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Abstract. A conjectural generalization of the McKay correspondence in

terms of stringy invariants to arbitrary characteristics, including the wild case,

was recently formulated by the author in the case where the given finite

group acts linearly on an affine space. In cases of very special groups and

representations, the conjecture has been verified and related stringy invariants

have been explicitly computed. In this paper, we try to generalize the conjecture

and computations to more complicated situations such as nonlinear actions

on possibly singular spaces and nonpermutation representations of nonabelian

groups.
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§1. Introduction

The McKay correspondence in terms of stringy invariants was first studied

by Batyrev and Dais [BD96] and Batyrev [Bat99]. Denef and Loeser [DL02]
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112 T. YASUDA

later took a more conceptual approach, where the McKay correspondence

directly follows from the theory of motivic integration suitably generalized

to a situation involving finite group actions.

These works were confined to characteristic zero. Except for some works

for the tame case (the finite group has order coprime to the characteristic),

attempts to generalize to arbitrary characteristics, including the wild (non-

tame) case, were only recently started in [Yas14, Yasa]. There, a conjectural

generalization of results in characteristic zero was formulated. Subsequently,

it turned out in [WY15] that the conjecture is closely related to the number

theory, in particular, the problem of counting local Galois representations.

In these papers, however, only linear actions on affine spaces were discussed.

In characteristic zero, since every finite group action on a smooth variety is

locally linearizable, many studies can be reduced to the linear case. This is

no longer true in positive or mixed characteristics. The conjecture has been

verified in very special cases, by computing stringy invariants explicitly. The

aims of this paper are first to generalize the conjecture to nonlinear actions

on a (possibly singular) affine variety, and second to make it possible to

compute stringy invariants in more complicated examples.

We now recall the conjecture from [Yasa]. Set the base scheme to be

D = SpecOD, with OD a complete discrete valuation ring, and suppose

that its residue field, denoted by k, is algebraically closed.

Remark 1.1. Working over a discrete valuation ring rather than a field

is natural in our arguments. We can easily switch from a field to a discrete

valuation ring by the base change Spec k[[t]]→ Spec k.

We consider a linear action of a finite group G on the affine d-space

V = AdD over D and the associated quotient scheme X := V/G.

Conjecture 1.2. (The wild McKay correspondence conjecture [Yasa])

Let o ∈X(k) denote the image of the origin, and let Mst(X)o denote the

stringy motif of X at o. Suppose that the quotient morphism V →X is

étale in codimension one. Then

Mst(X)o =

∫
G-Cov(D)

Lw dτ.

Here, G-Cov(D) is the (conjectural) moduli space of G-covers of D, w is

the weight function on G-Cov(D) associated to the G-representation V , and

τ is the tautological motivic measure on G-Cov(D).
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In [Yas14], Conjecture 1.2 was verified, when OD = k[[t]] with k of

characteristic p > 0, G is the cyclic group of order p and the G-action

on AdD is defined over k. In [WY15], a variant conjecture was verified

when the symmetric group Sn acts on A2n
D by two copies of the standard

representation. In the same paper, a generalization to the case where k is

only perfect was formulated by modifying the function w.

Roughly, the conjecture was derived as follows. We first express Mst(X)o
as a motivic integral over the space of arcs of X, that is, D-morphisms

D→X. We then transform the motivic integral to a motivic integral over

the space of G-arcs of V , that is, G-equivariant D-morphisms E→ V for

G-covers E→D. Using the technique of untwisting, we reduce the study of

G-arcs to that of ordinary arcs, and can see that the contribution of each G-

cover E→D to Mst(X)o is Lw(E), and hence the conjecture. A prototype

of untwisting was introduced by Denef and Loeser [DL02]. In [Yasa], the

author developed it so that we can use it even in the wild case. In this

paper, we refine the technique slightly more. For each G-cover E of D with

a connected component F , we can construct another affine space V |F | ∼= AdD
and a morphism V |F |→X such that there is a correspondence between G-

arcs of V and ordinary arcs of V |F |. Through the correspondence, we can

represent the contribution of E to Mst(X)o as a motivic integral over the

ordinary arcs D→ V |F |.

Our strategy of generalization to the nonlinear case is quite simple. Given

an affine variety v with a G-action, we equivariantly embed v into an affine

space V with a linear G-action. For each G-cover E→D with a connected

component F , we take the subvariety v|F | ⊂ V |F | corresponding to v ⊂ V ,

which plays the same role as V |F | in the linear case.

We also need an idea from the minimal model program, that is, working

with varieties endowed with divisors rather than varieties themselves.

Encapsulating one more piece of information, we introduce the notion of

centered log structures or centered log D-varieties, which are just triples

X = (X,∆, W ) of a normal D-variety X, a Q-divisor ∆ and a closed

subset W of X ⊗OD k with KX/D + ∆ Q-Cartier. It is straightforward to

generalize the stringy motif to centered log D-varieties. We write it as

Mst(X). For instance, the stringy motif Mst(X)o mentioned above is the

same as Mst((X, 0, {o})).
Returning to the equivariant immersion v ↪→ V , if v is given a centered

log structure v = (v, δ, w), then there exist unique centered log structures

x on x := v/G and v|F |,ν on the normalization v|F |,ν of v|F | so that all the
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morphisms connecting them are crepant (see Section 2.2 for details). If H ⊂
G is the stabilizer of the component F ⊂ E, then the centralizer CG(H) of

H acts on v|F |,ν and on its arc space J∞v|F |,ν . We define Mst,CG(H)(v
|F |,ν) in

the same way as defining the ordinary stringy motif except that we use the

quotient space (J∞v|F |,ν)/CG(H) rather than the arc space J∞v|F |,ν itself.

We formulate the following conjecture which generalizes Conjecture 1.2.

Conjecture 1.3. (Conjecture 7.3) We have

Mst(x) =

∫
G-Cov(D)

Mst,CG(H)(v
|F |,ν) dτ.

We verify Conjecture 1.3 in two examples from the simplest ones,

computing both sides of the equality independently. One example is a tame

action on a singular variety and the other is a wild nonlinear action on a

smooth variety.

Keeping the above arguments in mind, let us return to the linear case. One

difficulty in computing the right-hand side of the equality in Conjecture 1.2

is in computing the weights w(E) explicitly, and another is in computing the

moduli space G-Cov(D). Taking an equivariant immersion v ↪→ V is useful

also in solving the former difficulty for some linear actions. With E, F and

H as before, if V = AdD has a linear G-action, and if V0 := V ⊗OD k, then

the weight of E with respect to V is, by definition,

wV (E) = codim(V H
0 , V0)− vV (E),

with another function vV on G-Cov(D), and V H
0 the H-fixed-point locus in

V0. The first term, codim(V H
0 , V0), is easy to compute, while the second is

generally not. However, if G acts on V by permutations of coordinates, then

vV (E) is represented in terms of the discriminant [WY15]. In this situation,

we can associate a degree d cover C→D to a G-cover E→D, and

vV (E) =
dC/D

2
,

with dC/D the discriminant exponent of the cover C→D. We generalize

this equality to hyperplanes in V defined by a G-invariant linear form. For

simplicity, we consider the case where v ⊂ V is defined by

x1 + · · ·+ xd = 0,

with x1, . . . , xd coordinates of V .
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Proposition 1.4. (See Corollary 11.4 for a slightly more general result)

Let C =
⊔l
j=1 Cj be the decomposition of C into the connected components.

Then

vv(E) =
dC/D

2
−min

{⌊
dCj/D

[Cj :D]

⌋
| 16 j 6 l

}
,

with [Cj :D] the degree of Cj →D.

Using this and assuming a motivic version of Krasner’s formula [Kra66]

for counting local field extensions, we explicitly compute∫
G-Cov(D)

L−v3v dτ and

∫
G-Cov(D)

Lw3v dτ,

when G= S4 acts on V ∼= A4
D by the standard representation, v ⊂ V is given

by x1 + x2 + x3 + x4 = 0 and 3v is the direct sum of three copies of v. We

find that the two integrals are dual to each other. The same kind of duality

was observed in [WY15] and will be discussed in [WY] in more detail. The

formulas obtained for these integrals are motivic versions of mass formulas

for local Galois representations [Bha07, Ked07, Woo08] with respect to

weights coming from a nonpermutation representation.

From Section 2 to 6, we review the theory in the linear case and finally

formulate the McKay correspondence for linear actions. Most material

here is not new and is found, for instance, in [Yasa], although arguments

are refined and adjusted to our purpose. In Section 7, we formulate the

McKay correspondence for nonlinear actions. In Section 8, we study how

to determine the centered log structure v|F |,ν under some assumptions. In

Sections 9 and 10, we compute nonlinear examples. In Sections 11 and 12,

we treat hyperplanes in permutation representations. We end the paper with

concluding remarks in Section 13.

1.1 Note added on October 16, 2015

It seems to be better to replace codim(V H
0 , V ) with the dimension of

u−1(o) in various places, notably in the definition of w. Here, u is the

morphism V 〈F 〉→ V given in Definition 4.8 and o ∈ V0 is the origin. This

was realized in the later work [Yasb]. The problem is that there seems to be

no reason for the map β in diagrams (4.3) and (4.4) to be surjective, though

I do not know of any counterexample. When it is surjective, the mentioned

replacement does not change anything. For several important cases it is

indeed surjective; see [Yasb, Lemma 8.3].
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1.2 Convention and notation

If X is an affine scheme, OX denotes its coordinate ring. By the same

symbol OX , we sometimes denote also the structure sheaf on a scheme X.

This abuse of notation does not cause any problems. When a group G acts

on X from the left, then we suppose that G acts on OX from the right:

for g ∈G, if φg :X →X is the g-action on X, then g acts on OX by the

pullback of functions by φg. Throughout the paper, we fix an affine scheme

D, with OD a complete discrete valuation ring. We denote the residue field

of OD by k and suppose that k is algebraically closed. For an integral scheme

X, we denote by K(X) its function field. If X is affine, then K(X) is the

fraction (quotient) field of the ring OX . Again, by abuse of notation, K(X)

also denotes the constant sheaf on X associated to the function field. For a

D-scheme X, we denote by X0 the special fiber with the reduced structure:

X0 := (X ×D Spec k)red.

§2. Motivic integration and stringy motifs

In this section, we review the theories of motivic integration over ordinary

(untwisted) arcs and stringy invariants, mainly developed in [Kon95, DL99,

Bat98, Bat99, DL02, Seb04].

2.1 Centered log varieties

We call an integral D-scheme X a D-variety if X is flat, separated and of

finite type over D, and X is smooth over D at the generic point of X. For

a D-variety X, we denote the smooth locus of X by Xsm and the regular

locus by Xreg.

Let X be a normal D-variety. We can define the canonical sheaf ωX =

ωX/D of X over D as in [Kol13, page 8]. On Xsm, the canonical sheaf

is isomorphic to
∧d ΩX/D, with d the relative dimension of X over D.

Therefore, we can think of ωX as a subsheaf of (
∧d ΩX/D)⊗K(X). We

define the canonical divisor of X, denoted by KX =KX/D, to be the linear

equivalence class of Weil divisors corresponding to ωX .

