics.

The dynamics may be more complex if the suspending particles are active, expending
and dissipating energy at the microscale (Ramaswamy 2017). In a seminal experiment,
Wu & Libchaber (2000) (WL) studied particle diffusion in a freely suspended soap
film containing E. coli bacteria. Adding trace amounts of micrometre-sized polystyrene
spheres, they observed short-time superdiffusive and long-time diffusive dynamics of
the tracers, with an effective diffusion coefficient 2–3 orders of magnitude higher than
that of the background Brownian motion. This enhanced diffusion was attributed to
transient formations of swirls and jets, or coherent structures, that increase in size and
duration with the bacterial concentration. Many subsequent studies have investigated
this mechanism, providing more detailed understanding of particle transport in active
suspensions. For example, collective dynamics of microswimmers was reported in a
number of experiments (Dombrowski et al. 2004; Sokolov et al. 2007; Zhang et al. 2010;
Wensink et al. 2012; Lushi, Wioland & Goldstein 2014; Li et al. 2019) and simulations
(Hernandez-Ortiz, Stoltz & Graham 2005; Saintillan & Shelley 2007, 2008; Ishikawa
& Pedley 2008; Zöttl & Stark 2014), suggesting that large-scale coherent motion could
emerge purely from hydrodynamic interactions (Simha & Ramaswamy 2002; Baskaran &
Marchetti 2009; Koch & Subramanian 2011). On the other hand, even in dilute suspensions
where swimmers’ dynamics is approximately uncorrelated, there is an enhanced diffusion
proportional to the product of the swimmers’ density and their mean speed due to the
advective flow they generate (Lin, Thiffeault & Childress 2011; Miño et al. 2011; Jepson
et al. 2013; Pushkin & Yeomans 2013; Morozov & Marenduzzo 2014). Besides bacteria
which swim by pushing the fluid behind, the diffusion of passive particles was also
measured in puller-type algal suspensions (Leptos et al. 2009; Kurtuldu et al. 2011; Yang
et al. 2016; von Rüling, Kolley & Eremin 2021). An interesting observation in those
systems is that the statistics of the particle displacements, though Gaussian at long times,
are non-Gaussian transiently (Thiffeault 2015; Ortlieb et al. 2019).

Given the importance of hydrodynamic interactions, many theoretical or numerical
models have been proposed to elucidate the rich hydrodynamic effects on particle diffusion
in active suspensions. Graham and co-workers (Hernandez-Ortiz et al. 2005; Underhill,
Hernandez-Ortiz & Graham 2008) developed a minimal model, where self-propelled
particles were treated as rigid dumbbells exerting force dipoles on the fluid. The dumbbells
were made of point particles and interacted mainly via the fluid flow they generated.
Their simulations showed collective dynamics similar to experimental observations and
highlighted some differences between ‘pushers’ and ‘pullers’. Saintillan & Shelley
(2007, 2008) used a slender-body model and a kinetic theory to analyse the dynamics
of self-propelling rods. Their results showed that, not only were aligned suspensions
hydrodynamically unstable as predicted by an earlier theory (Simha & Ramaswamy
2002), but also there was an instability in isotropic suspensions of pushers due to stress
fluctuations. Ishikawa and co-workers (Ishikawa & Pedley 2007; Ishikawa, Locsei &
Pedley 2010; Kogure, Omori & Ishikawa 2023) modified the Stokesian dynamics method
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Hydrodynamic diffusion in active suspensions of squirmers

(Brady & Bossis 1988) to simulate the diffusion of finite-size or Lagrangian tracer
particles in suspensions of ‘squirmers’ (Pedley 2016). Their method provided an accurate
description of the near-field hydrodynamic interactions, allowing them to consider more
concentrated suspensions. Finally, many other methods have been proposed or adapted to
study transport phenomena in active matter, such as the lattice-Boltzmann method (Llopis
& Pagonabarraga 2006; Stenhammar et al. 2017), multiparticle collision dynamics (Zöttl
& Stark 2014), dissipative particle dynamics (Chen et al. 2016) and force-coupling method
(Delmotte et al. 2018).

Despite the significant development and progress so far, a complete understanding of
the underlying hydrodynamic interactions between active and passive particles has still
not been established. For one, most previous studies were focused on suspensions of
self-propelling particles, thus excluding active but individually immotile particles such
as melanocytes in the skin (Simha & Ramaswamy 2002; Baskaran & Marchetti 2009),
microtubule bundles powered by motor proteins (Sanchez et al. 2012; Woodhouse &
Goldstein 2012) or cells in crowded environments (Hallatschek et al. 2023). Without
separating these two aspects, one cannot delineate how much the observed collective
dynamics is due to self-propulsion versus fluid-mediated hydrodynamic interactions.
Furthermore, the passive particles employed earlier were often considered to be tracers that
were merely advected by the flow produced by active swimmers. However, at high enough
concentrations, the particles may develop certain spatial correlations (Saintillan & Shelley
2007; Li et al. 2019), where the dynamics of active particles can be affected by their
passive counterpart through both hydrodynamic and excluded-volume interactions. This
is particularly relevant for characterizing realistic active systems, biological or synthetic,
since they almost always contain some passive components in the form of dead cells or
defects (Jepson et al. 2013).

Motivated by the aforementioned observations, we perform large-scale numerical
simulations to study the hydrodynamic diffusion in apolar active suspensions. Specifically,
we simulate suspensions of shakers, spherical squirmers that are active but not
self-propelling, at volume fractions from 0.5 % to 55 %. The numerical method we use,
an ‘active version’ of fast Stokesian dynamics (Fiore & Swan 2019), accounts for both
far-field hydrodynamic interactions and near-field lubrication, as well as excluded-volume
interactions amongst the particles (Elfring & Brady 2022). Our approach is similar to
that of Ishikawa and Pedley, though the previous work did not consider shaker-type
squirmers and the number of particles was often quite small (usually around 100). Here,
extensive simulations of more than 1000 shakers show that the instantaneous and long-time
translational dynamics are nearly identical between pullers and pushers, which vary
non-monotonically with the volume fraction, in contrast to suspensions of self-propelling
particles. The rotational dynamics tends to increase with the volume fraction as for
self-propelling particles, though the detailed scalings are different. Remarkably, the
translational motion of the shakers can be well described by the model of WL, despite
the fact that it was originally proposed for passive beads in bacterial suspensions. We
explain these results by providing detailed scaling and statistical analyses. Furthermore,
we investigate spatial correlations in the suspension microstructure, and find weak local
alignment due purely to hydrodynamic interactions.

