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Abstract

The shallow ice approximation for glaciers and ice sheets is a degenerate model in which the ice
surface slope at the margin may be infinite. This result is due to the neglect of the otherwise small
longitudinal stress terms. Here we derive a corrected approximation for the basal shear stress, and
show that the resulting model provides an explanation for the observed finite slope margins.

1. Introduction

It is well known that the shallow ice approximation for glacier and ice-sheet flow, based on the
assumption that d ≪ 1, where

d = d
l
, (1)

and d is a typical depth scale and l is a suitable length scale, leads to solutions which are sin-
gular at the margin, where the depth h � 0. The singularity leads to an infinite slope. The
same occurs if the ice is assumed to be perfectly plastic (Nye, 1967), when the ice thickness
has a square root singularity at the margin. Nye nicely enunciated the problem as follows:

The theoretical treatments of glacier flow are all based on the approximation, which is valid far from the end,
that the top and bottom surfaces of the glacier are almost parallel. If a model based on this approximation is
extended towards the end, the top surface becomes more and more steeply inclined to the bed, and the
approximation becomes useless before the end is reached.

Lliboutry (1956) addressed this issue, in particular concerning the observed finite slope at
the snout of a glacier, but his methods were criticised by Nye (1957). Later, Nye (1967) simply
stated that they were wrong (‘unsuccessful’), but his earlier comments were more muted in
tone. Lliboutry (1958) responded to the criticism, and again Nye (1958) provides an answering
(slightly exasperated) comment. The essence of the disagreement lies in the contrast between
Nye’s precision and Lliboutry’s more heuristic approach.

Nye (1967) provided a theory to address the singularity at the snout based on a plastic flow
law. Because his paper is based on a perfectly plastic flow law, the terminal snout angle is
always 45◦, which is much larger than normal values � 15◦ (e. g., Paterson, 1964). Nye
adduces various reasons why his theory may nevertheless be reasonable, but the simplest rea-
son may be that a Glen’s law fluid is a better model to employ. Almost 50 years later, Nye
(2015) returned to the subject, and provided an explanation for finite slope angle which indeed
uses Glen’s flow law. He states that Glen’s (1961) observations of finite slope and compressive
stress at the snout of Austerdalsbreen ‘are fully explained by a model based on the nonlinear
(n ≈ 3) Glen flow law that superposes longitudinal strain rate and simple shearing’.

Given this statement, one might wonder what the purpose of the present note is, since I
have the same object in view. In elucidating Nye’s note, one needs to understand what he
means by laminar flow. This refers not to the smooth flow distinct from turbulent flow as a
fluid dynamicist would suppose, but to an axial flow in which the velocity is parallel to the
bed (Nye, 1952). Nye states that a suitable model is to allow a downstream shear flow with
a compressive term (the compression causes an upwards velocity component, and is thus
not laminar in Nye’s sense). This observation is consistent with the work presented here,
but rather than assuming a linear surface slope and compressive strain rate, I aim to deduce
these from the governing equations of the motion. The present exposition is based on chapter
6 of my thesis (Fowler, 1977), which was motivated by the altercations of Nye and Lliboutry in
the 1950s mentioned above.

2. Glacier flow model

The basic result of the analysis below is that near the snout the classical approximation for the
basal shear stress must be amended by inclusion of a longitudinal stress term. This in itself is
not new, having been established by Robin (1967), although in a different context (see also
Budd and Radok, 1971). However, here we put this result in a deductive framework.

Dimensionless forms of the governing equations are well established (e. g., Fowler and
Larson, 1978, equation (3.16)), so we will cut straight to these. We consider an isothermal
slow two-dimensional flow of a glacier with axes x along the mean bedrock slope, and z
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upwards and normal to the x axis. The momentum conservation
equations take the form

t3z = −1+ msx + d2(px − t1x),

pz = t3x − t1z ,
(2)

subject to surface boundary conditions (of no stress)

t3 = −d2(p− t1)sx ,

p+ t1 + t3sx = 0 on z = s,
(3)

and basal conditions of prescribed sliding velocity ub and zero
normal velocity (melt-induced velocity being very small):

w = ubx ,
u+ d2wbx

1+ d2b2x
( )1/2 = ub on z = b(x). (4)