A log D-variety is a pair (X,∆) of a normal D-variety X and a Weil

Q-divisor ∆ such that KX + ∆ is Q-Cartier. We call ∆ the boundary of the

log variety. The canonical divisor of a log D-variety (X,∆) is K(X,∆) :=

KX + ∆.

A centered log D-variety is a triple X = (X,∆, W ) such that (X,∆) is a

log D-variety and W is a closed subset of X0, where X0 denotes the special

fiber of the structure morphism X →D with the reduced structure. We call
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W the center of X. We also say that X is a centered log structure on X. For

a centered log variety X = (X,∆, W ), we define a canonical divisor of X as

the one of (X,∆):

KX :=K(X,∆) =KX + ∆.

Sometimes, we identify a normal Q-Gorenstein (KX is Q-Cartier) D-

variety X with the log D-variety (X, 0), and identify a log D-variety (X,∆)

with the centered log D-variety (X,∆, X0):

(2.1)

2.2 Crepant morphisms

For centered log D-varieties X = (X,∆, W ) and X′ = (X ′,∆′, W ′), a

morphism f : X→ X′ is just a morphism f :X →X ′ of the underlying

varieties with f(W )⊂W ′. We say that a morphism X→ X′ is proper or

birational if it is so as the morphism f :X →X ′ of the underlying varieties.

We say that a morphism f : X→ X′ is crepant if

f−1(W ′) =W and KX = f∗KX′ .

The right equality should be understood as that for r ∈ Z>0 such that

r(KX + ∆) and r(KX′ + ∆′) are Cartier, we have a natural isomorphism

ω
[r]
X′(r∆

′)∼= f∗ω
[r]
X (r∆).

Here, ω
[r]
X (r∆) is the invertible sheaf, which is identical to ω⊗rX (r∆) on Xreg.

We adopt this convention throughout the paper.

Given a generically étale morphism f :X →X ′ of normal D-varieties, a

centered log structure X′ on X ′ induces a unique centered log structure X on

X such that the morphism f : X→ X′ is crepant. Conversely, if f :X →X ′ is

additionally proper, then for each centered log structure X on X, there exists

at most one centered log structure on X′ such that f : X→ X′ is crepant.

Remark 2.1. For our purposes, we may slightly weaken the assumptions

in the definition of crepant morphisms. For instance, concerning the equality
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f−1(W ′) =W , we only need this equality outsideXsm \Xreg. This is because

the locus Xsm \Xreg does not contribute to stringy motifs at all, which are

defined below. However, for simplicity, we will cling to our definition as

above.

2.3 Motivic integration

Let X = (X,∆, W ) be a centered log D-variety. An arc of X is a D-

morphism D→X sending the closed point of D into W . The arc space

of X, denoted J∞X, is a k-scheme parameterizing the arcs of X. We put

Dn := SpecOD/mn+1
D , with mD the maximal ideal of OD. An n-jet of X is a

D-morphism Dn→X sending the unique point of Dn into W . For each n,

there exists a k-scheme JnX parametrizing n-jets of X. For n>m, we have

natural morphisms JnX→ JmX, and the arc space J∞X is identified with

the projective limit of JnX, n> 0 with respect to these maps. We have the

induced maps

πn : J∞X→ JnX.

For n <∞, JnX are of finite type over k. For a morphism f : Y→ X and

each n ∈ Z>0 ∪ {∞}, there exists a natural map

fn : JnY→ JnX.

The arc space J∞X has the so-called motivic measure, denoted by µJ∞X.

The measure takes values in some (semi-)ring, say R, which is often a

suitable modification of the Grothendieck (semi-)ring of k-varieties. In this

paper, we fix R satisfying the following properties. Denoting by [T ] the class

of a k-variety T in R,

• for a bijective morphism S→ T , we have [S] = [T ] in R;

• putting L := [A1
k], we have all fractional powers La, a ∈Q in R;

• an infinite series
∑∞

i=1[Ti]Lai with limi→∞ dim Ti + ai =−∞ converges;

• for a morphism f : S→ T , and for n ∈ Z>0, if every fiber of f admits a

homeomorphism from or to the quotient Ank/G for some linear action of

a finite group G on Ank , then [S] = [T ]Ln.

One possible choice is the field of Puiseux series in t−1,

R :=
∞⋃
r=1

Z((t−1/r)),

where we put [T ] to be the Poincaré polynomial as in [Nic11].
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A subset A⊂ J∞X is called stable if there exists n ∈ Z>0 such that

πn(A)⊂ JnX is a constructible subset and A= π−1
n πn(A), and for every

m> n, every fiber of the map πn+1(A)→ πn(A) is homeomorphic to Ank .

The measure of a stable subset A is given by

µJ∞X(A) := [πn(A)]L−nd (n� 0).

More generally, we can define the measure for measurable subsets, which are

roughly the limits of stable subsets.

Let Φ : C→R∪ {∞} be a measurable function on a subset C ⊂ J∞X.

That is, the image of Φ is countable, all fibers Φ−1(a) are measurable and

µJ∞X(Φ−1(∞)) = 0. We define∫
C

Φ µJ∞X :=
∑
a∈R

µJ∞X(Φ−1(a)) · a ∈R ∪ {∞}.

2.4 Stringy invariants

We still suppose that X = (X,∆, W ) is a centered log D-variety.

Definition 2.2. To a coherent ideal sheaf I 6= 0 on X defining a closed

subscheme Z (X, we associate the order function,

ord I = ord Z : J∞X→ Z>0 ∪ {∞},

as follows. For an arc γ :D→X, the pullback γ−1I of I is an ideal of OD
and of the form ml

D for some l ∈ Z>0 ∪ {∞}, where we put (0) := m∞D by

convention. For a fractional ideal I (that is, a coherent OX -submodule of

K(X)), if we write I = I+ · I−1
− for ideal sheaves I+ and I− with I− locally

principal, then we put

ord I := ord I+ − ord I−.

Here, we put ord I =∞ if either ord I+ =∞ or ord I− =∞. Similarly, for a

Q-linear combination Z =
∑n

i=1 aiZi of closed subschemes Zi (X, we define

ord Z :=

n∑
i=1

ai · ord Zi,

taking values in Q ∪ {∞}.
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Remark 2.3. For a closed subscheme Z (X, we expect that

(ord Z)−1(∞) has measure zero. The author does not know whether this

has been proved, but this follows from the change of variables formula, if

there exists a resolution of singularities f : X̃ →X so that X̃ is regular

and X̃0 ∪ f−1(Z) is a simple normal crossing divisor. If the expectation

is actually true, then order functions for fractional ideals and Q-linear

combination of closed subschemes are well-defined modulo measure zero

subsets.

Let r ∈ Z>0 be such that rKX is Cartier. Since the sheaf OX(rKX) =

ω
[r]
X (r∆) is invertible and thought of as a subsheaf of the constant sheaf

(
∧d ΩX/D)⊗r ⊗K(X), we can define a fractional ideal sheaf IrX by the

equality of subsheaves of (
∧d ΩX/D)⊗r ⊗K(X),(

d∧
ΩX/D

)⊗r/
tors = IrX · OX(rKX).

We then put a function fX on J∞X by

fX :=
1

r
ord IrX.

Since (IrX)n = Ir·nX , the function fX is independent of the choice of r. If X is

smooth, then we simply have fX = ord ∆.

Definition 2.4. The stringy motif of X is defined to be

Mst(X) :=

∫
J∞X

LfX dµJ∞X.

We also write Mst(X) =Mst(X,∆)W , and sometimes omit ∆ if ∆ = 0, and

W if W =X0. When the integral above converges, we call X stringily log

terminal. When it diverges, we put Mst(X) :=∞.

Conjecture 2.5. If a morphism f : X→ X′ of centered log D-varieties

is proper, birational and crepant, then

Mst(X) =Mst(X
′).

Proposition 2.6. Conjecture 2.5 holds if there exists a proper bira-

tional morphism Y →X of D-varieties such that Y ⊗OD K(D) is smooth

over K(D). In particular, Conjecture 2.5 holds if K(D) has characteristic

zero.
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Proof. Let Xη be the generic fiber of X →D. From the Hironaka

theorem, there exists a coherent ideal sheaf Iη ⊂OXη such that the blowup

of Xη along Iη is smooth over K(D). Let I ⊂OX be a coherent ideal sheaf

such that I|Xη = Iη. The blowup of X along I has a smooth generic fiber.

Hence, the second assertion of the lemma follows from the first one.

To prove the first one, we can apply the version of the change of variables

formula proved by Sebag [Seb04, Theorem 8.0.5] (see also [NS11]). If Y is

the centered log structure on Y such that the induced morphism f : Y→ X

is crepant, then the change of variables formula shows that∫
J∞X

LfX dµJ∞X =

∫
J∞Y

LfX◦f∞−ord jacf dµJ∞Y.

Here, ord jacf is the function of Jacobian orders as defined in [Seb04, page

29]. For r ∈ Z>0 such that rKX and rKY are Cartier, we havef∗ ( d∧
ΩX/D

)⊗r/tors = f−1IrX · OY(rKY)

and (
d∧

ΩY/D

)⊗r/
tors = IrY · OY(rKY).

This shows that

fX ◦ f∞ − ord jacf = fY.

We obtain Mst(X) =Mst(Y), and similarly Mst(X
′) =Mst(Y). We have

proved the proposition.

Proposition 2.7. Let X = (X,∆, W ) be a centered log D-variety and

write

∆ =

l∑
h=1

ahAh +

m∑
i=1

biBi +

n∑
j=1

cjCj (ah, bi ∈Q, cj ∈Q \ {0})

such that Ah are the irreducible components of the closure of X0 ∩Xsm, Bi
are the irreducible components of X0 \Xsm and Cj are prime divisors not

contained in X0. Let

A◦h :=Ah ∩Xsm =Ah \
(
X0 \Ah

)
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and

C◦J :=
⋂
j∈J

Cj \
⋃

j∈{1,...,n}\J

Cj ,

with X0 \Ah the closure of X0 \Ah. We suppose that X is regular and

that
⋃n
j=1 Cj is simple normal crossing, that is, for any J ⊂ {1, . . . , n}, the

scheme-theoretic intersection
⋂
j∈J Cj is smooth over D. Then X is stringily

log terminal if and only if cj < 1 for every j, with Cj ∩W ∩Xsm 6= ∅.
Moreover, if this is the case,

Mst(X) =
l∑

h=1

Lah
∑

J⊂{1,...,n}

[W ∩A◦h ∩ C◦J ]
∏
j∈J

L− 1

L1−cj − 1
.

Proof. We first note that the locus X0 \Xsm does not have any arc, and

hence does not contribute to Mst(X). Since

X0 ∩Xsm =

l⊔
h=1

A◦h,

we can decompose Mst(X) into the sum of components corresponding to A◦h,

h= 1, . . . , l. The divisor ahAh contributes to the component corresponding

to A◦h by the multiplication with Lah . From all of these arguments, the

proposition has been reduced to the formula

Mst(X) =
∑

J⊂{1,...,n}

[W ∩ C◦J ]
∏
j∈J

L− 1

L1−cj − 1

in the case where X is smooth and ∆ =
∑

j cjCj . This is the standard

explicit formula (see for instance [Bat98]).