The paper is organized as follows. In § 2, we describe the mathematical formulation
of the squirmer model (§ 2.1) and the governing equations of the active fast Stokesian
dynamics method (§ 2.2), followed by the solver verification (§ 2.3) and a brief discussion
of pair interactions (§ 2.4). In § 3, we detail the numerical set-up (§ 3.1) and present the full
simulation results, beginning with the instantaneous speeds and their distributions (§ 3.2),
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continuing to the hydrodynamic diffusion in both translational and rotational motion
(§ 3.3) and ending with an analysis of spatial correlations in the suspension microstructure
(§ 3.4). The discussion is focused on the effect of particle volume fraction, though we
have also simulated binary suspensions at varying fractions of passive particles (see
Appendix A). Finally, we conclude in § 4.

2. Models and methods

2.1. The squirmer model
The squirmer model, originally proposed by Lighthill (1952) and later extended by Blake
(1971), has been widely employed to study the swimming mechanisms and collective
dynamics of microorganisms at low Reynolds numbers (Pedley 2016). Mathematically,
the tangential slip velocity on the surface of a spherical squirmer may be expressed as
(Elfring & Brady 2022)

us(p · r̂) =
∞∑

n=1

2
n(n + 1)

P′
n(p · r̂)[Bn(I − r̂r̂) · p + Cnp × r̂], (2.1)

where p is a unit vector defining the axis of a squirmer, r̂ is the unit normal vector on the
surface, Pn is the Legendre polynomial of degree n and P′

n(x) = dPn(x)/dx. Note that the
slip velocity is axisymmetric as us is a function of p · r̂ only.

From (2.1) we can observe two modes of motion: the Bn are the so-called squirming
modes, which give rise to the longitudinal velocities about p (such as the self-propulsion
and self-straining); and the Cn are associated with azimuthal slip velocities about p
(such as the self-spin). In the literature, it is customary to neglect all spinning modes
while only keeping the two leading-order squirming modes (Ishikawa, Simmonds &
Pedley 2006; Elfring & Brady 2022). Figure 1 shows the local slip velocity due to
B1 and B2, as well as the far-field stresslet flow due to B2 (see the supplementary
material of Mathijssen, Pushkin & Yeomans (2015) for the far-field flow patterns of a
few higher-order moments). Note the geometric asymmetry of the flow intensity in the
axial and perpendicular directions due to mass conservation in three dimensions. If the
particles are two-dimensional cylinders, however, the flow will be symmetric (i.e. zero
velocity along 45◦) and invariant for ±B2 up to a rotation.

Finally, as we describe in the next section, the prescribed slip velocity in our simulations
is simply us = U s + Es · r̂, where U s is the self-propulsion velocity and Es is the
self-strain-rate tensor. Terms U s and Es are related to B1 and B2 as (Elfring & Brady
2022)

U s = −2
3

B1p, Es = −3
5

B2

a

(
pp − I

3

)
, (2.2a,b)

where a is the particle radius. Unlike the illustration in figure 1(a), this us is not purely
tangential. However, since the leading-order hydrodynamic interactions due to activity
arise from Es, our description can be considered as a minimal model that captures the
hydrodynamic interactions between squirmers.

2.2. Active fast Stokesian dynamics
The dynamics of a suspension of squirmers can be formulated according to the active
Stokesian dynamics framework (Elfring & Brady 2022), extended from the original
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Figure 1. (a) Slip velocity on a squirmer due to either B1 (red) or B2 (blue). (b) The far-field stresslet flow due
to B2 (arrows indicate direction and colour the magnitude). In both cases, the squirmer is oriented horizontally
to the right.

Stokesian dynamics method (Brady & Bossis 1988). Assuming small, inertialess particles
swimming in a viscous fluid at low Reynolds numbers, the external forces and torques
on any particle must be balanced by their hydrodynamic counterparts, which are linearly
related to the velocity moments on the particle through a hydrodynamic resistance tensor.
In the absence of external flow and Brownian motion, this leads to

U = U s + R−1
FU · (F ext − RFE : Es), (2.3)

where U ≡ (U1 U2 · · · UN)T denotes the array of velocities for N particles (the same
applies to U s, Es and F ext) and RFU and RFE are the resistance tensors coupling the force
and velocity moments of all particles. For example, if particle i is active, both U s,i and
Es,i can be non-zero (U s,i = 0 for a shaker); otherwise, U s,i = Es,i = 0. In this compact
notation, U i includes both the linear and angular velocities of particle i; similarly, F ext,i
includes both the external force and torque acting on particle i. Finally, because RFU and
RFE only depend on the positions and orientations of the particles, the velocities can be
computed quasi-statically to evolve the suspension.

Numerically, we solve a modified form of (2.3) using the fast Stokesian dynamics
method (Fiore & Swan 2019); here, it is considered fast because the computational cost
scales linearly with the number of particles. As in the conventional Stokesian dynamics
method, the fast Stokesian dynamics method decomposes the hydrodynamic resistance
into a far-field, many-body interaction and a near-field, pairwise contribution. Specifically,
the far-field interaction is obtained by inverting a truncated multipole expansion of the
Stokes flow induced by all particles, whereas the near-field interaction is the lubrication
between two particles minus the duplicated parts in the far-field term. This leads to the
following expressions of the resistance tensors:

RFU = BT(M ff )−1B + Rnf
FU, RFE = BT(M ff )−1C + Rnf

FE, (2.4a,b)

where Rnf
FU and Rnf

FE are the near-field resistance tensors and M ff is the mobility tensor
relating far-field force moments, F ff ≡ (F ff Sff )T, to the velocity moments, U ≡ (U E)T,
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through mapping tensors B and C:

BU + CE = U , BTF ff = F ff . (2.5a,b)

After some algebra, (2.3) can then be reformulated as[
M ff B
BT −Rnf

FU

]
·
[F ff

U∗

]
=

[−CEs
F ∗

]
, (2.6)

with the shorthand notation

U∗ = U − U s, F ∗ = −F ext + Rnf
FE : Es. (2.7a,b)

This can be verified by substituting (2.4a,b), (2.5a,b), (2.7a,b) into (2.6) to recover (2.3).
Equations (2.6) and (2.7a,b) are the governing equations of our active fast Stokesian

dynamics method. They can be solved efficiently using fast iterative methods (i.e. Krylov
subspace methods) implemented on modern graphical processing units (Fiore & Swan
2019). For Krylov subspace methods to converge quickly, it is important to precondition
the linear system (Benzi, Golub & Liesen 2005); here, we can use exactly the same
preconditioner as in the original fast Stokesian dynamics method since the matrix on
the left-hand side of (2.6) does not depend on the particle activity. Once the solution
U is obtained, the particle positions and orientations are integrated forward in time using
the standard second-order Runge–Kutta method; see the data availability statement for
the source code of our implementation and Fiore & Swan (2019) for more details of the
numerical method.