Here, t1 and t3 are (dimensionless) tensile and shear components
of the deviatoric stress tensor, which are related to the velocity
components u and w by the flow law

t3 = h(uz + d2wx), t1 = 2hux , (5)

in which h is the scaled viscosity; assuming Glen’s law, this takes
the form

h = 1
tn−1

, t = t23 + d2t21
( )1/2

. (6)

Further, p is the (dimensionless) pressure deviation from
cryostatic overburden, z = s is the ice upper surface, z = b is
the glacier bed, and subscripts x and z denote partial derivatives.
The dimensionless parameter d was defined in (1), and measures
the shallowness of the flow: a typical value is d � 10−2. The par-
ameter m is defined by

m = d

S
, (7)

where S is the mean bed slope, with a typical value of � 0.1. A
typical value of m may thus also be small (e. g., � 0.1), but not
as small as d. It should be emphasised that the present discussion
is restricted to valley glaciers with non-zero bed slope. Ice sheets
with zero mean bed slope can be treated similarly (e. g., Fowler,
2011, pp. 631 ff.); essentially the downslope term −1 in (2)1 is
not present, and the (slightly different) non-dimensionalisation
of the model leads to the replacement of m by 1.

The model is completed by the conservation of mass equation,
which together with appropriate boundary conditions leads to the
vertically integrated form

∂h
∂t

+ ∂

∂x
hub +

∫s
b
u dz

[ ]
= a, (8)

in which h = s− b is the depth and a is the accumulation rate
(which is thus negative near the snout).

2.1 The shallow ice approximation

For simplicity we will take the bed to be flat, b = 0 (but still
inclined to the horizontal). The shallow ice approximation simply
ignores terms of O(d), and the resulting integration leads to (8) in

the form of a single equation for h,

∂h
∂t

+ ∂

∂x
(1− mhx)

nhn+2

n+ 2
+ hub

[ ]
= a. (9)

The sliding velocity needs to be prescribed, and we will assume
a Weertman law of the form

ub = Ctmb , m ≤ n, (10)

where tb is the basal shear stress, here equal to t3 since the bed is
flat. It is more realistic to suppose a dependence also on the effect-
ive pressure N , but this would simply distract from our focus. It is
important to include sliding, otherwise we would run into the
awkwardness of the contact line problem (Dussan V. and Davis,
1974), which refers to the fact that for an advancing fluid front
(the snout) with a finite slope and no slip at the base, the local
basal shear stress becomes infinite (and worse, non-integrable,
implying an infinite force at the snout).

2.2 Marginal behaviour

In the shallow ice approximation, the basal shear stress is

tb = h(1− mhx) : (11)

this is the dimensionless equivalent of the famous formula
t = rgh sina. In particular we assume that the ice slopes down-
hill, so that 1− mhx . 0, and this has been assumed in writing
(9) and (12). We shall in fact assume that sliding is dominant,
and neglect shearing in the ice altogether. The reason for this is
that Fowler (1977) (pp. 116 ff., leading to equation (6.19)) showed
that near the snout, sliding dominates shearing, so that a consid-
eration of sliding only will suffice. In that case, we can take the
velocity scaling to be such that C = 1 in (10). In the shallow ice
approximation, (9) is then just

∂h
∂t

+ ∂

∂x
[(1− mhx)

mhm+1] = a. (12)

2.2.1 Steady state
It is worth pointing out that Nye (1967, 2015) assumed a steady
state, even though the glacier under consideration
(Austerdalsbreen) was in retreat: for this, see the following sec-
tion. If the head of the glacier (where the ice flux is zero) is at
x = 0, and we define the balance function

B(x) =
∫x
0
a(x′) dx′, (13)

then the steady state of (12) satisfies

(1− mhx)
mhm+1 = B(x). (14)

We can assume that the accumulation function a(x) is a mono-
tonically decreasing function of x, so that B(x) first increases
from zero at x = 0 to a maximum, and then decreases, passing
through zero at a unique positive value xs. Because the ice flux
must be zero at the snout, this defines the snout position xs.
We can define the accumulation rate at the snout to be
a(xs) = −1 (negative because it represents ablation), by choice
of the scale for a; then near the snout,

(− mhx)
mhm+1 ≈ xs − x (15)
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(because the slope is large and thus −mhx ≫ 1), and integrating
this with the boundary condition that h = 0 at x = xs, we find

h ≈ 2m+ 1
(m+ 1)m

[ ] m
2m+1

(xs − x)
m+1
2m+1, (16)

with an almost square root singularity (it is a square root in the
plastic limit m � 1).