2.5 Group actions

Definition 2.8. A centered log G-D-variety is a centered log D-variety

X = (X,∆, W ) endowed with a faithful G-action on X such that ∆ and W

are stable under the G-action. Given a variety X with a faithful G-action, we

say that a centered log structure X on X is G-equivariant if it is a centered

log G-D-variety.

For a centered log G-D-variety X, the arc space J∞X has a natural G-

action. We define a motivic measure on (J∞X)/G, denoted by µ(J∞X)/G,

https://doi.org/10.1017/nmj.2016.3 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.3


WILDER MCKAY CORRESPONDENCES 123

in the same way as defining the motivic measure on J∞X, except that in

the definition of stable subsets, say A, fibers of πn+1(A)→ πn(A) are only

assumed to be homeomorphic to the quotient Adk/H for some linear action

of a finite group H on Adk.
The function fX on J∞X is G-invariant and gives a function on (J∞X)/G,

which we again denote by fX. We define

Mst,G(X) :=

∫
(J∞X)/G

LfX dµ(J∞X)/G.

The reader should not confuse Mst,G(X) with the orbifold stringy motif

MG
st (X), defined later.

Let us define a G-prime divisor as a divisor of the form
∑l

i=1 Di, where

Di are prime divisors permuted transitively by the G-actions.

Proposition 2.9. Let X = (X,∆, W ) be a centered log G-D-variety and

write

∆ =
l∑

h=1

ahAh +
m∑
i=1

biBi +
n∑
j=1

cjCj (ah, bi ∈Q, cj ∈Q \ {0})

such that Ah are the distinct G-prime divisors such that
⋃
Ah is equal to

the closure of X0 ∩Xsm, Bi are the distinct G-prime divisors with
⋃
i Bi =

X0 \Xsm and Cj are G-prime divisors not contained in X0. We suppose

that

• X is regular,

• for any J ⊂ {1, . . . , n}, the scheme-theoretic intersection
⋂
j∈J Cj is

smooth over D, and

• for every j with Cj ∩W ∩Xsm 6= ∅, cj < 1.

With the same notation as in Proposition 2.7, we have

Mst,G(X) =

l∑
h=1

Lah
∑

J⊂{1,...,n}

[
W ∩A◦h ∩ C◦J

G

]∏
j∈J

L− 1

L1−cj − 1
.

§3. G-arcs

In the last subsection, we considered motivic integration over varieties

endowed with finite group actions. However, we considered only ordinary

(untwisted) arcs, which are not general enough to apply to the McKay
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correspondence. Suitably generalized arcs were introduced by Denef and

Loeser [DL02] in characteristic zero. The author [Yasa] further generalized

them to arbitrary characteristics. We may use generalized arcs of orbifolds

or Deligne–Mumford stacks as in [LP04, Yas04, Yas06, Yasa], so that we can

treat general orbifolds, having group actions only locally. We do not pursue

generalization in this direction, however.

From now on, we fix a finite group G.

Definition 3.1. By a G-cover of D, we mean a D-scheme E endowed

with a left G-action such that E ⊗OD K(D) is an étale G-torsor over

SpecK(D) and E is the normalization of D in OE⊗ODK(D). We denote

by G-Cov(D) the set of G-covers of D up to isomorphism.

Remark 3.2. In the tame case, there is a one-to-one correspondence

between the points of G-Cov(D) and the conjugacy classes in G. In the wild

case, however, G-Cov(D) is expected to be an infinite-dimensional space

having a countable stratification with finite-dimensional strata.

We now fix the following notation: E is a G-cover of D, F is a connected

component of E with a stabilizer H so that F is an H-cover of D.

E

G-cover   

F? _
conn. comp.

oo

H-cover~~
D

Lemma 3.3. Let Aut(E) be the automorphism group of E as a G-cover

of D. That is, it consists of G-equivariant D-automorphisms of E. We have

a natural isomorphism

Aut(E)∼= CG(H)op,

where the right-hand side is the opposite group of the centralizer of H in G.

Proof. If E is the trivial G-cover D ×G of D, then its automorphisms

are nothing but the right G-action on G. Therefore, Aut(E) =Gop.

For the general case, let EF be the normalization of the fiber product

E ×D F . This is a trivial G-cover of F , and we have a natural injection

Aut(E)→Aut(EF ) =Gop.

Its image is the automorphisms of EF compatible with the action of

Gal(F/D) =H. This shows the lemma.
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Let V be a D-variety endowed with a faithful left G-action.

Definition 3.4. We define an E-twisted G-arc of V as a G-equivariant

D-morphism E→ V , and a G-arc of V as an E-twisted G-arc for some E.

Two G-arcs E→ V and E′→ V are said to be isomorphic if there exists

a G-equivariant D-isomorphism E→ E′ compatible with the morphisms to

V . We denote by JG,E∞ V the set of isomorphism classes of E-twisted G-arcs

of V and by JG∞V the set of isomorphism classes of G-arcs of V .

Obviously,

JG∞V =
⊔

E∈G-Cov(D)

JG,E∞ V.

Let HomG
D(E, V ) be the space of G-equivariant D-morphisms E→ V . We

define a left action of CG(H) = Aut(E)op on HomG
D(E, V ) as follows. For

a ∈ CG(H) = Aut(E)op and f ∈HomG
D(E, V ),

a · (E f←− V ) := (V
f←− E a←− E) = (V

a←− V f←− E).(3.1)

By definition, we have

(3.2) JG,E∞ V = HomG
D(E, V )/CG(H).

For n ∈ Z>0, we put Fn := F/mn·h+1
F , with h := ]H, and define En :=⋃

g∈G g(Fn). In particular, F0
∼= Spec k, and E0 consists of the closed points

of E with the reduced scheme structure.

Definition 3.5. We define an E-twisted G-n-jet of V as aG-equivariant

D-morphism En→ V , and put

JG,En V := HomG
D(En, V )/CG(H) and

JGn V =
⊔

E∈G-Cov(D)

JG,En V.

Here, the CG(H)-action on HomG
D(En, V ) is similarly defined to (3.1).

Note that if E 6∼= E′, then E-twisted and E′-twisted G-n-jets never give

the same point of JGn V . For each n ∈ Z>0 and E ∈G-Cov(D), we have

natural maps

JG,E∞ V → JG,En V and JG∞V → JGn V,

both of which we will denote by πn. We have obtained the following

commutative diagram:
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JG,E∞ V
πn+1

//

��

JG,En+1V
//

��

JG,En V //

��

{E}

��
JG∞V πn+1

// JGn+1V
// JGn V // G-Cov(D)

Remark 3.6. In [Yasa], the author conjectured that the sets G-Cov(D),

JG,En V , JGn V (06 n <∞) are realized as k-schemes admitting stratifications

with at most countably many finite-dimensional strata, which will be

necessary below to define the motivic measure.

Let X be the quotient scheme V/G, writing the quotient morphism as

p : V →X.

Given a G-arc E→ V , we get an arc D→X by taking the G-quotients of

the source and the target. This gives a natural map

p∞ : JG∞V → J∞X.

Let T ⊂ V be the ramification locus of π, say, with the reduced scheme

structure and T̄ ⊂X its image. The map p∞ restricts to the bijection

JG∞V \ JG∞T → J∞X \ J∞T̄ .

For n <∞, we have a natural map

pn : πn(JG∞V )→ JnX,

where πn denotes the natural map JG∞V → JGn V .

For a centered log G-D-variety V and n ∈ Z>0 ∪ {∞}, we define JGn V

and JG,En V as the subsets of JGn V and JG,En V consisting of the morphisms

En→ V sending the closed points of En into the center of V.

§4. The untwisting technique revisited

In this section, we revisit the technique of untwisting, which was first

used by Denef and Loeser [DL02] in characteristic zero, and generalized to

arbitrary characteristics by the author [Yasa]. Our constructions below are

slightly different and refined from the ones in [Yasa].
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Let us now turn to the case where V is an affine space over D and the

given G-action is linear. We keep fixed a G-cover E of D and a connected

component F of E with stabilizer H.

For a free OD-module M of rank d, let OV := S•ODM be its symmetric

algebra, and put

V = SpecOV = AdD.
We suppose that the module M and hence the OD-algebra OV have faithful

right G-actions. Then V has the induced left G-action. The set HomG
D(E, V )

can be identified with the OD-module

ΞF := HomH
OD(M,OF ) = HomG

OD(M,OE).

We call ΞF the tuning module.

Remark 4.1. If we fix a basis of M , then the module HomOD(M,OE) is

identified with O⊕dE . This module O⊕dE has two G-actions: one is the diagonal

G-action induced from the given G-action on OE and the other is the one

induced from the G-action on M . For an element of O⊕dE corresponding to

a G-equivariant map M →OE , the two actions must coincide. We thus can

identify ΞF with the locus in O⊕dE where the two actions coincide. This was

how the module ΞF was presented in previous papers [Yasa, WY15].

Lemma 4.2. [Yasa, WY15] The module ΞF is a free OD-module of rank

d. Moreover, it is a saturated OD-submodule of HomOD(M,OF ) and of

HomOD(M,OE): for a ∈ OD and f ∈HomOD(M,OE), if af ∈ ΞF , then

f ∈ ΞF .

From (3.2),

JG,E∞ V = ΞF /CG(H).

Note that the CG(H)-action on ΞF is OD-linear.

Lemma 4.3. The maps

πn+1(JG∞V )→ πn(JG∞V )

have fibers homeomorphic to the quotient of Adk by a linear action of a finite

group.

Proof. If we denote the map ΞF →HomH
D(Fn, V ) again by πn, the image

πn(ΞF ) is isomorphic to (OD/mn+1
D )⊕d. This shows that the fibers of

πn+1(ΞF )→ πn(ΞF )

are isomorphic to Adk, proving the lemma.
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Definition 4.4. We define a motivic measure µJG∞V on JG∞V in the

same way as the ones on J∞V and (J∞V )/G. If V is a G-equivariant

centered log structure on V , we define the measure µJG∞V on JG∞V as the

restriction of µJG∞V .

Remark 4.5. For the definition above to make sense, we need the

conjecture that moduli spaces G-Cov(D) and JGn V exist and have some

finiteness (see Remark 3.6).

Definition 4.6. We define modules,

M |F | := HomOD(ΞF ,OD) and

M 〈F 〉 :=M |F | ⊗OD OF = HomOD(ΞF ,OF ),

which are free modules of rank d over OD and OF respectively. We define

an OD-linear map

u∗ = u∗F :M → M 〈F 〉

m 7→ (Ξ 3 f 7→ f(m) ∈ OF ),

identifying ΞF with HomH
OD(M,OF ) rather than HomG

OD(M,OE).

Lemma 4.7. We suppose that H and CG(H) act on M by restricting

the given G-action.

(1) With respect to the H-action on M 〈F 〉 induced from the H-action on

OF , the map u∗ is H-equivariant.

(2) With respect to the CG(H)-action on M 〈F 〉 induced from the (left)

CG(H)-action on ΞF , the map u∗ is CG(H)-equivariant.

Proof.

