ON THE TWO-PARAMETER ERDŐS–FALCONER DISTANCE PROBLEM IN FINITE FIELDS

FRANCOIS CLÉMENT[®], HOSSEIN NASSAJIAN MOJARRAD[®], DUC HIEP PHAM[®] and CHUN-YEN SHEN

(Received 7 June 2022; accepted 23 June 2022; first published online 29 September 2022)

Abstract

Given $E\subseteq\mathbb{F}_q^d\times\mathbb{F}_q^d$, with the finite field \mathbb{F}_q of order q and the integer $d\ge 2$, we define the two-parameter distance set $\Delta_{d,d}(E)=\{(||x-y||,||z-t||):(x,z),(y,t)\in E\}$. Birklbauer and Iosevich ['A two-parameter finite field Erdős–Falconer distance problem', *Bull. Hellenic Math. Soc.* **61** (2017), 21–30] proved that if $|E|\gg q^{(3d+1)/2}$, then $|\Delta_{d,d}(E)|=q^2$. For d=2, they showed that if $|E|\gg q^{10/3}$, then $|\Delta_{2,2}(E)|\gg q^2$. In this paper, we give extensions and improvements of these results. Given the diagonal polynomial $P(x)=\sum_{i=1}^d a_ix_i^s\in\mathbb{F}_q[x_1,\ldots,x_d]$, the distance induced by P over \mathbb{F}_q^d is $||x-y||_s:=P(x-y)$, with the corresponding distance set $\Delta_{d,d}^s(E)=\{(||x-y||_s,||z-t||_s):(x,z),(y,t)\in E\}$. We show that if $|E|\gg q^{(3d+1)/2}$, then $|\Delta_{d,d}^s(E)|\gg q^2$. For d=2 and the Euclidean distance, we improve the former result over prime fields by showing that $|\Delta_{2,2}(E)|\gg p^2$ for $|E|\gg p^{13/4}$.

2020 Mathematics subject classification: primary 52C10; secondary 11T99.

Keywords and phrases: Erdős-Falconer distance problem, finite fields.

1. Introduction

The general Erdős distance problem is to determine the number of distinct distances spanned by a finite set of points. In the Euclidean space, it is conjectured that for any finite set $E \subset \mathbb{R}^d$, $d \ge 2$, we have $|\Delta(E)| \ge |E|^{2/d}$, where $\Delta(E) = \{||x - y|| : x, y \in E\}$. Here and throughout, $X \ll Y$ means that there exists C > 0 such that $X \le CY$, and $X \le Y$ with the parameter N means that for any $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that $X \le C_{\varepsilon} N^{\varepsilon} Y$.

The finite field analogue of the distance problem was first studied by Bourgain *et al.* [2] over prime fields. In this setting, the Euclidean distance between any two points $x = (x_1, \ldots, x_d), y = (y_1, \ldots, y_d) \in \mathbb{F}_q^d$, the *d*-dimensional vector space over the finite field \mathbb{F}_q of order q, is $||x - y|| = \sum_{i=1}^d (x_i - y_i)^2 \in \mathbb{F}_q$. For prime fields \mathbb{F}_p with $p \equiv 1 \pmod{4}$, they showed that if $E \subset \mathbb{F}_p^2$ with $|E| = p^{\delta}$ for some $0 < \delta < 2$, then the distance set satisfies $|\Delta(E)| \gg |E|^{1/2+\varepsilon}$ for some $\varepsilon > 0$ depending only on δ .

The second-listed author was supported by Swiss National Science Foundation grant P2ELP2-178313. © The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

This bound does not hold in general for arbitrary finite fields \mathbb{F}_q , as shown by Iosevich and Rudnev [9]. In this general setting, they considered the Erdős–Falconer distance problem to determine how large $E \subset \mathbb{F}_q^d$ needs to be so that $\Delta(E)$ spans all possible distances or at least a positive proportion of them. More precisely, they proved that $\Delta(E) = \mathbb{F}_q$ if $|E| > 2q^{(d+1)/2}$ in the all distances case, and also conjectured that $|\Delta(E)| \gg q$ if $|E| \gg_{\varepsilon} q^{d/2+\varepsilon}$ in the positive proportion case. In [6], it was shown that the exponent in the all distances case is sharp for odd d, and the conjecture for the positive proportion case holds for all $E \subset \{x \in \mathbb{F}_q^d : ||x|| = 1\}$. It is conjectured that in even dimensions, the optimal exponent is d/2 for the all distances case. In particular for d=2, it was shown in [3] that if $E \subseteq \mathbb{F}_q^2$ satisfies $|E| \gg q^{4/3}$, then $|\Delta(E)| \gg q$, improving the positive proportion case. The proofs in [3] use extension estimates for circles. Therefore, one would expect to get improvements for distance problems if one can obtain improved estimates for extension problems.