2.2.2 The head of the glacier
Although we are mostly concerned with the snout, it is worth
commenting on the behaviour near the head, as there is a diffi-
culty there. We write (14) in the form

hx = 1
m

1− h∗(x)
h

{ }(m+1)/m
[ ]

, h∗(x) = {B(x)}1/(m+1). (17)

First note that if m ≪ 1, then the solution is apparently just
h ≈ h∗(x). With m . 0 and finite accumulation rate at the
head, so that B � x there, h would seem to have an infinite posi-
tive slope, and the glacier surface slope would imply upstream
flow! This makes no sense. In fact, for any positive value of m,
(17) implies that the actual downstream slope (relative to the
true horizontal) which is / 1− mhx must remain non-negative.

Let us examine the solution of (17) more closely. To do this,
we consider the direction of trajectories in the (x, h) ‘phase
plane’, as shown in Figure 1. These cannot intersect, and slope
respectively upwards and downwards above and below the curve
G defined by h = h∗(x). The steady solution is that unique
trajectory1 which reaches x = xs and has a maximum at
x = xM , say, where it crosses G, and hx . 0 for x , xM . As x
decreases in x , xM , hx increases as x � 0 and reaches the
value 1/m at x = 0, corresponding to a true horizontal surface.

There are then two choices. We suppose the mountain slope
has a peak. If we assume ice accumulates all the way to the
peak, then x = 0 represents the peak, and the head of the glacier
is at x = 0, with non-zero depth: it is actually an ice cap.

More realistic may be to suppose that the bed slope becomes
sufficiently large that snow accumulation can not thicken to form
ice, as avalanches remove it to lower altitudes. In that case we
might suppose a . 0 for x ≥ 0, but a = 0 (and thus also B = 0)
for x , 0 (and the mountain peak is somewhere in x , 0). In

that case h is positive at x = 0, and 1− mhx = 0 for x , 0, as indi-
cated by the dashed line in Figure 1. The ice surface is physically
horizontal in x , 0 until h = 0.2 This is a primitive representation
of a bergschrund. In reality, snow accumulation on the flat surface
would cause ice accumulation, and the model should be adjusted to
allow a = a(x, sx) (s not h since when h = 0 it is the bedslope
which is important). The two situations are illustrated in Figure 2.

2.3 Moving margins

As mentioned earlier, Nye (2015) was concerned with the finite
surface slope of a retreating glacier. It is well known that the sig-
nature of an advancing glacier is a steep slope, while the slope of a
retreating glacier is lower. A famous example is in the picture by
Austin Post in Figure 3 which shows three glaciers in the Yukon:
the outer two are advancing, while the central one is retreating
(Post and LaChapelle, 2000, p. 38).

We can generalise the description of the local behaviour of the
ice surface near a moving margin xs(t) by supposing
h � c(xs − x)l, and then finding the leading order term balances
in (12). Putting this into (12) gives (taking the accumulation rate
a(xs) = −1 as before)

lc(xs−x)l−1ẋs+ 1+nlc(xs−x)l−1{ }m
cm+1(xs−x)l(m+1)

[ ]
x
≈−1.

(18)

The relative sizes of the terms depend on the value of l. If l ≥ 1,
then the second term on the left is of O[(xs − x)l(m+1)−1 ≪ 1,

Fig. 1. The curve G given by h = h∗(x) divides the (x, h) plane into two regions. Above
the curve, solutions of (17) point upwards, and below it they point downwards, as
indicated by the arrows. The solution which terminates at the snout, where
h∗ = 0, is shown in red, and cannot reach zero at x = 0.

Fig. 2. Two possible interpretations of the solution indicated in Figure 1. On the top
an ice cap; on the bottom, a pair of mountain glaciers. The dashed line on the bot-
tom indicates the position where x = 0.