(1) For h ∈H and m ∈M , we have

u∗(mh) = (f 7→ f(mh))

= (f 7→ f(m)h)

= (f 7→ f(m))h,

since f ∈ Ξ are H-equivariant. This shows the assertion.
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(2) Let M 〈E〉 := HomOD(ΞF ,OE) and consider the natural map

u∗E :M →M 〈E〉, m 7→ (f 7→ f(m)),

now identifying ΞF with HomG
OD(M,OE). This map is CG(H)-

equivariant. Indeed, for g ∈ CG(H) and m ∈M , from (3.1), we have

u∗E(mg) = (f 7→ f(mg))

= (f 7→ f(m)g)

= (f 7→ (gf)(m)).

The map u∗E factors as

M
u∗F−−→M 〈F 〉 ↪→M 〈E〉.

Since the inclusion M 〈F 〉 ↪→M 〈E〉 is also CG(H)-equivariant, so does

u∗F .

Note that the H- and CG(H)-actions above on M 〈F 〉 commute.

Definition 4.8. We define the untwisting variety (resp. pre-untwisting

variety) of V with respect to F as

V |F | := Spec S•ODM
|F | = AdD (resp. V 〈F 〉 := Spec S•OFM

〈F 〉 = AdF ).

We denote the projection V 〈F 〉→ V |F | by r = rF , where r stands for the

restriction of scalars (see diagram (4.1) below). The map u∗ defines a D-

morphism

u : V 〈F 〉→ V,

which is both H- and CG(H)-equivariant. We call the pair of r and u the

untwisting correspondence of V with respect to F .

Let X := V/G, and identify OX with (OV )G. Since the H-invariant

subring of OV 〈F 〉 is

(OV 〈F 〉)
H =OV |F | ,
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we have

u∗(OX)⊂OV |F | .

We denote the induced morphism V |F |→X by p|F |. We have the following

commutative diagram:

(4.1)

Lemma 4.9.

(1) The map

HomH
F (F, V 〈F 〉) → ΞF = HomH

D(F, V )

γ 7→ u ◦ γ

is bijective.

(2) The map

HomH
F (F, V 〈F 〉)→ J∞V

|F | = HomD(D, V |F |),

sending a morphism F → V 〈F 〉 to the induced one of quotients,

D = F/H → V |F | = V 〈F 〉/H,

is bijective.

Proof.

(1) With the identification

HomH
F (F, V 〈F 〉) = HomH

OF (HomOD(ΞF ,OF ),OF ),
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the map of the assertion is identified with the map

a : HomH
OF (HomOD(ΞF ,OF ),OF ) → ΞF

φ 7→ (m 7→ φ((f 7→ f(m)))),

where m ∈M and f ∈ ΞF . Let us consider the map

b : ΞF → HomH
OF (HomOD(ΞF ,OF ),OF )

f 7→ (z 7→ z(f)),

where z ∈HomOD(ΞF ,OF ). The composition a ◦ b sends f ∈ ΞF to

(m 7→ (z 7→ z(f)) (h 7→ h(m))) = (m 7→ f(m))

= f,

and hence is the identity map. It follows that a is surjective. Now

the assertion follows from the fact that the source and target of a are

free OD-modules of the same rank and a is a homomorphism of OD-

modules.

(2) We can give the converse by the base change associated to F →D.

In summary, we have a one-to-one correspondence between ΞF and

J∞V
|F |, induced from the untwisting correspondence. From Lemma 4.7,

the correspondence is compatible with the CG(H)-actions on both sides.

Therefore, it descends to a one-to-one correspondence between JG,E∞ V and

(J∞V
|F |)/CG(H). We obtain the following commutative diagram:

(4.2)
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For n <∞, we have a similar diagram:

(4.3)

Note that the arrow β is no longer bijective. When n= 0, the diagram is

represented as

(4.4)

Here, (V0)H is the fixed-point locus of the H-action on V0.

§5. The change of variables formula

The untwisting technique, discussed in the last section, enables us to

deduce a conjectural change of variables formula for the map p∞ : JG∞V →
J∞X. In turn, it derives the McKay correspondence for linear actions in the

next section.

We keep the notation from the last section.

https://doi.org/10.1017/nmj.2016.3 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.3


WILDER MCKAY CORRESPONDENCES 133

Definition 5.1. Let f : T → S be a morphism of D-varieties which is

generically étale. The Jacobian ideal (sheaf)

Jacf = JacT/S ⊂OT

is defined as the zeroth Fitting ideal (sheaf) of ΩT/S , the sheaf of Kähler

differentials. We denote by jf the order function of Jacf on J∞T , (J∞T )/G

or JG∞T if T has a faithful action of a finite group G. The ambiguity of the

domain will not cause confusion.

Remark 5.2. When T is smooth, the function jf on J∞T coincides with

the Jacobian order function, denoted by ord jacf , in [Seb04] and mentioned

in the proof of Proposition 2.6.

Conjecture 5.3. Let the assumption be as in Section 4. Let Φ : J∞X ⊃
A→R∪ {∞} be a measurable function, with A⊂ p∞(JG,E∞ V ), and let p

|F |
(∞)

be the natural map (J∞V
|F |)/CG(H)→ J∞X. We have∫

A
Φ dµJ∞X =

∫
(p
|F |
(∞)

)−1(A)
(Φ ◦ p|F |(∞))L

−j
p|F | dµ(J∞V |F |)/CG(H).

Although there is no written proof of the conjecture in this general form

in the literature as far as the author knows, the conjecture is likely to be

proved by using existing techniques and arguments from [DL02] and [Seb04].

Definition 5.4. [Yasa] For E ∈G-Cov(D) with a connected compo-

nent F , we define the weights of E and F with respect to V as

wV (E) = wV (F ) := codim((V0)H , V0)− vV (E),

with

vV (E) = vV (F ) :=
1

]G
· length

HomOD(M,OE)

OE · ΞF

=
1

]H
· length

HomOD(M,OF )

OF · ΞF
.

For the generalization to the case where k is only perfect, see [WY15].

The definition above gives the weight function,

wV :G-Cov(D)→ 1

]G
Z.
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We will denote the composition

JG∞V →G-Cov(D)→ 1

]G
Z

again by wV .

Definition 5.5. For an ideal I ⊂OV stable under the G-action and a

G-arc γ : E→ V , we define a function

ord I : JG∞V →
1

]G
Z ∪ {∞}

by

(ord I)(γ) :=
1

]G
length

OE
γ−1I

=
1

]H
length

OF
(γ|F )−1I

.

We then extend this to G-stable fractional ideals and G-stable Q-linear

combinations of closed subschemes as in Definition 2.2.

The conjectural change of variables formula is stated as follows.

Conjecture 5.6. [Yasa] For a measurable function Φ : J∞X ⊃ C→
R∪ {∞}, we have∫

C
Φ dµJ∞X =

∫
p−1
∞ (C)

(Φ ◦ p∞)L−jp+wV dµJG∞V .

To explain where the formula comes from, we first show a lemma.

Lemma 5.7. We have

JacV 〈F 〉/V×DF = m
]H·vV (F )
F OV 〈F 〉 .

Proof. Let u′ : V 〈F 〉→ V ×D F be the natural map. We have the stan-

dard exact sequence

(u′)∗ΩV×DF/F → ΩV 〈F 〉/F → ΩV 〈F 〉/V×DF → 0.

The left map is identical to the map

M ⊗OD OV 〈F 〉 →M 〈F 〉 ⊗OF OV 〈F 〉 .

Since the Fitting ideal is compatible with base changes (for instance, see

[Eis95, Corollary 20.5]), if I denotes the zeroth Fitting ideal of

coker(M ⊗OD OF →M 〈F 〉),
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we have JacV 〈F 〉/V×DF = I · OV 〈F 〉 . It is now easy to see that I = m
]H·vV (F )
F ,

for instance, by considering a triangular matrix representing the map

M ⊗OD OF →M 〈F 〉 for suitable bases.

Conjecture 5.6 can be guessed from the following conjecture.

Conjecture 5.8. For γ ∈ JG∞V and n� 0, the fiber of the map

pn : πn(JG∞V )→ JnX

over the image of γ is homeomorphic to a quotient of the affine space

A(jp−wV )(γ)
k

by a linear finite group action.

To see this, we first note that since two G-arcs E→ V and E′→ V with

E 6∼= E′ have distinct images in JnX for n� 0, we can focus on JG,E∞ V for

fixed E. Fixing a G-arc γ : E→ V , we consider the map

(JnV
|F |)/CG(H)→ JnX.

The fiber of this map over the image of γ should be homeomorphic to

A
j
p|F | (γ

′)

k /A,

where γ′ is an arc of V |F | corresponding to γ, and A is a certain subgroup

of CG(H) acting linearly on the affine space. This fact would be proved in

the course of proving Conjecture 5.3. On the other hand, the map

πn(HomH
F (F, V 〈F 〉))/CG(H)→ πn(JG∞V )

induced by u has fibers homeomorphic to

Acodim((V0)H ,V0)
k /B

for some finite group B, which can be seen by looking at diagrams (4.2)–

(4.4). From Lemma 5.7,

jp|F |−codim((V0)H , V0) = jV 〈F 〉/X×DF − codim((V0)H , V0)

= (jV×DF/X×DF + jV 〈F 〉/V×DF )−codim((V0)H , V0)

= jp −wV ,

concluding Conjecture 5.8.
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§6. The McKay correspondence for linear actions

To state the McKay correspondence conjecture for linear actions, we first

define the notion of orbifold stringy motifs. Keeping the notation from the

last section, let X, V, V〈F 〉 and V|F | be centered log structures on X, V ,

V 〈F 〉 and V |F | respectively, so that the following morphisms are all crepant:

V〈F 〉

""}}
V

!!

V|F |

{{
X

Since X is Q-factorial, either X or V determines the other centered log

structures. The centered log structure V is G-equivariant and V|F | CG(H)-

equivariant.

Definition 6.1. We define the orbifold stringy motif of the centered

log G-D-variety V to be

MG
st (V) :=

∫
JG∞V

LfV+wV dµGV.

Note that since V is smooth over D, we have fV = ord ∆ for the boundary

∆ of V.

Arguments as in the proof of Proposition 2.6 deduce the following

conjecture from Conjecture 5.6.

Conjecture 6.2. (The motivic McKay correspondence for linear

actions I) We have

Mst(X) =MG
st (V).

We next formulate a conjecture presented in a slightly different way so

that we are able to generalize it to the nonlinear case easily.

Definition 6.3. For E ∈G-Cov(D), we define the E-parts of MG
st (V)

and Mst(X) respectively by

MG,E
st (V) : =

∫
JG,E∞ V

LfV+wV dµJG∞V and
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ME
st (X) :=

∫
p∞(JG,E∞ V)

LfX dµJ∞X.

By the same reasoning as that for the last conjecture, we would have

(6.1) MG,E
st (V) =ME

st (X).

On the other hand, from Conjecture 5.3, we would have

(6.2) ME
st (X) =Mst,CG(H)(V

|F |).