There have been a recent series of other improvements and generalisations on the Erdős–Falconer distance problem. In [7], a generalisation for subsets of regular varieties was studied. Extension theorems and their connection to the Erdős–Falconer problem are the main focus of [10]. The exponents (d + 1)/2 and d/2 were improved in [13, 14] for subsets E with Cartesian product structure in the all distances case for $|\Delta(E)|$ and in the positive proportion case for the quotient distance set $|\Delta(E)/\Delta(E)|$.

A two-parameter variant of the Erdős–Falconer distance problem for the Euclidean distance was studied by Birklbauer and Iosevich in [1]. More precisely, given $E \subseteq \mathbb{F}_q^d \times \mathbb{F}_q^d$, where $d \ge 2$, define the two-parameter distance set as

$$\Delta_{d,d}(E) = \{(||x - y||, ||z - t||) : (x, z), (y, t) \in E\} \subseteq \mathbb{F}_q \times \mathbb{F}_q.$$

They proved the following results.

THEOREM 1.1 [1]. Let E be a subset in $\mathbb{F}_q^d \times \mathbb{F}_q^d$. If $|E| \gg q^{(3d+1)/2}$, then $|\Delta_{d,d}(E)| = q^2$.

THEOREM 1.2 [1]. Let E be a subset in
$$\mathbb{F}_q^2 \times \mathbb{F}_q^2$$
. If $|E| \gg q^{10/3}$, then $|\Delta_{2,2}(E)| \gg q^2$.

In this short note, we provide an extension and an improvement of these results. Unlike [1], which relies heavily on Fourier analytic techniques, we use an elementary counting approach.

Let $P(x) = \sum_{i=1}^{d} a_i x_i^s \in \mathbb{F}_q[x_1, \dots, x_d]$ be a fixed diagonal polynomial in d variables of degree $s \ge 2$. For $x = (x_1, \dots, x_d), y = (y_1, \dots, y_d) \in \mathbb{F}_q^d$, we introduce

$$||x - y||_s := P(x - y) = \sum_{i=1}^d a_i (x_i - y_i)^s \in \mathbb{F}_q.$$

For any set $E \subset \mathbb{F}_q^d \times \mathbb{F}_q^d$, define

$$\Delta_{d,d}^{s}(E) = \{(||x-y||_{s}, ||z-t||_{s}) : (x,z), (y,t) \in E\} \in \mathbb{F}_{q} \times \mathbb{F}_{q}.$$

Our first result reads as follows.

THEOREM 1.3. Let E be a subset in $\mathbb{F}_q^d \times \mathbb{F}_q^d$. If $|E| \gg q^{(3d+1)/2}$, then $|\Delta_{d,d}^s(E)| \gg q^2$.

Our method also works for the multi-parameter distance set for $E \subseteq \mathbb{F}_q^{d_1 + \cdots + d_k}$, but we do not discuss such extensions here. For d = 2, we get an improved version of Theorem 1.2 for the Euclidean distance function over prime fields.

THEOREM 1.4. Let
$$E \subseteq \mathbb{F}_p^2 \times \mathbb{F}_p^2$$
. If $|E| \gg p^{13/4}$, then $|\Delta_{2,2}(E)| \gg p^2$.

The continuous versions of Theorems 1.3 and 1.4 have been studied in [4, 5, 8]. We do not know whether our method can be extended to that setting. It follows from our approach that the conjectured exponent d/2 of the (one-parameter) distance problem would imply the sharp exponent for the two-parameter analogue, namely 3d/2, for even dimensions. We refer to [1] for constructions and more discussions.

2. Proof of Theorem 1.3

By using the following auxiliary result whose proof relies on Fourier analytic methods (see [15, Theorem 2.3] and [11, Corollaries 3.1 and 3.4]), we are able to give an elegant proof for Theorem 1.3. Compared with the method in [1], ours is more elementary.