2.3. Solver verification
The original fast Stokesian dynamics solver has already been verified in colloidal
suspensions by Fiore & Swan (2019) and in non-colloidal dense suspensions by Ge &
Elfring (2022). In the following, we present two additional verifications involving a pair
of particles where exact or approximate analytical solutions are available.

First, we consider the relative motion of two identical passive particles in simple shear
flow, for which an analytical solution was provided by Batchelor & Green (1972). Figure 2
shows the simulated trajectories from different initial positions in comparison with the
Batchelor & Green (1972) solution. Here, the trajectories are fore–aft symmetric in the
absence of non-hydrodynamic interactions or particle roughness. The interparticle gaps
are minimal at x = 0, when the two particles are aligned in the velocity gradient direction.
The excellent agreement between the simulations and the analytical solutions confirms our
numerical calculations of hydrodynamic interactions. Furthermore, the angular velocities
of the particles, though not affecting the translational motion of passive spheres, are also
verified. This is important for the simulation of active particles as their dynamics depend
on the orientations.

Next, we consider the motion of a passive particle next to a shaker without any
background flow. This is the most basic configuration from which the dynamics of
a pair of active particles can be constructed, because of the linearity of the Stokes
equation (Ishikawa et al. 2006). In the purely hydrodynamic limit, i.e. no other interactions
between the particles, the passive particle is simply advected by the flow generated by the
shaker. Furthermore, if the distance between the two particles is relatively large, we may
neglect the disturbance to the original flow field caused by the passive particle, because
the disturbance flow decays faster with distance. Under this far-field approximation,
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Figure 2. (a) Relative trajectories of two passive spheres in the xy plane and (b) their angular velocity Ωz in
simple shear flow, where a is the particle radius, γ̇ the shear rate and Ω∞

z = γ̇ /2 the angular velocity of the
flow. The different curves in (b) correspond to the three initial conditions ymin/a = 2.001, 2.01 and 2.1. The
analytical solutions (dashed lines) in (a,b) are due to Batchelor & Green (1972).

the velocity of a force-/torque-free passive particle next to a shaker can be obtained by
Faxén’s law:

Up = u + a2

6
∇2u, Ωp = 1

2
∇ × u, (2.8a,b)

where Up and Ωp are, respectively, the translational and angular velocities of the passive
particle and u denotes the flow field generated by an isolated shaker (Ishikawa et al. 2006):

u(p, r) = B2

[(
a4

r4 − a2

r2

)(
3
2
(p · r̂)2 − 1

2

)
r̂ + a4

r4 (p · r̂)(p · r̂r̂ − p)

]
. (2.9)

In the above, r = rr̂ is the distance vector from the centre of the shaker to a point
in the fluid. We can see that |u| ∼ 1/r2 to leading order and u(p, r) = u(−p, r), both
of which are expected for the dipolar flow generated by a shaker. Consequently, the
hydrodynamically induced velocities follow the scalings |Up| ∼ 1/r2 and |Ωp| ∼ 1/r3

to leading order. One thus expects weaker rotations than translations in dilute suspensions
of shakers.

Figure 3 shows the velocity of the passive particle as a function of distance (r/a)
at various angles (θ ) away from a pulling shaker. Here, the translational velocity is
decomposed into a radial (Ur) and an azimuthal (Uθ ) component, and the angular
velocity is only non-zero in the perpendicular direction (Ωz). Note that by symmetry
only Ur /= 0 when θ = 0 or π/2, i.e. the passive particle is simply attracted towards or
repelled from the active one; however, all three velocity components are non-zero when
θ = π/4. Comparing our results with the far-field approximation shows that the two agree
reasonably well even at small separations, particularly when θ = π/4, consistent with the
simulations of Ishikawa et al. (2006). At large separations, we also observe the expected
scaling laws estimated above.

2.4. Pair interactions
We can integrate the particle velocities in time to obtain a physical picture of their pair
interactions. Figure 4(a) shows the trajectories of a passive particle next to a shaker in a
frame co-rotating with the reference shaker (for visualization, see supplementary movies
available at https://doi.org/10.1017/jfm.2024.1071). For a puller-type shaker, the region
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Figure 3. Velocity of a passive particle as a function of distance (r/a) next to a pulling shaker, in comparison
with the far-field approximation (cf. (2.8a,b) and (2.9)). Here, the passive particle is at angle θ from the shaker,
where cos θ ≡ p · r̂; see the main text for details.
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Figure 4. Relative trajectories between a reference shaker (pulling or pushing) and a passive particle (a) or
another aligned shaker of the same kind (b). Grey solid lines are for pullers and red dotted lines for pushers. In
both cases, the trajectory of the second particle is plotted in the frame co-rotating with the reference particle
such that the reference particle is oriented horizontally.

|x|/a � 1 cannot be reached from |x|/a � 1 due to excluded-volume interactions (see
§ 3.1 for details of the repulsive force we impose), implying hysteretic trajectories when
reversing the boundary conditions on the shaker. This is confirmed by the trajectories of
the passive particle next to a pusher-type shaker (see red dotted lines), which intersect the
grey solid lines in the figure. Furthermore, these trajectories suggest that there are no stable
configurations for a bound pair: depending on the initial position, the pair may temporarily
approach each other but will always separate after the encounter, since all trajectories are
open. We note that there are two saddle points located at the poles (x = ±2a, y = 0) of a
pulling shaker, while there are infinitely many saddle points (x = 0) along the equatorial
rings of a pushing shaker. The duration of the close encounters around those saddle points
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B1 B2 [a/τa] φ fp

0 −0.2 (pushers), 0 (passive), or 0.2 (pullers) 0.5 % to 55 % 0 to 97 %

Table 1. Summary of the governing parameters.

depends on the amount of angular noise in the dynamics. In concentrated suspensions,
we expect the lifetime of such transient pairs to be short due to the effect of many-body
interactions.