Let G-Cov(D) =
⊔∞
i=0 Ai be a conjectural stratification with finite-

dimensional strata Ai (see Remark 3.6). The author [Yasa] conjectures also

that each stratum Ai may not be of finite type over k, but the limit of a

family

X1
f1−→X2

f2−→ · · ·

such that Xj are of finite type and fi are homeomorphisms. We then define

a constructible subset of G-Cov(D) as a constructible subset of
⊔n
i=0 Ai for

some n <∞, which would be well defined thanks to this conjecture. For a

constructible subset C of G-Cov(D), its class [C] in R is well defined. Let

τ denote the tautological motivic measure on G-Cov(D) given by τ(C) :=

[C] for a constructible subset C. If a function Φ :G-Cov(D)→R∪ {∞} is

constructible, that is, its image is countable and all fibers Φ−1(a), a ∈R are

constructible, then the integral
∫
G-Cov(D) Φ dτ is defined by∫

G-Cov(D)
Φ dτ :=

∑
a∈R

τ(Φ−1(a)) · a ∈R ∪ {∞}.

From Conjecture 6.2 and conjectural equations (6.1) and (6.2), it seems

natural to expect

MG
st (V) =

∫
G-Cov(D)

Mst,CG(H)(V
|F |) dτ,

and hence we have the following conjecture.

Conjecture 6.4. (The motivic McKay correspondence for linear actions

II) We have

Mst(X) =

∫
G-Cov(D)

Mst,CG(H)(V
|F |) dτ.
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This formulation of the McKay correspondence is what we generalize to

the nonlinear case.

To make this conjecture more meaningful, it would be nice if we could

compute Mst,CG(H)(V
|F |) explicitly. For this purpose, next we see how

to determine the centered log structures V〈F 〉 and V|F | from V. Let us

write V = (V,∆, W ), V〈F 〉 = (V,∆〈F 〉, W 〈F 〉) and V|F | = (V,∆|F |, W |F |).

The centers W 〈F 〉 and W |F | are simply determined by

W 〈F 〉 = u−1(W ) and W |F | = r(W 〈F 〉).

The boundaries ∆〈F 〉 and ∆|F | are determined as follows.

Lemma 6.5. Regarding V
〈F 〉

0 and V
|F |

0 prime divisors on V 〈F 〉 and V |F |,

we have

∆〈F 〉 = u∗∆− (]H · vV (E) + dF/D) · V 〈F 〉0 ,

∆|F | =
1

]H
· r∗u∗∆− vV (E) · V |F |0 .

Here, dF/D is the different exponent of F/D, characterized by ΩF/D
∼=

OF /m
dF/D
F .

Proof. For the first equality, we have

u∗(KV + ∆) = KV 〈F 〉 −KV 〈F 〉/V + u∗∆

= KV 〈F 〉 −KV 〈F 〉/V×DF − (u′)∗KV×DF/V + u∗∆.

Here, KV 〈F 〉 is the canonical divisor of V 〈F 〉 as a D-variety rather than

an F -variety, and u′ denotes the natural morphism V 〈F 〉→ V ×D F . From

Lemma 5.7,

KV 〈F 〉/V×DF = ]H · vV (E) · V 〈F 〉0 .

Since (u′)∗KV×DF/V is the pullback of KF/D, we have

(u′)∗KV×DF/V = dF/D · V
〈F 〉

0 .

These equalities show the first equality of the lemma.
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The second one follows from

r∗
(
KV |F | +

1

]H
· r∗u∗∆− v(E) · V |F |0

)
=KV 〈F 〉 −KV 〈F 〉/V |F | + u∗∆− ]H · vV (E) · V 〈F 〉0

=KV 〈F 〉 + u∗∆− (]H · vV (E) + dF/E) · V 〈F 〉0

=KV 〈F 〉 + ∆〈F 〉.

Example 6.6. Suppose that ∆ = 0 and W = {o}, with o ∈ V0 the origin.

Then ∆|F | =−vV (E) · V |F |0 and W |F | ∼= Acodim((V0)H ,V0)
k . Hence,

MG,E
st (V) =Mst,CG(H)(V

|F |) = LwV (E).

Conjecture 6.4 is reduced to the form

(6.3) Mst(X) =

∫
G-Cov(D)

LwV dτ.

If p : V →X is étale in codimension one, and if we denote p(o) again

by o, then Mst(X) =Mst(X)o, and the last equality is exactly what was

conjectured in [Yasa].

Remark 6.7. If ]G is prime to the characteristic of k, then G-Cov(D)

is identified with the set of conjugacy classes of G, denoted by Conj(G).

Equality (6.3) in the last example is then written as

Mst(X) =
∑

[g]∈Conj(G)

LwV (g).

Expressing the weights wV (g) in terms of eigenvalues, we recover results by

Batyrev [Bat99] and Denef and Loeser [DL02].

§7. The McKay correspondence for nonlinear actions

In this section, we generalize Conjecture 6.4 to the nonlinear case. This

is rather easy, once we have formulated the conjecture as it is.

Let us consider an affine D-variety v = SpecOv endowed with a faithful

G-action. We fix a G-equivariant (locally closed) immersion

v ↪→ V

into an affine space V ∼= AdD endowed with a linear G-action. Identifying

G-arcs of v with those of V factoring through v, we regard JG∞v as a subset

of JG∞V .
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Remark 7.1. Such an immersion always exists. Indeed, let f1, . . . , fn be

generators of Ov as an OD-algebra, let A :=
⋃
i fiG, the union of their orbits,

and let OD[xf | f ∈A] be the polynomial ring with variables xf , f ∈A over

OD. The ring has a natural G-action by permutations of variables. The

OD-algebra homomorphism

OD[xf | f ∈A]→Ov, xf 7→ f

defines a desired immersion. Moreover, this construction gives a closed

immersion into V on which G acts by permutations. In this case, our weight

function wV is closely related to the Artin and Swan conductors [WY15],

although we do not use this fact in this paper.

Definition 7.2. For E ∈G-Cov(D) with a connected component F , we

define the pre-untwisting variety of v, denoted by v〈F 〉, as the irreducible

component of r−1(v)⊂ V 〈F 〉 which dominates v. We then define the untwist-

ing variety, denoted by v|F |, as the image of v〈F 〉 in V |F |. We also define

the normalized pre-untwisting v〈F 〉,ν and untwisting varieties v|F |,ν to be the

normalizations of v〈F 〉 and v|F | respectively.

Let x := v/G. The following diagram shows natural morphisms of relevant

varieties, and the symbols t, s and q denote morphisms as indicated:

(7.1)

The one-to-one correspondence obtained in the last section,

JG,E∞ V ↔ (J∞V
|F |)/CG(H),

induces a one-to-one correspondence

JG,E∞ v↔ (J∞v|F |)/CG(H).
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We obtain the following diagram:

(J∞v|F |,ν)/CG(H)

��

JG,E∞ v oo
1-to-1 //

##

(J∞v|F |)/CG(H)

ww
J∞x

If we put JE∞x to be the image of JG,E∞ v in J∞x, then we can naturally

expect that JE∞x coincides with the images of J∞v|F | and J∞v|F |,ν modulo

measure zero subsets.

From now on, we suppose that v is normal. Let v, v〈F 〉,ν , v|F |,ν and x

be centered log structures on v, v〈F 〉,ν and v|F |,ν respectively such that the

morphisms

v〈F 〉,ν

##}}
v

!!

v|F |,ν

zz
x

are all crepant. The centered log D-varieties v and v|F |,ν are G- and CG(H)-

equivariant respectively. If we define the E-part ME
st (x) of Mst(x), we can

expect

ME
st (x) =Mst,CG(H)(v

|F |,ν),

similarly to the linear case. The equality is a slight generalization of

Conjecture 2.5 and would follow from the change of variables formula

generalized along the line of [DL02], applied to the almost bijection

J∞v|F |,ν → JE∞x.

It is then natural to expect the following conjecture.
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Conjecture 7.3. (The McKay correspondence for nonlinear actions)

We have

Mst(x) =

∫
G-Cov(D)

Mst,CG(H)(v
|F |,ν) dτ.

Definition 7.4. We define the E-part of the orbifold stringy motif of

v as

MG,E
st (v) :=Mst,CG(H)(v

|F |,ν),

and the orbifold stringy motif of v as

MG
st (v) :=

∫
G-Cov(D)

MG,E
st (v) dτ.

With this definition, the last conjecture simply says

Mst(x) =MG
st (v).

Remark 7.5. The reader may wonder why we do not define MG
st (v) as

a motivic integral on JG∞v, which appears to be more natural. It is because

the author does not know whether one can define a motivic measure on

JG∞v, as he does not know how to compute dimensions of fibers of

πn(HomH
F (F, v〈F 〉,ν))/CG(H)→ πn(JG∞v).

Knowing it was, in the linear case, a key in formulating the change of

variables formula (Conjecture 5.6) and determining the integrand LfV+wV

in the definition of MG
st (V).

§8. Computing boundaries of untwisting varieties

To compute examples of the wild McKay correspondence, we need to

determine centered log varieties v|F |,ν . It is easy to determine the center.

In this section, supposing that v and v|F | are both normal and complete

intersections in V and V |F | respectively, we compute the boundary of v|F |.

Let

t : v〈F 〉→ v and s : v〈F 〉→ v|F |

be the natural morphisms, although they are different from the morphisms

denoted by the same symbols in diagram (7.1) unless v〈F 〉 is also normal. The

subvariety v〈F 〉 ⊂ V 〈F 〉 is a complete intersection. To see this, first note that

https://doi.org/10.1017/nmj.2016.3 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.3


WILDER MCKAY CORRESPONDENCES 143

if s−1(v|F |) denotes the scheme-theoretic preimage, then
(
s−1(v|F |)

)
red

=

v〈F 〉. The subscheme s−1(v|F |)⊂ V 〈F 〉 is a complete intersection, hence

Cohen–Macaulay, and generically reduced. From [Eis95, Theorem 18.15],

s−1(v|F |) is actually reduced and

s−1(v|F |) = v〈F 〉.

In general, for a complete intersection subvariety Y ⊂X, its conormal

sheaf CY/X is defined as IY /I
2
Y , with IY ⊂OX the defining ideal sheaf of Y .

We put

det CY/X :=

codim(Y,X)∧
CY/X .

There exists a unique effective H-stable Cartier divisor AF on v〈F 〉 such

that

t∗(det Cv/V ) = (det Cv〈F 〉/V 〈F 〉)(−AF ).

Proposition 8.1. Let δ and δ|F | be the boundaries of v and v|F |

respectively, and C := V
|F |

0 |v|F |, the restriction of the prime divisor V
|F |

0 on

V |F | to v|F |. Then

δ|F | =
1

]H
· s∗ (t∗δ +AF )− vV (E) · C.

Proof. Let ε|F | be the right-hand side of the equality. As in the proof

of Lemma 6.5, it suffices to show that the pullbacks of divisors Kv + δ and

Kv|F | + ε|F | to v〈F 〉 coincide. Since

s∗
(

1

]H
s∗t
∗δ

)
= t∗δ,

we may suppose δ = 0 and hence

ε|F | =
1

]H
· s∗AF − vV (E)C.