1A technical issue concerns the possibility that multiple solutions might reach xs and
satisfy (16) without intersecting in x , xM . This possibility is discounted by the fact that
if two trajectories h+ and h− in x , xs satisfy h+ . h−, then (17) implies that h+ − h−
increases with x, and so both cannot reach x = xs , h = 0.

2One might wonder how ice can accumulate upstream of x = 0 if the accumulation
rate is zero there. The answer to this lies in the transient approach of the solution of
(12) to equilibrium. Accumulation in x . 0 causes a (diffusive) spilling of ice upstream,
so the upstream ice reservoir grows in thickness as the depth at x = 0 increases.
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and to balance the other two terms we must choose l = 1, and
then

h � c(xs − x), ẋs = − 1
c
, (19)

which describes retreat since ẋs , 0.
On the other hand, if l , 1, then −mhx ≫ 1, the ablation

term is much smaller than ht , and so equating the two terms
on the left-hand side of (18) leads to

lc(xs − x)l−1ẋs ≈ − mmlmc2m+1(xs − x)(l−1)m+l(m+1){ }
x. (20)

Equating these requires l = 1
2 (thus indeed , 1), and then

h � c(xs − x)1/2, ẋs = mc2

2

( )m

, (21)

which describes advance since ẋs . 0. Thus the slope is automat-
ically finite during retreat, but becomes infinite during advance.
This is associated with the fact that the diffusionless (m = 0)
model forms shocks during advance, but retreats via a rarefaction
wave (Fowler and Larson, 1980). However, this implies u � 0 at
the snout during retreat, in contradiction to Glen’s (1961) obser-
vation. So in either case, a further examination is necessary.

3. Longitudinal stresses

Fowler (1977) used a convoluted sequence of scaling arguments to
derive an approximate correction to the expression (11) for the
basal shear stress, but we can abbreviate these by simply rescaling
the equations (2)–(6) in the following way: we define

x − xs = 1X, h = 11/(m+1)H, z = 11/(m+1)Z,

t3 = 11/(m+1)T3, u = 1m/(m+1)U , t = d1/n

11/(m+1)n
T ,

t1 = 1

d(n−1)/n11/(m+1)n
T1, p = 1

d(n−1)/n11/(m+1)n
P,

(22)

where we choose

1 = d
(m+1)(n+1)
(m+1)n+1 , (23)

thus 1 , d. Suppose for example that m = 2, n = 3. Then
1 = d6/5. A dimensionless length scale of xs − x � d corresponds,
in view of the definition of d in (1), to distances from the snout
comparable to the depth, thus of the order of hundreds of metres.
The extra reduction of d0.2 corresponds, if d = 10−2, to a further
reduction by a factor 0.4. So the rescaling in (22) puts us in the
last few hundred metres or so from the snout.

With these definitions, the equations become

T3Z = −1+MHX + PX − T1X ,

PZ + T1Z = d2gT3X ,

UZ = d2g[Tn−1T3 − wX],

T1 = 2UX

Tn−1
,

T = [T2
1 + d2gT2

3 ]
1/2,

(24)

with

T3 = −(P − T1)HX ,
P + T1 + d2gT3HX = 0

{
on Z = H, (25)

where

M = m

d1−g , g = n−m+ 1
mn+ n+ 1

, (26)

and with an obvious notation, the sliding law (10) (with C = 1) is

Ub = Tm
b . (27)

Note that 0 , g , 1. A typical value, with m = 2 and n = 3, is
g = 1

5.
There are two awkwardnesses about this scaling. One is that

the jump from t ≈ t3 to T ≈ T1 means that there must be
another distinguished limit where both stresses are of equal size,
and full Stokes flow may be appropriate; this would be expected
to be where xs − x � d, but in fact this complication is probably
over-ridden by the fact that shearing is in any case negligible. The
other awkwardness is the extra parameter M, which is formally
large if m = O(1). This seems not to be an issue in practice,

Fig. 3. Three congruent glaciers in the St. Elias Mountains,
Yukon, Canada. Figure 38 of Post and LaChapelle (2000),
reproduced with permission of the University of
Washington Press, Seattle.
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and we can for example formally assume that M = O(1) (with
m = 2, n = 3, m = 0.1, d = 0.01, we have M = 4).