Figure 4(b) shows the relative trajectories between two identical, initially aligned
shakers (see supplementary movies for visualization). Similar to a shaker–passive pair,
the trajectories are hysteretic (i.e. some regions are inaccessible) and all open (i.e. no
bound pairs). Under purely hydrodynamic interactions, an initially aligned pair will remain
aligned due to the symmetries of the flow induced by a force dipole, because the rotation
of the first shaker due to the second one is exactly the same as the rotation of the second
shaker due to the first one, which we observe numerically. However, we cannot expect
all shakers to be aligned in a suspension because that implies nematic order, which is
absolutely unstable at long wavelengths in apolar suspensions (Simha & Ramaswamy
2002). Therefore, figure 4(b) provides some indication of how a pair of shakers interact,
but does not represent a complete phase portrait.

3. Results

3.1. Simulation set-up
We simulate suspensions of shakers at various volume fractions (φ) ranging from dilute
(φ = 0.5 %) to dense (φ = 55 %). At certain φ, we have incorporated passive particles into
the suspensions at varying ratios ( fp): fp = 0 represents a fully active suspension, while
fp > 0 represents binary active suspensions ( fp = 1 represents a fully passive suspension).
Since we consider shaker-type squirmers, B1 is always zero (thus the particles are apolar
and invariant for ±p), but B2 can be either positive (pullers) or negative (pushers). Both B1
and B2 have the dimension of velocity, and at leading order the magnitude of B2 determines
the rate of the hydrodynamic interactions due to particle activity, as mentioned earlier.
Throughout this work we fix |B2| and use it to define a reference time, τa ≡ a/|B2|, where
a is the particle radius (same for all particles in this work). This allows us to define the units
in combination of a and τa for all physical quantities involving length or time; i.e. a/τa for
translational velocity, 1/τa for rotational velocity, a2/τa for translational diffusivity, etc.
The results in this section are reported in these units unless otherwise stated. Finally, the
values of the governing parameters are summarized in table 1.

Numerically, we simulate N = 1024 particles in cubic domains with periodic boundary
conditions; see figure 5 and supplementary movies for illustration. We have checked
N = 2048 and 4096, but observe no qualitative difference in the statistical results. The
initial condition, in terms of the particle position and orientation, is random, and three
realizations of each case (in B2 and φ) are run for 100τa to reach the average steady
state of the short-time dynamics (see § 3.2). For suspension simulations, it is customary to
impose a short-range repulsive force to prevent the particles from overlapping. Here, we
use the electrostatic repulsion typical for colloids, Fext = F0 exp(−κh), where F0 is the
maximal repulsion, κ the inverse Debye length and h the surface gap between two particles
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φ = 0.5 % φ = 55 % φ = 55 % fp = 50 %fp = 0 fp = 0

(b)(a) (c)

Figure 5. (a–c) Suspensions of 1024 particles at different φ and fp (darker particles are passive).

(Mewis & Wagner 2012). This introduces an additional time scale, τe ≡ 6πηa2/F0,
which should be smaller than τa but greater than the numerical time step (η is the fluid
dynamic viscosity). As in our previous work (Ge & Elfring 2022), we choose τe/τa = 0.02
and κ−1/a = 0.01 to model a strong and short-range repulsion. The numerical time step
(	t) is 100 times smaller than τe, i.e. 	t/τa = 2 × 10−4.

3.2. Short-time dynamics: instantaneous speeds
We first examine the short-time suspension dynamics, quantified by the root-mean-square
particle speed. Figure 6 shows a few examples of the translational (Urms) and rotational
(Ωrms) root-mean-square speeds in time for dilute and dense suspensions with or without
passive particles. When fp = 0, both Urms and Ωrms reach steady state in a relatively short
time; however, the transients can be longer if the ratio of passive particles is higher or the
volume fraction of the suspension is lower. The longer transients are better seen in the
evolution of Ωrms, which can also differ for shakers and passive particles. The difference
stems from the non-reciprocity of hydrodynamic interactions. In our active suspensions of
smooth spheres, the only mechanism to transfer angular momentum is via hydrodynamic
interactions. From (2.8a,b), we can infer that the rotational motion of a passive particle
due to a nearby shaker is larger than the converse, because the flow induced by a passive
particle is of higher order. Therefore, unless the interactions cancel out, passive particles
will have a larger Ωrms. On the other hand, the translational momentum can be transferred
through both hydrodynamic and excluded-volume interactions, where the latter tend to
homogenize the momentum distribution. Consequently, the nearly equal Urms among
shakers and passive particles suggests the importance of excluded-volume interactions for
the short-time dynamics. This is observed in most of the cases that we simulated, except
when φ(1 − fp) is small, in which the dynamics is slow because the concentration of active
particles is low.

The short-time dynamics can be analysed further by examining the distribution of
particle speeds. Take suspensions of pulling shakers and passive particles for example
(the results for pushers are similar). Figure 7 shows the probability density functions
(p.d.f.s) of the translational (U) and rotational (Ω) speeds sampled over all particles at
steady state. Here, we do not distinguish between active and passive particles because
their distributions have nearly the same shape when sampled over a long time. Several
interesting observations can be made from these p.d.f.s. First, as found in previous studies
(Wu & Libchaber 2000; Patteson et al. 2016), the translational speeds are always well

1003 A17-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
71

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1071


Hydrodynamic diffusion in active suspensions of squirmers

0

0.05

0.10

0.15
Pu

lle
rs

φ = 0.05 fp = 0

Urms (Active)
Ωrms (Active)

25 50 75
t

0

0.05

0.10

0.15

Pu
sh

er
s

0 25 50 75
t

0 25 50 75
t

0 25 50 75
t

Urms (Passive)
Ωrms (Passive)

φ = 0.05 fp = 0.5 φ = 0.50 fp = 0 φ = 0.50 fp = 0.5

φ = 0.05 fp = 0 φ = 0.05 fp = 0.5 φ = 0.50 fp = 0 φ = 0.50 fp = 0.5

Figure 6. Instantaneous speeds of suspensions of pullers or pushers at φ = 0.05 or 0.5. In each case, a binary
suspension with half passive particles ( fp = 0.5) is also shown.
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Figure 7. Distribution of particle speeds at different φ and fp for suspensions of pulling shakers and passive
particles. Lines are fits to the MB distribution.