By abuse of notation, identifying a divisor corresponding to an invertible

sheaf, from the adjunction formula, we have

t∗Kv = t∗
(
KV |v − det Cv/V

)
= (u∗KV ) |v〈F 〉 − det Cv〈F 〉/V 〈F 〉 +AF .
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On the other hand, since s∗(det Cv|F |/V |F |) = det Cv〈F 〉/V 〈F 〉 ,

s∗(Kv|F | + ε|F |) = s∗(KV |F | |v|F |−det Cv|F |/V |F |)−]H · vV (E)V
〈F 〉

0 |v〈F 〉+AF

= (r∗KV |F | − ]H · vV (E)V
〈F 〉

0 )|v〈F 〉 − det Cv〈F 〉/V 〈F 〉 +AF .

From Lemma 6.5,

r∗KV |F | − ]H · vV (E)V
〈F 〉

0 = KV 〈F 〉/D − dF/DV
〈F 〉

0 − ]H · vV (E)V
〈F 〉

0

= u∗KV ,

which shows the proposition.

It is handy to rewrite the proposition in the case of hypersurfaces as

follows.

Corollary 8.2. Suppose that v ⊂ V is a hypersurface defined by a

polynomial f ∈ OV , and write

u∗F f = πbFφ,

where πF is a uniformizer of OF , b is an integer b> 0, and φ ∈ OV 〈F 〉, with

πF - φ. Then, with the notation as above, we have

δ|F | =
1

]H
s∗t
∗δ +

(
b

]H
− vV (E)

)
· C.

Proof. The corollary follows from

AF = b · (V 〈F 〉0 |
v
〈F 〉
0

) and s∗AF = b · C.

Remark 8.3. In the corollary above, if f is G-invariant, then b is a

multiple of ]H and hence b/]H is an integer.

§9. A tame singular example

In this section, we verify Conjecture 7.3 for an example of the tame case

where v is not regular.

Suppose that k has characteristic 6= 2. Let D := Spec k[[π]], V :=

Spec k[[π]][x, y, z] and v = Spec k[[π]][x, y, z]/(xz − y2), the trivial family of

the A1-singularity over Spec k[[π]]. We suppose that G= Z/2Z = {1, g} acts

on V by

xg =−x, yg = y, zg =−z.
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The subvariety v is stable under the G-action, and the quotient variety

x = v/G can be embedded into A3
k[[π]] = Spec k[[π]][u, v, w] and gives the

hypersurface defined by the equation uv − w4 = 0. Thus, x is the trivial

family of the A3-singularity over Spec k[[π]].

Since the morphism v→ x is étale in codimension one, it is crepant (with

the identification (2.1)). Let x̃0→ x0 be the minimal resolution, and let

x̃ := x⊗k k[[π]]. The natural morphism x̃→ x is crepant. From Proposition

2.7,

Mst(x) =Mst(x̃) = [x̃0] = L2 + 3L.

Next, we will compute MG
st (v) and verify that it coincides with Mst(x).

There are exactly two G-covers of D up to isomorphism: the trivial one

E1 =D tD→D and the nontrivial one

E2 = Spec k[[π1/2]]→D = Spec k[[π]],

and hence

MG
st (v) =MG,E1

st (v) +MG,E2
st (v).

As for the first term MG,E1
st (v), we have v|D| = v. Consider the minimal

resolution ṽ0→ v0 and put ṽ := ṽ0 ⊗k k[[π]]. Then the morphism ṽ→ v

is crepant. Since the G-action on the exceptional locus is trivial, from

Proposition 2.9,

MG,E1
st (v) =Mst,G(ṽ) = L2 + L.

Next, we compute MG,E2
st (v). For F = E2, the tuning module ΞF has a basis

(9.1) π1/2x∗, y∗, π1/2z∗,

with x∗, y∗, z∗ the dual basis of x, y, z. If we denote the dual basis of (9.1)

by x, y, z, then we can write u∗ as

u∗ : k[[π]][x, y, z] → k[[π1/2]][x, y, z]

x 7→ π1/2x

y 7→ y

z 7→ π1/2z.

We see that v|F | is given by

πxz− y2 = 0.
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Since the nonregular locus of v|F | has dimension one, the variety v|F | is

normal. From Corollary 8.2, the boundary δ|F | of v|F | is given by

δ|F | =−V |F |0 |v|F | .

Hence,

MG,E2
st (v) =Mst,G(v|F |) =Mst,G(v|F |)L−1.

The G-action on v|F | is given by

xg =−x, yg = y, zg =−z.

The nonregular locus of v|F | consists of three irreducible components

C1 = {x = y = z = 0}, C2 = {x = y = π = 0},

C3 = {y = z = π = 0}.

Let v1→ v|F | be the blowup along C1. Then the nonregular locus of v1 is

exactly the union of the strict transforms C ′2 and C ′3 of C2 and C3. Moreover,

the singularities of v1 are two trivial families of the A1-singularity over A1
k.

Let v2→ v1 be the blowup along C ′2 and C ′3. Then v2 is regular. If A2 and

A3 are the exceptional prime divisors over C ′2 and C ′3 respectively, then

the smooth locus of v2→D in the special fiber is the disjoint union of

open subsets A′2 ⊂ E2 and A′3 ⊂ E3 with A′2
∼=A′3

∼= A2
k. Since the morphism

v2→ v|F | is crepant and the G-action on its exceptional locus is trivial,

Mst,G(v|F |) =Mst,G(v2) = [A′2 tA′3] = 2L2

and

MG
st (v) =MG,E1

st (v) +MG,E2
st (v) = L2 + 3L,

as desired.

§10. A wild nonlinear example

In this section, we verify Conjecture 7.3 for an example of wild nonlinear

actions.

Suppose that k has characteristic two. Let V := Spec k[[π]][x, y], on which

the group G= {1, g} ∼= Z/2Z acts by the transposition of x and y, and v :=

Spec k[[π]][x, y]/(x+ y + xy). The completion of v at the origin o ∈ v0 ⊂ V0

gives

Spec k[[π, x]],
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with the G-action by

xg =
x

1 + x
= x+ x2 + x3 + · · · .

The invariant subring of k[[π, x]] is

k[[π, x]]g = k

[[
π,

x2

1 + x

]]
.

Since

k[[x]] =
k[[ x

2

1+x ]][X]

〈F (X)〉
, F (X) :=X2 +

x2

1 + x
X +

x2

1 + x
,

the different of k[[x]]/k[[ x
2

1+x ]] is〈
F ′(x)

〉
=
〈
x2
〉

(see [Ser79, page 56, Corollary 2]). Let Z ⊂ V be the zero section of V →D,

defined by the ideal 〈x, y〉 ⊂ k[[π]][x, y]. We regard Z as a prime divisor on

v. Note that 2Z is defined by x+ y = 0.

If we put v = (v, δ =−2Z, o) and x = (x, 0, ō), with ō the image of o, then

the quotient morphism q : v→ x is crepant. We obviously have

Mst(x) = 1.

Next, we will verify that MG
st (v) = 1. For the trivial G-cover E1 =D tD→

D, since v|D| = v, from Proposition 2.9, we have

MG,E1
st (v) =

L− 1

L3 − 1
=

1

L2 + L + 1
.

Let E = F = Spec k[[ρ]] be any nontrivial G-cover of D = Spec k[[π]]. The

associated tuning module ΞF is generated by two elements α1 and α2 given

by

α1 : x 7→ 1, y 7→ 1

and

α2 : x 7→ ρ, y 7→ ρg.

Let x and y be the dual basis of α1 and α2. Then u∗ is given by
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k[[π]][x, y] → k[[ρ]][x, y]

x 7→ x + ρy

y 7→ x + (ρg)y.

Therefore, v〈F 〉 and v|F | are defined by

(x + ρy)(x + (ρg)y) + (x + ρy) + (x + (ρg)y)

= x2 + Nr(ρ)y2 + Tr(ρ)y(1 + x)

= 0.

The G-action on k[[ρ]][x, y] is given by

(10.1) xg = x, yg =
ρg

ρ
y.

The pullback of 2Z to v〈F 〉 is defined by Tr(ρ)y. Let S := v
|F |
0 , regarded as

a prime divisor on v|F |, and let B be the prime divisor on v|F | such that 2B

is defined by y = 0. From Corollary 8.2, the boundary δ|F | of v|F | is

− 4nS − 2B,

with n ∈ Z>0 given by 〈Tr(ρ)〉= 〈πn〉. The center of v|F | is v
|F |
0 . Hence,

Mst,G(v|F |) =Mst,G(v|F |,−2B)L−2n.

Let us now consider the case n= 1. The variety v|F | has two A1-

singularities at

(x, y, π) = (0, 0, 0), (0, 1, 0).

Blowing them up, we get a crepant morphism ṽ|F |→ v|F |. Let N0 and N1

be the exceptional prime divisors over (0, 0, 0) and (0, 1, 0) respectively.

The G-action on N0 is trivial, and the one on N1 is linear. Let B̃ ⊂ ṽ|F | be

the strict transform of B. The morphism (ṽ|F |,−2B̃ −N0)→ (v|F |,−2B) is

crepant. Since ṽ|F | is regular, the smooth locus of ṽ|F |→D in the special

fiber is

N0 \ {1 point} tN1 \ {1 point},

where the removed point of N0 is different from the intersection N0 ∩ B̃.

Therefore,
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Mst,G(v|F |,−2B) = Mst,G(ṽ|F |,−2B̃ −N0)

= L +

(
(L− 1) +

L− 1

L3 − 1

)
L−1

=
L(L + 1)2

L2 + L + 1
.

Next, consider the case n> 2. Then v|F | is nonregular only at the origin

o= (0, 0, 0). The completion of v|F | at the origin is

Spec
k[[π, x, y]]

〈x2 + πy2 + πny〉

after a suitable change of coordinates, which is the D0
2n-singularity in Artin’s

classification [Art77]. Let f : ṽ|F |→ v|F | be the minimal resolution. The

exceptional prime divisors N1, . . . , N2n, the strict transform B̃ of B and

the one S̃ of S are arranged as indicated in the following dual graph:

N1
(1,n−1)

N3
(2,2n−2)

N4
(2,2n−3) · · · N2n

(2,1)
S̃

(2,0)

B̃
(0,2)

N2
(1,n)

Here, the pairs of numbers, say (a, b), mean that a is the multiplicity of the

relevant prime divisor in f∗(2S), and b is the one in f∗(2B). If we put

δ̃|F | :=−2B̃ − (n− 1)N1 − nN2 −
2n−1∑
i=2

(2n− i)Ni+1,

then the morphism

(ṽ|F |, δ̃|F |)→ (v|F |,−2B)

is crepant. Since N1 and N2 are the only prime divisors having multiplicity

one in f∗(2S), the smooth locus of the morphism ṽ|F |→D in the special
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fiber is

(N1 tN2) \N3.

Since the G-action on the exceptional locus of f is trivial, we have

Mst,G(ṽ|F |, δ̃|F |) = L · L−n+1 +

(
(L− 1) +

L− 1

L3 − 1

)
L−n

=
(L + 1)2L2−n

L2 + L + 1
.

In summary, for n > 0, we have

MG,E
st (v) =

(L + 1)2L2−3n

L2 + L + 1
.