LEMMA 2.1. Let $X, Y \subseteq \mathbb{F}_q^d$. Define $\Delta^s(X, Y) = \{||x - y||_s : x \in X, y \in Y\}$. If $|X||Y| \gg q^{d+1}$, then $|\Delta^s(X, Y)| \gg q$.

PROOF OF THEOREM 1.3. By assumption, $|E| \ge Cq^{d+(d+1)/2}$ for some constant C > 0. For $y \in \mathbb{F}_q^d$, let $E_y := \{x \in \mathbb{F}_q^d : (x,y) \in E\}$ and define

$$Y := \{ y \in \mathbb{F}_q^d : |E_y| > \frac{1}{2} C q^{(d+1)/2} \}.$$

We first show that $|Y| \ge \frac{1}{2}Cq^{(d+1)/2}$. Note that

$$|E| = \sum_{y \in Y} |E_y| + \sum_{y \in \mathbb{F}_q^d \setminus Y} |E_y| \le q^d |Y| + \sum_{y \in \mathbb{F}_q^d \setminus Y} |E_y|,$$

where the last inequality holds since $|E_y| \le q^d$ for $y \in \mathbb{F}_q^d$. Combining it with the assumption on |E| gives the lower bound

$$\sum_{y \in \mathbb{F}_q^d \setminus Y} |E_y| \ge Cq^{d + (d+1)/2} - q^d |Y|.$$

However, by definition, $|E_y| \leq \frac{1}{2}Cq^{(d+1)/2}$ for $y \in \mathbb{F}_q^d \setminus Y$, yielding the upper bound

$$\sum_{\mathbf{y} \in \mathbb{F}_q^d \setminus Y} |E_{\mathbf{y}}| \le \frac{1}{2} C q^{d + (d+1)/2}.$$

These two bounds together give $Cq^{d+(d+1)/2} - q^d|Y| \le \frac{1}{2}Cq^{d+(d+1)/2}$, proving the claimed bound $|Y| \ge \frac{1}{2}Cq^{(d+1)/2}$.

In particular, Lemma 2.1 implies $|\Delta^s(Y,Y)| \gg q$, as $|Y||Y| \gg q^{d+1}$. However, for each $u \in \Delta^s(Y,Y)$, there are $z,t \in Y$ such that $||z-t||_s = u$. One has $|E_z|, |E_t| \gg q^{(d+1)/2}$, therefore, again by Lemma 2.1, $|\Delta^s(E_z,E_t)| \gg q$. Furthermore, for $v \in \Delta^s(E_z,E_t)$, there are $x \in E_z$ and $y \in E_t$ satisfying $||x-y||_s = v$. Note that $x \in E_z$ and $y \in E_t$ mean that $(x,z), (y,t) \in E$. Thus, $(v,u) = (||x-y||_s, ||z-t||_s) \in \Delta^s_{d,d}(E)$. From this, we conclude that $|\Delta^s_{d,d}(E)| \gg q|\Delta^s(Y,Y)| \gg q^2$, which completes the proof.

3. Proof of Theorem 1.4

To improve the exponent over prime fields \mathbb{F}_p , we strengthen Lemma 2.1 as shown in Lemma 3.1 below. Following the proof of Theorem 1.3 and using Lemma 3.1 proves Theorem 1.4.

Lemma 3.1. Let
$$X, Y \subseteq \mathbb{F}_p^2$$
. If $|X|, |Y| \gg p^{5/4}$, then $|\Delta(X, Y)| \gg p$.

PROOF. It is clear that if $X' \subseteq X$ and $Y' \subseteq Y$, then $\Delta(X', Y') \subseteq \Delta(X, Y)$. Thus, without loss of generality, we may assume that |X| = |Y| = N with $N \gg p^{5/4}$. Let Q be the number of quadruples $(x, y, x', y') \in X \times Y \times X \times Y$ such that ||x - y|| = ||x' - y'||. It follows easily from the Cauchy–Schwarz inequality that

$$|\Delta(X,Y)| \gg \frac{|X|^2|Y|^2}{Q}.$$

Let T be the number of triples $(x, y, y') \in X \times Y \times Y$ such that ||x - y|| = ||x - y'||. By the Cauchy–Schwarz inequality again, one gets $Q \ll |X| \cdot T$. Next, we need to bound T. For this, denote $Z = X \cup Y$, so that $N \le |Z| \le 2N$. Let T' be the number of triples $(a, b, c) \in Z \times Z \times Z$ such that ||a - b|| = ||a - c||. Obviously, $T \le T'$. However, it was recently proved (see [12, Theorem 4]) that