fitted by the Maxwell–Boltzmann (MB) distribution, which describes the behaviour of
fluids at equilibrium, even though our suspensions are highly dissipative and far from
equilibrium. Second, although the angular speeds tend to be MB when φ(1 − fp) is
high, they can also be bimodal in the opposite limit. The bimodal distribution suggests
that there are two characteristic speeds in the suspension, yet both must result from
hydrodynamic interactions, which only have one characteristic time scale (τa). Third,
the relative magnitudes of the characteristic translational and rotational speeds seem
to vary non-monotonically with φ, though both of them tend to reduce with fp (see
Appendix A).
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We can explain these observations as follows. Consider any test particle in a suspension
of shakers. Although no particle can move on its own, the flow induced by each active
particle will generate a mean flow that advects all particles suspended in it. If the
suspension is homogeneous, the average number of active neighbours per unit length
at distance r will be n ∼ 4πr2φa, where φa ≡ φ(1 − fp). Furthermore, if the particle
orientations are isotropic, the typical magnitude of the flow due to all particles at the
same distance will scale as

√
n/r2 ∼ √

φa/r. From (2.8a,b) and (2.9), we thus expect
the typical translational and rotational speeds due to particles at distance r to scale as√

φa/r and
√

φa/r2, respectively. As these are statistical estimates, the scalings are only
valid at large distances. However, it is clear that the variances of both speeds are finite
because the particle size is finite. Consequently, the distributions of the net velocities upon
integrating the velocity contributions over all distances tend to be Gaussian per the central
limit theorem. Furthermore, since there is no reason for any of the velocity components
to differ from one another (otherwise the suspension would not be isotropic), their speeds
necessarily display the MB distribution. These conditions are verified in Appendix B. On
the other hand, if φa is small, the convergence towards Gaussian will be slow and both U
and Ω can deviate from the MB distribution. We expect more deviation in Ω because Ωp
decays faster in r than Up. Hence, the bimodal distribution observed for Ω is a statistical
effect; the additional peak at low speeds in the p.d.f.s corresponds to particles without
sufficient active neighbours within a large distance.

Figure 8 shows the root-mean-square speeds of suspensions of pullers or pushers at
different volume fractions. The results are generally similar for pullers and pushers,
though pullers tend to move slightly faster than pushers. When φ < 0.2, both Urms and
Ωrms increase with φ, but the scaling exponents are less than the expected 1/2 based
on the statistical analysis valid at large distances. Therefore, the velocity contributions
from nearby particles must have a weaker dependence on φ, which we verify in § 3.4.
Another observation is that these speeds do not increase monotonically with φ. The
non-monotonic behaviour of Urms is expected from the competition of hydrodynamic
and excluded-volume interactions. In dilute suspensions, the mean kinetic energy of the
translational motion increases with φ because hydrodynamic interactions increase with φ.
However, as φ approaches the jamming volume fraction, the dynamics necessarily slows
down due to the reduction of free space between particles. If so, the persistence length (
p)
of the ‘ballistic motion’ (i.e. a short run along a nearly straight path) may reduce with the
volume fraction. The inset in figure 8(a) shows three estimations of 
p, which suggest a
scaling of 
p ∼ φ−μ, with 1/3 � μ � 1/2. At still higher φ, the mean distance between
neighbouring particles becomes comparable to two particle radii and 
p reduces sharply. It
is in this regime that Urms decreases with φ. We defer the definitions of τr, tc and tu to the
next section (3.3) because they are related to the long-time dynamics; for now, it suffices
to note that the different measures give similar results.

Finally, the slight non-monotonic behaviour of Ωrms is intriguing. From the reasoning
above, we would expect Ωrms to increase monotonically with φ, as excluded-volume
interactions do not affect the rotation of spheres and the pairwise hydrodynamic
interactions are stronger when particles are closer. Therefore, the slight decrease of Ωrms
when φ > 0.4 may suggest a partial cancellation of the hydrodynamic effect on particle
rotation. Since hydrodynamic interactions are determined by the relative positions and
orientations of all particles, this further implies that there may be certain correlations in the
suspension microstructure, particularly in the dense regime. We analyse such correlations
in detail in § 3.4.
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Figure 8. Typical instantaneous speeds of the translational (a) and rotational (b) motion in suspensions of
pullers or pushers at different volume fractions. The inset in (a) shows the persistence length in suspensions of
pullers, while the inset in (b) shows the perpendicular component of Ωrms; see § 3.3 for details. In (a,b), fp = 0.

3.3. Long-time dynamics: hydrodynamic diffusion
To characterize the long-time dynamics of our suspensions, we first calculate the mean
square displacement (MSD) of the particles, defined as 〈	r2(t)〉 ≡ 〈[r(τ + t) − r(τ )]2〉τ ,
where r(t) is the position of a particle at time t and 〈·〉τ is an average over all particles and
reference times τ . Figure 9(a) shows the temporal evolution of the MSDs for suspensions
of pulling shakers at different volume fractions. The nearly linear growth of the MSDs
signifies a diffusive process, which has indeed been observed in various active systems
(Wu & Libchaber 2000; Leptos et al. 2009; Patteson et al. 2016; Peng et al. 2016). For
bacterial suspensions, WL developed a simple stochastic model to analyse the diffusion of
immersed passive beads. Assuming a ‘collisional force’ that is exponentially correlated in
time between the beads (i.e. the dynamics of the beads is not random but correlated), it
can be shown that the MSD in three dimensions is governed by

〈	r2(t)〉 = 6D[t − tc(1 − exp(−t/tc))], (3.1)

where D is the effective diffusion coefficient and tc is the lifetime of the coherent
structures in the flow. (In the original WL model, the MSD is expressed as 〈	r2(t)〉 =
4Dt[1 − exp(−t/tc)], which is in two dimensions and neglects a short-time contribution.
The full expression (3.1) fits our data better.) Fitting our data according to (3.1) (using D
and tc as fitting parameters) collapses all the results, as illustrated in figure 9(b), revealing
that the dynamics is ballistic in short times and only becomes diffusive after t > tc. This
observation suggests that the interactions between the shakers may be effectively described
by the WL model. However, it does not imply that the collective dynamics of shakers is
equivalent to that of self-propelled particles or colloids undergoing so-called persistent
Brownian motion (Howse et al. 2007), as the scalings of D and 
p in suspensions of
self-propelling versus non-self-propelling particles differ. This is an important distinction
and is discussed later.