Since the locus of E ∈G-Cov(D) with ordπ Tr(ρ) = n is homeomorphic to

Gm,k × An−1
k (see [Yas14]),

MG
st (v) = MG,E1

st (v) +

∫
G-Cov(D)\{E1}

MG,E
st (v) dτ

=
1

L2 + L + 1
+

∞∑
n=1

(L + 1)2L2−3n

L2 + L + 1
× (L− 1)Ln−1

= 1.

§11. Stable hyperplanes in permutation representations

When G acts on V by permutations of coordinates, then the functions

vV and wV can be computed by using Artin or Swan conductors, or

discriminants or differents [WY15]. In this section, we generalize to the case

of a hyperplane in a permutation representation defined by an invariant

linear form.

Suppose that G acts on

V = AdD = SpecOD[x1, . . . , xd]

by permutations of coordinates, and

Ad−1
D
∼= v = SpecOV / 〈f〉 ⊂ V

is a hyperplane defined by a G-invariant linear form

f =
d∑
i=1

fixi ∈MG

(
M :=

d⊕
i=1

ODxi

)
.
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The assumption that Ad−1
D
∼= v means that at least one coefficient fi is a

unit in OD.

Fix E ∈G-Cov(D) and a connected component F of E with stabilizer H.

Let

{x1, x2, . . . , xd}=O1 tO2 t · · · tOl
be the decomposition into the H-orbits. Reordering x1, . . . , xd if necessary,

we suppose that

Oj = xjH, 16 j 6 l.

The assumption f ∈MG now means that if i ∈Oj , and if hi ∈H is any

element sending xj to xi, then

fi = fjhi.

For 16 j 6 l, we put Hj ⊂H to be the stabilizer of j, which has order

]H/]Oj , and put C := Spec (OF )Hj , which is a cover of D of degree ]Oj .

Accordingly,

C :=
l⊔

j=1

Cj →D

is a cover of degree d. Here, we say that a morphism C→D is a cover if

C is the normalization of D in some finite étale (not necessarily Galois)

K(D)-algebra. We obtain C from E also in the following way. If GD is

the absolute Galois group of K(D), then the G-cover E corresponds to a

continuous homomorphism ρ :GD→G (up to conjugation). Since G acts on

{1, . . . , d} by conjugation, we get a continuous action of GD on {1, . . . , d},
giving a finite étale cover C◦→ SpecK(D). Taking the normalization of D

in C◦, we get C (up to isomorphism).

For a cover C→D, we denote by dC/D its discriminant exponent : the

discriminant of the extension K(C)/K(D) is m
dC/D
D . If C is connected, then

dC/D is the same as the different exponent appearing in Lemma 6.5. (Note

that since C and D have the same algebraically closed residue field, the

ramification index of a cover C→D is equal to its degree.)

Lemma 11.1. We have

vV (E) =
dC/D

2
=

1

2

l∑
j=1

dCj/D.

Proof. This follows from [Ked07, Lemma 3.4] and [WY15, Theorem 4.7].
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We have an isomorphism

α : ΞF = HomH
OD(M,OF )→

l⊕
j=1

OCj

φ 7→ (φ(x1), . . . , φ(xl)).

For each e> 0, we choose an element ρj,e ∈ OCj , with vCj (ρj,e) = e, where

vCj is the normalized valuation of K(Cj). The elements

ρj,e (06 e < ]Oj = [Cj :D])

form a basis of OCj as an OD-module, and

σj,e := (0, . . . , 0,

j
`
ρj,e, 0, . . . , 0) (16 j 6 l, 06 e < ]Oj)

form a basis of
⊕l

j=1 OCj . Let ψj,e ∈M 〈F 〉, 16 j 6 l, 06 e < ]Oj , be the

dual basis of σj,e through the isomorphism α. The map u∗F :M →M 〈F 〉

sends xi with i ∈Oj to
]Oj−1∑
e=0

(ρj,e · hi)ψj,e,

where hi is any element of H sending xj to xi as above, and f to

u∗F (f) =
l∑

j=1

]Oj−1∑
e=0

∑
i∈Oj

fi(ρj,ehi)

 ψj,e

=
∑

16j6l
06e<]Oj

TrCj/D(fjρj,e)ψj,e.

Here, TrCj/D is the trace map K(Cj)→K(D).

Lemma 11.2. Let B→D be a connected cover of degree n. For e ∈ Z>0,

we have

TrB/D(me
B) = m

⌊
e+dB/D

n

⌋
D .

Here, brc is the largest integer 6 r. In particular, there exists a generator

ρe of me
B such that

vD(TrB/D(ρe)) =

⌊
e+ dB/D

n

⌋
,

where vD is the normalized valuation of K(D).
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Proof. From [Ser79, Proposition 7, page 50], for a ∈ Z,

TrB/D(me
B)⊂ma

D ⇔ me
B ⊂m

an−dB/D
B

⇔ a6
e+ dB/D

n
.

This shows the first assertion. To show the second assertion, suppose, on

the contrary, that there does not exist such a generator of me
B. From the

first assertion, there exists an element τ ∈me+1
B with

vD(TrB/D(τ)) =

⌊
e+ dB/D

n

⌋
.

For any generator ρ of me
B, ρ+ τ is a generator with the desired property,

a contradiction.

Proposition 11.3. Let us write u∗F (f) = πbFφ, with φ irreducible (a

linear form over OD with at least one coefficient a unit). Namely, b is the

order of u∗F (f) along V
〈F 〉

0 . Then

b= ]H ·min

{
vD(fj) +

⌊
dCj/D

[Cj :D]

⌋
| 16 j 6 l

}
.

Here, we put vD(0) := +∞ by convention.

Proof. From the lemma above, for a suitable choice of ρj,e, we have

vD(TrCj/D(fjρj,e)) =

⌊
vCj (fj) + e+ dCj/D

[Cj :D]

⌋
.

Then

b = min{vF (TrCj/D(fjρj,e)) | 16 j 6 l, 06 e < ]Oj}

= ]H ·min

{⌊
vCj (fj) + e+ dCj/D

[Cj :D]

⌋
| 16 j 6 l, 06 e < ]Oj

}
= ]H ·min

{
vD(fj) +

⌊
dCj/D

[Cj :D]

⌋
| 16 j 6 l

}
,

which shows the proposition.
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Corollary 11.4. For E ∈G-Cov(D), we have

vv(E) =
1

2

l∑
j=1

dCj/D −min

{
vD(fj) +

⌊
dCj/D

[Cj :D]

⌋
| 16 j 6 l

}
.

In particular, if f = x1 + x2 + · · ·+ xd, then

vv(E) =
1

2

l∑
j=1

dCj/D −min

{⌊
dCj/D

[Cj :D]

⌋
| 16 j 6 l

}
.

Proof. In our situation, the symbol v|F | has, a priori, two meanings: one

is obtained by applying the untwisting technique directly to v and the other

by first applying it to V and taking the induced subvariety in V |F |. However,

the two constructions actually coincide. Indeed, if m is the linear part of Ov,

then we have a surjection M �m. It induces a surjection M |F |�m|F | and

a closed immersion Ad−1
D ↪→ AdD. This shows the claim. Therefore, there is

no confusion in the use of the symbol as well as v|F |.

The boundary of v|F | is −vv(E) · v|F |0 from Lemma 6.5, while(
min

{
vD(fj) +

⌊
dCj/D

[Cj :D]

⌋
| 16 j 6 l

}
− vV (E)

)
· v|F |0

from Propositions 8.1 and 11.3. Comparing the coefficients shows the

corollary.

Remark 11.5.

(1) Let p denote the characteristic of k. If p - [Cj :D], then dCj/D = [Cj :

D]− 1 and

⌊
dCj/D

[Cj :D]

⌋
= 0. Therefore, if p - d and if f = x1 + · · ·+ xd,

then since at least one Cj satisfies p - [Cj :D], we have vv = vV . This

equality is also explained as follows. We have the exact sequence

0→ v→ V
(x1,...,xd) 7→

∑
xi−−−−−−−−−−→ A1

D→ 0,

whether we have p | d or not. If p - d, this sequence splits. The equality

follows from the additivity of v• (see [WY15]).

(2) If, for some j, fj is a unit and ]Oj = 1 (hence Cj =D and dCj/D = 0),

then the corollary above deduces that vv = vV . Again, V is isomorphic

to the direct sum of v and a one-dimensional trivial representation, this

time as an H-representation.

https://doi.org/10.1017/nmj.2016.3 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.3


WILDER MCKAY CORRESPONDENCES 155

Example 11.6. Let p be a prime number, and let G= 〈g〉 ∼= Z/pZ.

Suppose that OD = k[[π]], with k of characteristic p, and that G acts on

V = Spec k[[π]][x1, . . . , xp] by

g(xi) =

{
xi+1 (16 i < p),

x1 (i= p),

and that v ⊂ V is the hyperplane defined by f = x1 + · · ·+ xp. Let E ∈
G-Cov(D) be a connected G-cover. The ramification jump j ∈ Z>0 of E is

given by

j := vD(πEg − πE)− 1,

which is not divisible by p. From [Ser79, page 83, Lemma 3],

dE/D = (p− 1)(j + 1).

Accordingly,

vv(E) =
dE/D

2
−
⌊
dE/D

p

⌋
=

(p− 1)(j + 1)

2
−
⌊

(p− 1)(j + 1)

p

⌋
=

(
(p− 1)(j − 1)

2
+ (p− 1)

)
−
(

1 +

⌊
(p− 1)j

p

⌋)
= (p− 2) +

(
(p− 1)(j − 1)

2
−
⌊

(p− 1)j

p

⌋)

= (p− 2) +

p−2∑
i=1

⌊
ij

p

⌋
.

The last equality follows from

(p− 1)(j − 1)

2
=

p−1∑
i=1

⌊
ij

p

⌋
(for instance, see [GKP89, page 94]). Since codim(vG0 , v) = p− 2,

wv(E) = (p− 2)− vv(E) =−
p−2∑
i=1

⌊
ij

p

⌋
,

which coincides with computation in [Yas14] (see also [Yasa]).
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§12. Some S4-masses in characteristic two

In this section, we consider the case where OD has characteristic two, G

is the symmetric group S4, V := SpecOD[x1, x2, x3, x4], with the standard

G-action, and v ⊂ V is the hyperplane defined by f = x1 + x2 + x3 + x4.

The induced G-action on v is still faithful, since v contains a point whose

coordinates are distinct one another, for instance, (0, 1, a, a+ 1) with a ∈
k \ {0, 1}. As an application of the computation of vv in the last section,

we compute motivic integrals

M =

∫
G-Cov(D)

L−3vv dτ and M′ :=
∫
G-Cov(D)

L3wv dτ

under some assumptions, and observe that M and M′ are dual to each

other. Such a duality was first observed in [WY15] and is discussed in more

detail in [WY]. It is also related to the Poincaré duality of stringy motifs.

The number 3 in the integrals is chosen because for n= 1, 2, the integrals∫
G-Cov(D) L

−nvv dτ and
∫
G-Cov(D) L

nwv dτ diverge.