Ignoring small terms in (24) and (25), we find P ≈ −T1,
U ≈ U(X), T ≈ |T1|, T1 ≈ (2|UX |)1/nsgnUX , and then on
integrating,

T3 = (1−MHX + 2T1X)(H − Z)+ 2T1HX , (28)

whence the basal shear stress is

Tb = H(1−MHX)+ 2[H(2|UX |)1/nsgnUX]X . (29)

We now rewrite this in terms of the original macroscopic
scales; this gives the correction to (11) as

tb = h(1− mhx)+ n{h|ux|1/nsgn ux}x , (30)

where

n = (2d)(n+1)/n. (31)

For d = 0.01 and n = 3, we find n = 0.005. The point of this is
that (30) gives a uniformly valid approximation to the basal
shear stress, even away from the snout. For the predominantly
sliding flow we assume, h and u are determined by

ht + (hu)x = a,

u = [h(1− mhx)+ n{h|ux|1/nsgn ux}x]m.
(32)

Solutions of this problem are considered in the following section.

4. Local snout solutions

Fowler (1977) analysed steady solutions of (32) by using the
method of strained coordinates (Van Dyke, 1975), which provides
a uniformly valid approximate solution, that is to say a solution
which provides an accurate approximation both in the main
trunk of the glacier and also near the snout. The idea is that the sin-
gularity at the snout is displaced by straining the coordinate to a
position which is not attained by the glacier. In general, one writes

h = h0(j, t)+ nh1(j, t)+ . . . ,

u = u0(j, t)+ nu1(j, t)+ . . . ,

x = j+ nx1(j, t)+ . . . ,

(33)

and chooses x1 so that the higher approximations are no more sin-
gular than the first. For example, in the case of advance, (21)
implies a square root singularity, h0 � (xs − j)1/2. The choice of
x1 must be such that any singularity of h1 must be no worse
than this, i. e., h1/h0 remains bounded as j � xs. The leading
order solution has a singularity at j = xs, but the straining of x
moves this beyond the physical snout position. The procedure is,
however, algebraically laborious, and beyond the scope of this
note, so I will limit myself to showing that the model (32) does
indeed provide for regular solutions at the snout.

We search for local expansions of the form

h ≈ c(xs − x), u ≈ us + k(xs − x), (34)

and we allow xs to be time-dependent. Substitution of this into
(32) shows that k . 0, as found by Glen (1961), and then

us = ẋs + 1
c
= (nck1/n)m, (35)

which give the snout velocity and compressive strain in terms of
the snout speed and the snout ice velocity, which can only be
determined from global considerations. Smaller values of the
snout slope and velocity are associated with retreat, with
ẋs ≈ − 1

c, as before in (19). For advance, c is large, us ≈ ẋs, as is
consistent with shock propagation, and ck1/n � 1

n. If for example
we take k = 1, then this implies the actual slope (in terms of
dimensional lengths) corresponds to an angle of
tan−1 ( 1

(2n+1d)1/n
), which for d = 0.01 and n = 3 is 28◦.

5. Discussion

The main result of this note has been to show that the longitudinal
stress correction to the basal stress introduced by Robin (1967)
applies also to the snout of a glacier, and that it provides a perturb-
ation which allows an explanation of both the finite slope and com-
pressive stress at the snout. The treatment differs from that of Nye
(2015) both in not assuming a steady state, and in providing a for-
mulation which can be applied to the whole glacier (with some fur-
ther consideration necessary at the glacier head).

Further insight would require a global solution of the bound-
ary value problem (32). For the steady-state problem, this has
been done by Fowler (1977) using the method of strained coordi-
nates. Of more interest is the situation where the snout is advan-
cing or retreating. In retreat, the unperturbed model can be
applied all the way to the snout, and the perturbing compressive
stress term provides a regular perturbation.

More challenging is the case of an advancing snout, when the
perturbation is singular, and an aim of future work should be to
combine the local snout description with the propagation of small
amplitude surface waves to provide a uniform solution, in combin-
ation with linear wave theory (Nye, 1960; Fowler and Larson, 1980).
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