To further verify the WL model against our data, we fitted the velocity autocorrelation,
〈U(τ ) · U(τ + t)〉τ , according to

〈U(τ ) · U(τ + t)〉τ = U2
rms exp(−t/tu), (3.2)
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Figure 9. (a) The MSD in time at different volume fractions for suspensions of pulling shakers at fp = 0.
(b) The same data rescaled according to (3.1), where the inset shows sample particle trajectories at
φ = 10 %.

where U(τ ) is the velocity of a particle at time τ , 〈·〉τ is an average over all particles
and reference times τ and tu is the characteristic time for the velocity decorrelation.
The results of the fits are shown in figure 10(a). If the dynamics of our suspensions is
correctly described by the WL model, the two time scales, tc and tu, should be equal
(Wu & Libchaber 2000). Indeed, we observe tc ≈ tu at nearly all volume fractions except
when φ is very small; cf. figure 8(a) inset. When φ � 0.01, the dynamics is too slow for
the velocity statistics to converge at the end of the simulations, thus tu is less reliable
than tc, as can also be seen in the quality of the fit in figure 10(a). Nevertheless, the
scaling between the instantaneous and long-time dynamics is consistent, and we verify
that D ≈ U2

rmstu/3 as expected from the Taylor–Green–Kubo relation (Graham 2018) and
the exponential decay of the velocity autocorrelation (figure 10b). We have checked that the
scalings for pushers are the same. These comparisons thus cross-validate the WL model
and our results. In the following, we use (3.1) to extract the diffusion coefficient (D) and
crossover time (tc) of the translational dynamics.

The long-time rotational dynamics can be quantified by the relaxation of the particle
orientations. Specifically, we calculate the autocorrelation function, 〈p(τ ) · p(τ + t)〉τ ,
and fit it according to

〈p(τ ) · p(τ + t)〉τ = exp(−t/τr), (3.3)

where p(τ ) is the orientation of a particle at time τ , 〈·〉τ is an average over all particles
and reference times τ and τr is the characteristic time of the orientation decorrelation.
Figure 11(a) shows that 〈p(τ ) · p(τ + t)〉τ indeed decays exponentially in time at all
volume fractions. For illustration, we also plot the ‘trajectories’ traced by the particle
axes, which can be in any direction and change smoothly on a unit sphere. Physically, we
expect τr to be similar to tc, as both are related to the persistence of the ballistic motion.
Figure 11(b) shows that, despite the scatter, tc ∝ τr and tc < τr. Therefore, the translational
dynamics ceases to be ballistic before the particle orientations are fully randomized by the
rotational diffusion, because the former is also affected by excluded-volume interactions.
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Figure 11. (a) Orientation autocorrelation in time at different volume fractions for suspensions of pulling
shakers at fp = 0; inset shows sample orientations traced by the particles on a unit sphere at φ = 55 %. (b) The
scaling between tc and τr for all cases.

The fitting procedures presented above allow us to examine the long-time translational
and rotational dynamics, characterized by D and τr, respectively, at different φ and fp.
Figure 12 shows that, as for the short-time dynamics, the results for pullers and
pushers are similar (with pullers being slightly more diffusive) and D is clearly
non-monotonic in φ. The dependence of D on φ resembles that of Urms and can be
explained by the same underlying mechanism (hydrodynamic versus excluded-volume
interactions); however, we note that the peak D occurs at a lower φ than the
peak Urms. This is due to the hydrodynamic coupling of the translational and
rotational motion. Specifically, because D ∼ U2

rmstu ∼ U2
rmsτr, its derivative ∂D/∂φ ∼

D((2/Urms)(∂Urms/∂φ) + (1/τr)(∂τr/∂φ)); and since τr decreases with φ, the maximum
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Figure 12. Hydrodynamic diffusion. (a) Translational diffusion coefficient for suspensions of pullers or
pushers at different volume fractions; inset shows the diffusivity estimated from short-time dynamics.
(b) Rotational relaxation time for suspensions of pulling shakers; inset shows the rotational diffusivity dr versus
φ. In (a,b), fp = 0.

D is reached while Urms is still increasing. It is worth noting that somewhat
similar non-monotonic diffusivities have also been observed in suspensions of ideally
polarizable spheres, which, when subject to an electric field, generate an induced-charge
electro-osmotic flow similar to the stresslet flow in figure 1 (Squires & Bazant 2004;
Mirfendereski & Park 2019). The difference is that the induced-charge electro-osmotic
flow aligns with the direction of the electric field, whereas the hydrodynamic interactions
between shakers render no particular orientation.

As for the rotational dynamics, the inverse of τr is sometimes used to define a rotational
diffusion coefficient, dr ≡ τ−1

r (Saintillan & Shelley 2007). Figure 12(b) shows that
dr increases sublinearly with φ when φ � 0.1. This is roughly consistent with what
we expect from the short-time dynamics, as can be verified with 
p ∼ Urmstc ∼ φ−μ

and τr ∼ tc; cf. figures 8(a) and 11(b). We note that in the literature it is sometimes
reported that D ∼ φ−1 and dr ∼ φ (Ishikawa & Pedley 2007; Saintillan & Shelley
2007). A key difference between our system and those mentioned lies in the propulsion
mechanism. The previous works considered self-propelling particles (U0 ∼ const.), thus
the persistence length is determined by the mean free path, 
0 ∼ φ−1, leading to D ∼
U0
0 ∼ φ−1 and dr ∼ τ−1

r ∼ U0/
0 ∼ φ. In our case, there is no self-propulsion and the
translational motion (Urms) is fully coupled to the particle rotation (τr); hence, the different
relationship and scaling, even if the apparent motion of an individual particle may appear
similar.

A comparison between figures 8(b) and 12(b) shows that dr does not reduce as in
the case of Ωrms at higher φ. One possible reason is that particles may rotate about
their own axes, thus leaving their orientation unchanged. However, we have checked
the perpendicular component of the angular speed and find it to exhibit the same φ

dependence as the full speed; see the inset in figure 8(b). The translational and rotational
velocities of the particles are also uncorrelated to their orientations in our suspensions;
i.e. 〈U · p〉 ≈ 0 and 〈Ω · p〉 ≈ 0. We are uncertain about the source of this minor
discrepancy.
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Finally, we have also examined the long-time dynamics in binary suspensions; i.e.
fp > 0. In general, both D and dr tend to reduce with fp at a fixed φ as one would
expect; however, the reduction of D is nonlinear and, in some cases, it may even increase
slightly with fp when fp � 1. A brief discussion of the fp dependence is provided in
Appendix A.