$$T' \ll \frac{|Z|^3}{p} + p^{2/3}|Z|^{5/3} + p^{1/4}|Z|^2,$$

which gives

$$T \ll \frac{N^3}{n} + p^{2/3} N^{5/3} + p^{1/4} N^2,$$

and then $T \ll N^3/p$ (since $N \gg p^{5/4}$). Putting all the bounds together, we obtain

$$\frac{N^3}{|\Delta(X,Y)|} = \frac{|X||Y|^2}{|\Delta(X,Y)|} \ll \frac{Q}{|X|} \ll T \ll \frac{N^3}{p},$$

or equivalently, $|\Delta(X, Y)| \gg p$, as required.

Acknowledgement

The authors are grateful to Dr. Thang Pham for sharing insights and new ideas.

References

- [1] P. Birklbauer and A. Iosevich, 'A two-parameter finite field Erdős–Falconer distance problem', *Bull. Hellenic Math. Soc.* **61** (2017), 21–30.
- [2] J. Bourgain, N. Katz and T. Tao, 'A sum-product estimate in finite fields, and applications', *Geom. Funct. Anal.* **14** (2004), 27–57.
- [3] J. Chapman, M. Erdogan, D. Hart, A. Iosevich and D. Koh, 'Pinned distance sets, k-simplices, Wolff's exponent in finite fields and sum-product estimates', *Math. Z.* **271** (2012), 63–93.
- [4] X. Du, Y. Ou and R. Zhang, 'On the multiparameter Falconer distance problem', Trans. Amer. Math. Soc. 375 (2022), 4979–5010.
- [5] K. Hambrook, A. Iosevich and A. Rice, 'Group actions and a multi-parameter Falconer distance problem', Preprint, 2017, arXiv:1705.03871.
- [6] D. Hart, A. Iosevich, D. Koh and M. Rudnev, 'Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdös–Falconer distance conjecture', *Trans. Amer. Math. Soc.* 363 (2011), 3255–3275.
- [7] D. Hieu and T. Pham, 'Distinct distances on regular varieties over finite fields', *J. Number Theory* **173** (2017), 602–613.
- [8] A. Iosevich, M. Janczak and J. Passant, 'A multi-parameter variant of the Erdős distance problem', Preprint, 2017, arXiv:1712.04060.
- [9] A. Iosevich and M. Rudnev, 'Erdős distance problem in vector spaces over finite fields', *Trans. Amer. Math. Soc.* **359** (2007), 6127–6142.
- [10] D. Koh, T. Pham and L. Vinh, 'Extension theorems and a connection to the Erdős–Falconer distance problem over finite fields', J. Funct. Anal. 281 (2021), 1–54.
- [11] D. Koh and C.-Y. Shen, 'The generalized Erdős–Falconer distance problems in vector spaces over finite fields', J. Number Theory 132 (2012), 2455–2473.
- [12] B. Murphy, G. Petridis, T. Pham, M. Rudnev and S. Stevens, 'On the pinned distances problem in positive characteristic', *J. Lond. Math. Soc.* (2) **105** (2022), 469–499.
- [13] T. Pham and A. Suk, 'Structures of distance sets over prime fields', Proc. Amer. Math. Soc. 148 (2020), 3209–3215.
- [14] T. Pham and L. Vinh, 'Distribution of distances in vector spaces over prime fields', *Pacific J. Math.* 309 (2020), 437–451.
- [15] L. Vinh, 'On the generalized Erdős–Falconer distance problems over finite fields', J. Number Theory 133 (2013), 2939–2947.

FRANCOIS CLÉMENT.

Sorbonne Université, CNRS, LIP6, Paris, France

e-mail: françois.clement@lip6.fr

HOSSEIN NASSAJIAN MOJARRAD,

Courant Institute, New York University, New York 10012, USA

e-mail: sn2854@nyu.edu

DUC HIEP PHAM, University of Education, Vietnam National University, Hanoi, Vietnam

e-mail: phamduchiep@vnu.edu.vn

CHUN-YEN SHEN, Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan

e-mail: cyshen@math.ntu.edu.tw