To compute M and M′, we decompose them into the sums of 5 terms

respectively. For n> 0, let Fien and Etan be the (conjectural) moduli spaces

of degree n field extensions and étale extensions of K(D) respectively. Since

G= S4, giving a continuous homomorphism Gal(K(D)sep/K(D))→G is

equivalent to giving a continuous Gal(K(D)sep/K(D))-action on {1, . . . , n}.
Therefore, the map

G-Cov(D) → Eta4

E 7→ OD ⊗OD K(D)

is bijective. Since there are exactly 5 partitions of 4,

(4), (3, 1), (22), (2, 12), (14),

and Fie1 is a singleton, we have the following decomposition of Eta4:

Eta4
∼= Fie4 t (Fie3 × Fie1) t (Fie2)2

ι
t (Fie2 × (Fie1)2) t (Fie1)4

∼= Fie4 t Fie3 t
(Fie2)2

ι
t Fie2 t {1pt}.

Here, ι is the involution of (Fie2)2 given by the transposition of components.

We have the corresponding stratification

G-Cov(D) =
⊔
p

G-Cov(D)p,
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where p runs over the partitions of 4 and the corresponding decompositions

of M and M′,

M =
∑
p

Mp and M′ =
∑
p

M′p.

To further computations, we need to assume the following conjecture.

Conjecture 12.1. (The motivic version of Krasner’s formula)

Suppose that k has characteristic p > 0. Let m> 2 be an integer, and

let Fiem,d ⊂ Fiem be the locus of degree m field extensions of k((π)) with

discriminant exponent d. Then we have the equality in R,

[Fiem,d] =


1 (p -m, d=m− 1),

0 (p -m, d 6=m− 1),

(L− 1)Lb(d−m+1)/pc (p |m, p - (d−m+ 1)),

0 (p |m, p | (d−m+ 1)).

Krasner [Kra66] showed that if q = pe is a power of a prime number p,

then the number of totally ramified degree m extensions of the power series

field Fq((π)) in its algebraic closure Fq((π)) is exactly
m (p -m, d=m− 1),

0 (p -m, d 6=m− 1),

m(q − 1)qb(d−m+1)/pc (p |m, p - (d−m+ 1)),

0 (p |m, p | (d−m+ 1)).

Counting isomorphism classes (with weights coming from automorphisms)

rather than subfields of Fq((π)) as done in [Ser78], we can kill the factor m.

The conjecture above seems to be the only reasonable possibility.

In what follows, we exhibit how to compute M(22) and M′(22). Computa-

tion of the other terms is similar and easier. We go back to the assumption

that k has characteristic two. If d= 2n+m, then the conjecture reads

[Fiem,d] = (L− 1)Ln.

Let E ∈G-Cov(D)2,2, and let C = C1 t C2 be the associated quartic cover

of D, where C1 and C2 are double covers of D with dC1/D 6 dC2/D. Then

vv(E) =
dC1/D + dC2/D

2
−
⌊
dC1/D

2

⌋
.
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If we write dC1/D = 2n+ 2 and dC2/D = 2m+ 2 for some m> n> 0,

vv(E) =m+ 1.

From the last property of R in the list in Section 2.3, we have[
(Gm)n

Sn

]
=

[
Ank
Sn

]
−

[
An−1
k

Sn−1

]
= Ln − Ln−1.

Accordingly, [
(Fie2,2n+2)2

ι

]
= (L− 1)L2n+1.

We have

M(22) =

∞∑
m=0

m−1∑
n=0

(L− 1)2Ln+m · L−3(m+1) +

∞∑
m=0

(L− 1)L2m+1 · L−3(m+1)

= (L− 1)2L−3
∞∑
m=0

L−2m
m−1∑
n=0

Ln + (L− 1)L−2
∞∑
m=0

L−m

= (L− 1)2L−3
∞∑
m=0

L−2m · L
m − 1

L− 1
+ (L− 1)L−2 · L

L− 1

= (L− 1)L−3
∞∑
m=0

(
L−m − L−2m

)
+ L−1

=
L−2 + L−1 + 1

L + 1
.

If we suppose that the H-orbits in {x1, x2, x3, x4} are {x1, x3} and {x2, x4},
then

A2
k
∼= {(x, y, x, y) | x, y ∈ k}= V H

0 ⊂ vH0 ,

we have codim(vH0 , v0) = 1 and

M′(22) = L3 ·M(22) =
L + L2 + L3

L + 1
.

Thus, M(22) and M′(22) are dual to each other in the sense that they

interchange by substituting L−1 for L.
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For the other terms Mp and M′p, we see that

M(4) = L−4 + L−2, M′(4) = L4 + L2,

M(3,1) = L−3, M′(3,1) = L3,

M(2,12) =
L−1

L + 1
, M′(2,12) =

L2

L + 1
,

M(14) = 1, M′(14) = 1.

For each partition p, we would have the duality. Summing these up, we get

M = L−4 + L−3 + L−2 + 1 +
L−2 + 2L−1 + 1

L + 1
,

M′ = L4 + L3 + L2 + 1 +
L + 2L2 + L3

L + 1
.

Remark 12.2. By similar computations, we can easily deduce the

motivic counterpart of Serre’s mass formula [Ser78] from Conjecture 12.1.

In any characteristic and for any m,∫
Fiem

L−d dτ = L1−m.

Here, d : Fiem→ Z is the function associating the discriminant exponent to

a field extension and τ is the tautological motivic measure on Fien. This too

justifies the conjecture. With some more computation, it would be possible

to also get the motivic version of Bhargava’s formula [Bha07].

§13. Concluding remarks

We end the paper by making some remarks and raising several problems

for the future.

13.1 Singularities of v, v|F | and v|F |,ν

In the definition of log varieties, we assumed that the ambient variety is

always normal. It forced us to take the normalization v|F |,ν of the untwisting

variety v|F |. The normality assumption enabled us to work in a standard

setting of the minimal model program and to use familiar computations

of divisors. However, this restriction seems not to be really necessary. For
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instance, we can define the stringy motif if we specify an invertible subsheaf

of (
d∧

ΩX/D

)⊗r
⊗K(X)

rather than a boundary divisor ∆. We then would be able to replace most of

the arguments in this paper with ones using subsheaves rather than divisors.

What kind of singularities can v|F | and v|F |,ν have? In the examples

in Sections 9 and 10, rather mild singularities appeared. Indeed, in both

examples, for every E ∈G-Cov(D), the untwisting variety v|F | had only

normal hypersurface singularities having a crepant resolution. In general,

if v ⊂ V is a hypersurface, then so is v|F | ⊂ V |F |, although the author does

not know if it is always normal. What about complete intersections? If

the answer is positive, then we would be able to use Proposition 8.1 to

compute the boundary of v|F |. Moreover, we might be able to generalize, for

instance, the semicontinuity of the minimal log discrepancies to quotients of

local complete intersections by combining arguments used for local complete

intersections [EMY03, EM04] and quotient singularities [Nak].

In the tame case, if OD = k[[π]], then, as we saw in Section 9, the map

u∗ :OV →OV 〈F 〉 is simply given by xi 7→ πaixi, ai ∈Q for a suitable choice

of coordinates x1, . . . , xd ∈ OV and x1, . . . , xd ∈ OV 〈F 〉 . Therefore, if v ⊂ V
is defined by f1, . . . , fl ∈ OV , then the scheme-theoretic preimage u−1(v)⊂
V 〈F 〉 is defined by u∗f1, . . . , u

∗fl, which have the same number of terms as

f1, . . . , fl respectively. In particular, if v is an affine toric variety, then it

is embedded into V as a closed subvariety defined by binomials f1, . . . , fl,

and then u−1(v) is also defined by binomials. Thanks to this fact, we might

be able to study v|F | from the combinatorial viewpoint.

In the example in Section 10, v|F | had A1-singularities and D0
2n-

singularities, from Artin’s classification of rational double points in positive

characteristics [Art77]. In general, when v and hence v|F | are surfaces

(relative dimension one over D), then what kind of singularities can v|F |

have? Does every rational double point appear on some v|F |? If we can

compute singularities of v|F | systematically, we would be able to compute

the right-hand side of the equality in Conjecture 7.3 explicitly and to derive

many mass formulas, explained below.
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13.2 Mass formulas for extensions of a local field and local

Galois representations

For a constructible function Φ :G-Cov(D)→R, the integral∫
G-Cov(D)

Φ dτ

can be regarded as the motivic count of G-covers of D with E ∈G-Cov(D)

weighted by Φ(E). If OD has a finite residue field k = Fq rather than

an algebraically closed one, then the motif
∫
G-Cov(D) Φ dτ should give an

actual weighted count of G-covers of D as its point-counting realization.

This observation was made in [Yas14, WY15] in the context of the wild

McKay correspondence for linear actions. Such counts are number-theoretic

problems by nature. Indeed, as clarified in [WY15], counts appearing in the

McKay correspondence are closely related to counts of extensions of a local

field and to counts of local Galois representations, for instance, studied in

[Kra66, Ser78, Bha07, Ked07, Woo08]: formulas for such counts are called

mass formulas. The weights previously considered have the form Lα for some

function α :G-Cov(D)→Q, corresponding to weights of the form 1
]H q

α in

actual counts if k = Fq. However, in Conjecture 7.3, we have fancier weights

Mst,CG(H)(v
|F |,ν), which are expected to often be rational functions in L or

L1/n, n ∈ Z>0 (this is actually the case in examples in Sections 9 and 10).

The new weights clearly have geometric meaning and might provide some

insight into the number theory.

13.3 Weight functions for general representations

How do we compute functions wV and vV for general linear actions Gy
V = AdD? By now, we have satisfactory answers in the following cases:

• the tame case [Yasa, WY15],

• the case where OD = k[[π]], with k of characteristic p > 0, and G= Z/pZ
[Yas14],

• permutation representations [WY15],

• a hyperplane in a permutation representation defined by an invariant

linear form (Corollary 11.4).

For the general case, we can always embed a given representation into

a permutation representation and apply Corollary 8.1. The problem is

to compute the divisor AF , which appears to be almost equivalent to

computing functions wV and vV .
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13.4 The convergence or divergence of motivic integrals

The motivic integrals discussed in this paper do not generally converge,

and stringy motifs and motivic masses can be infinite. In such a case,

the wild McKay correspondence conjecture does not mean much. In

characteristic zero, the convergence of a stringy motif is equivalent to the

given singularities being (Kawamata) log terminal. The author then called

stringily log terminal singularities whose stringy motif converges, which is

equivalent to the usual notion of log terminal if singularities admit a log

resolution. Since quotient singularities in characteristic zero are always log

terminal, this divergence problem did not occur in the study of the McKay

correspondence in characteristic zero. However, wild quotient singularities

are sometimes stringily log terminal and sometimes not. It is an interesting

problem to know when they are and when they are not. If OD = k[[π]] has

characteristic p > 0, and G= Z/pZ, then the convergence is determined by

the value of a simple representation-theoretic invariant denoted by DV in

[Yas14]. Is it possible to generalize this invariant to other groups?

Another problem is that of attaching finite values to divergent motivic

integrals by “renormalizing” them somehow, for instance, as tried by Veys

[Vey04, Vey03] for stringy invariants in characteristic zero.
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