3.4. Microstructure: spatial correlations
From the short-time dynamics we inferred that certain spatial correlations, particularly
over short distances, may be present in our suspensions. Therefore, in the reminder of the
paper, we examine the near-field microstructure in both particle position and orientation.

We know that long-range nematic order is absolutely unstable in apolar active
suspensions (Simha & Ramaswamy 2002). For shakers, this was shown to result in an
isotropic global orientation distribution (Evans et al. 2011), which we confirm in our
simulations; see Appendix B. To examine the local order, we calculate the pair correlation
function:

g(r) =

〈 N∑
i /= j

δ(r − rij)

〉

4πr2ρ
, (3.4)

where ρ is the average particle number density and 〈·〉 is an average over all particles and
time. Figure 13 shows a few examples of suspensions of pullers or pushers at different φ.
Here, the radial distribution, g(r), displays the typical oscillatory behaviour (especially at
higher φ) with decaying peaks at r/a ≈ 2, 4, 5.5 and so on, corresponding to the first few
particle layers around any particle. However, the angular distributions in the first particle
layer are anisotropic. Specifically, pulling shakers tend to find their nearest neighbours
along the particle axis (i.e. |p · r|/r ≈ 1), whereas pushing shakers tend to find them in
the plane perpendicular to p (i.e. p · r/r ≈ 0), both of which are consistent with what
one would expect from their induced stresslet flows; see the insets in figures 13 and 1(b).
Furthermore, since the same correlation applies also to the neighbours, adjacent shakers
are approximately aligned: for pullers, the alignment is head-to-head; for pushers, it is
side-by-side. However, we cannot visually identify any particle chains or sheets as the
global microstructure remains disordered (see supplementary movies) and the angular
distribution quickly becomes isotropic beyond the first particle layer.

To quantify the local alignment, we compute the following correlation functions for the
particle orientation (Saintillan & Shelley 2007):

C1(r) =

〈 N∑
i /= j

(pi · pj)δ(r − rij)

〉
〈 N∑

i /= j

δ(r − rij)

〉 , C2(r) =

〈 N∑
i /= j

1
2

[3(pi · pj)
2 − 1]δ(r − rij)

〉
〈 N∑

i /= j

δ(r − rij)

〉 ,

(3.5a,b)

where 〈·〉 is an average over all particles and time. Here, C1(r) ∈ [−1, 1] measures the
polar order, while C2(r) ∈ [−1

2 , 1] measures the nematic order; both tend to be zero
if there is no order. Figure 14 shows that there is indeed a minor local nematic order,
despite the absence of polar order at all distances. For pullers, particles are more aligned
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Figure 13. Suspension microstructure. In each panel, the main plot shows the radial distribution function,
g(r), in suspensions of pullers or pushers at φ = 0.05 and 0.5, whereas the inset corresponds to the angular
distribution at r/a = 2, 4 and 5.5.
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Figure 14. Correlation functions for the particle orientations at fp = 0. (a) Polar order, C1(r). (b) Nematic
order, C2(r). In both cases, the main plots correspond to suspensions of pullers, while the insets correspond to
pushers (same legend).

at lower volume fractions, where the alignment can persist to r/a ≈ 4. For pushers, the
alignment is generally weaker and appears to be insensitive to volume fraction. Both of
these observations are consistent with what we inferred from the angular distributions (see
the insets of figure 13). Comparing with suspensions of self-locomoting rods (Saintillan
& Shelley 2007; Li et al. 2019), the degree of alignment in our suspensions of spherical
shakers is much weaker (in Saintillan & Shelley (2007), C2(0) ≈ 0.9). This suggests that
particle shape or self-propulsion can have a large effect on the local order.

Finally, we examine the scalings of the neighbour densities, proportional to ρg(r), at
small and large distances. Figure 15 shows that, for both pullers and pushers, ρg(r) scales
linearly with φ at r/a = 10, consistent with what we expect in an ideal homogeneous
suspension; however, the scalings are sublinear at r/a = 2. Therefore, the slower growth
of Urms and Ωrms with respect to φ (cf. figure 8) can be attributed to local correlations in
the microstructure. Such local correlations may also explain the slight reduction of Ωrms
or the weaker growth of dr when φ > 0.4, because particles tend to form layers at higher
volume fractions and the effect of hydrodynamic interactions from aligned neighbouring
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Figure 15. Neighbour densities at small and large distances for suspensions of pullers (a) or pushers (b). In
both cases, fp = 0 and lines are fits of the data for φ � 0.2.

particles on opposite sides cancels out. However, since we can only quantify the ordering
and alignment statistically, any cancellation is also partial and statistical.

4. Conclusion

In summary, we have presented a numerical study of the hydrodynamic diffusion of
apolar active suspensions at volume fractions (φ) ranging from 0.5 % to 55 %. We model
the active particles as squirmers, with zero self-propulsion but non-zero self-straining,
and simulate their collective dynamics using a recently developed active fast Stokesian
dynamics method. Our results show that both the instantaneous and long-time translational
dynamics vary non-monotonically with φ due to the competition between hydrodynamic
and excluded-volume interactions. Therefore, the suspension is most diffusive at a certain
φ, which is between 10 % and 20 % in our case. This is in contrast to suspensions of
self-propelling particles, where the translational diffusivity typically reduces with φ due
to increased rotational diffusion at higher φ. Although the latter is also found in our system,
the stronger hydrodynamic coupling between the translational and rotational motion herein
changes the overall dynamics qualitatively.

The essential physical mechanism for the above observations lies in: (i) the coupling
between the long-time and short-time dynamics, D = U2

rmstu/3; (ii) the proportionality
between the translational and rotational relaxation times, tu ≈ tc ∼ τr ≡ d−1

r ; (iii) the
scaling of the persistence length of the ballistic motion, 
p ∼ Urmstc ∼ φ−μ; and (iv) the
scaling of instantaneous translational speed, Urms ∼ φν . From these relationships we only
need to estimate the values of μ and ν to infer the scalings of D and dr with respect
to φ, at least in the dilute regime. Our data suggest that 1/3 � μ � 1/2, well above the
φ−1 scaling for self-propelling particles, possibly due to the curved trajectories of shakers
under hydrodynamic interactions (versus the more linear run-and-tumble motion). The
estimation of ν is furnished by a statistical analysis valid at large distances, assuming the
suspension is homogeneous and isotropic (which we have verified), while also taking into
account the local correlations in the microstructure. In more concentrated suspensions,
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the last two scalings (iii and iv) change substantially because of crowding and more
frequent collisions between particles.

Finally, we believe the present study can be extended in a number of ways to explore the
dynamics of apolar active suspensions in more complex conditions. One open question
concerns the effect of particle shape in dense suspensions. Although long-range nematic
order cannot develop spontaneously in any apolar systems, non-spherical particles tend to
have a stronger local alignment due to steric interactions at higher concentrations, and such
alignment may affect the dynamics when the activities of nearby particles differ. Another
interesting question is how the dynamics would be altered by a steady or time-dependent
external shear. It is known that non-Brownian particles undergo diffusive motion akin
to Taylor dispersion under simple shear, but can also self-organize into non-diffusive
‘absorbing states’ in oscillatory shear (Pine et al. 2005; Corté et al. 2008). Whether
particles endowed with an internal activity can exhibit similar dynamics and, if so, what
the ensuing rheology may be (see Ge et al. 2021; Ge & Elfring 2022) remain to be studied.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1071.
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Appendix A. Instantaneous and long-time dynamics in binary active suspensions

In §§ 3.2 and 3.3 of the main text, we presented the effect of volume fraction (φ) on
the instantaneous and long-time dynamics in purely active suspensions ( fp = 0). In the
following, we briefly describe the results when incorporating passive particles into the
suspensions ( fp > 0).

Figure 16 shows the effect of fp on the instantaneous speeds at a few volume fractions.
As discussed in § 3.2, if the suspension is homogeneous and isotropic, we would expect
the typical flow generated by neighbouring active particles at a large distance r to scale as√

φa/r, where φa ≡ φ(1 − fp), leading to a flow proportional to
√

1 − fp/r at a fixed φ.
Therefore, if the active and passive particles are randomly mixed at all distances, we would
expect both Urms and Ωrms to scale as (1 − fp)1/2. This is observed in the case of Urms but
not Ωrms, whose scaling exponent is less than 1/2. Since Ωp decays faster in r than Up,
the different scalings may be due to the local correlations in the microstructure, which
have a larger effect on the final Ωrms than Urms (same for the φ dependence). Overall, it is
clear that incorporating passive particles reduces the instantaneous particle speeds of the
entire suspension.

Figure 17 shows the long-time dynamics of binary suspensions at different volume
fractions. Similar to the instantaneous speeds, both D and dr tend to reduce with fp;
however, the reduction of D is nonlinear near fp = 0 and, at φ = 0.5, it even increases
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Figure 16. Instantaneous speeds at different volume fractions (φ) and ratios of passive particles ( fp).
(a) Translational speed. (b) Rotational speed.
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Figure 17. Hydrodynamic diffusion at different volume fractions (φ) and ratios of passive particles ( fp).
(a) Translational diffusion coefficient. (b) Rotational diffusion coefficient.

slightly with fp. To explain these behaviours, recall that the long-time and short-time
dynamics are coupled, D = U2

rmstu/3, and the rotational relaxation times are proportional,
tu ≈ tc ∼ τr ≡ d−1

r . Since Urms ≈ Urms,0(1 − fp)1/2 and tu ≈ tu,0(1 + αfp) for small fp,
where α > 0 (verified but not shown), we have D ≈ U2

rms,0(1 − fp)tu,0(1 + αfp)/3 =
D0(1 − fp)(1 + αfp). In these relations, Urms,0, tu,0 and D0 correspond to Urms, tu and
D at fp = 0, respectively. Therefore, if α > 1 (i.e. tu increases rapidly with fp), we may
observe an enhanced translational diffusion when incorporating passive particles in an
active suspension.

1003 A17-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
71

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1071


Z. Ge and G.J. Elfring

0.00

10−1

101
p.

d.
f.

p.
d.

f.
φ = 0.05 fp = 0

x
y
z

− 0.00 0.00 − 0.00

−0.05 0 0.05

U
−0.05 0 0.05

Ω

−0.05 0 0.05

U
−0.05 0 0.05

Ω

10−1

101

φ = 0.05 fp = 0

φ = 0.05 fp = 0 .50 φ = 0.05 fp = 0.50

φ = 0.50 fp = 0

φ = 0.50 fp = 0.50

φ = 0.50 fp = 0

φ = 0.50 fp = 0.50

Figure 18. Distribution of particle velocities at different φ and fp for suspensions of pulling shakers and
passive particles. Lines are Gaussian fits to the x components.
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Figure 19. Nematic order. (a) Time evolution of the nematic order parameter λ for pullers and passive
particles at φ = 40 %. (b) The mean nematic order λm of all cases.

Appendix B. Velocity distribution and nematic order

In § 3.2 of the main text, we mentioned that the velocity distribution tends to be Gaussian
if there are sufficiently many interacting active particles. Furthermore, the distribution
of each velocity components should be the same as we have no reason to expect any
difference. Figure 18 verifies these statements. Specifically, we plot the three components
of the instantaneous translational and rotational velocities, respectively, for φ = 5 % or
50 % and fp = 0 or 0.5. In each case, the different velocity components collapse onto the
same distribution, which is always nearly Gaussian except for Ω when φ = 5 %. When the
distribution of Ω deviates from Gaussian, its speed distribution also becomes bimodal as
shown in figure 7. These trends are generally observed in all cases that we have simulated.
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The reason we do not expect the distribution of the velocity components to differ is the
absence of nematic order. For a binary suspension of shakers and passive particles, we can
calculate a nematic tensor, Q, given as

Qij = 3
2

(
〈pipj〉s − 1

3δij

)
, (B1)

where p is the orientation of the shaker, δ the Kronecker delta and 〈·〉s denotes the average
over all shakers. By definition, Q is symmetric and traceless, and its largest eigenvalue, λ,
measures the nematic order: λ = 0 if the suspension is isotropic; λ = 1 if it is maximally
nematic (Doi 2013). Figure 19 shows the time evolution of λ for suspensions of pullers
and passive particles at φ = 40 % and the steady-state values (λm) at different φ and fp.
Clearly, there is no nematic order in all cases as λm is always within one standard error,
σλ ∼ 1/

√
N(1 − fp). Our data thus suggest that shakers remain isotropically oriented at all

volume fractions and ratios of passive particles. As a consequence, the individual velocity
components must be identically distributed.
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