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Abstract In this paper, the linear space F of a special type of fractal interpolation functions (FIFs) on
an interval I is considered. Each FIF in F is established from a continuous function on I. We show that,
for a finite set of linearly independent continuous functions on I, we get linearly independent FIFs. Then
we study a finite-dimensional reproducing kernel Hilbert space (RKHS) FB ⊂ F , and the reproducing
kernel k for FB is defined by a basis of FB. For a given data set D = {(tk, yk) : k = 0, 1, . . . , N}, we apply
our results to curve fitting problems of minimizing the regularized empirical error based on functions
of the form fV + fB, where fV ∈ CV and fB ∈ FB. Here CV is another finite-dimensional RKHS of
some classes of regular continuous functions with the reproducing kernel k∗. We show that the solution
function can be written in the form fV + fB =

∑N
m=0 γmk∗

tm
+

∑N
j=0 αjktj , where k∗

tm
(·) = k∗(·, tm)

and ktj (·) = k(·, tj), and the coefficients γm and αj can be solved by a system of linear equations.
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1. Introduction

Approximation theory is concerned with approximating complex or unknown functions
by other simpler functions. The problems of approximation of functions by polynomials,
splines, rational functions, trigonometric functions and wavelets have been well studied.
Similarly, one of the main tasks in the problems of learning, curve fitting and pattern
recognition is to develop suitable models for given data sets. In particular, curve fitting
is a process of constructing a curve that has the best fit to a given data set. The theory
of non-parametric curve estimations has been developed well, and many researchers have
established several types of estimators, see [12–14, 16, 30] and references given in these
books.
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In many real-world applications, data arise from unknown functions, and a function
that interpolates these data is required to be generated. The interpolation problem is
finding a function f in some class of functions and interpolating those data in a given
data set D. Polynomials, splines and rational functions have been applied in interpolation
methods. However, in many practical problems, sampled signals are of irregular forms,
and fractal theory can provide new technologies for making complicated curves and fit-
ting experimental data. A fractal function is a function whose graph is the attractor of
an iterated function system. A fractal interpolation function (FIF) is a continuous fractal
function interpolating points in a given data set. The theory of FIFs is developed for the
interpolation problem with a class of fractal functions. It generalizes traditional inter-
polation techniques through the property of self-similarity. The concept of FIFs defined
through an iterated function system was introduced by Barnsley [2, 3]. It is known that
the theory of FIFs can be applied to model discrete sequences (see [19, 22, 23]). Various
types of FIFs and their approximation properties have been discussed in [4, 5, 8–10, 15,
17, 20, 21, 24–27, 32–35], see also the references given in the literature.
The theory of reproducing kernel Hilbert spaces (RKHSs) has been proven to be a

powerful tool in functional analysis, integral equations and learning theory. The notion of
positive definite functions plays a role in reproducing kernels in RKHSs, see the excellent
monographs [1, 6, 11, 28, 31]. In [7], Bouboulis and Mavroforakis constructed fractal-type
reproducing kernels. They showed that the spaces of some types of FIFs are RKHSs, and
the connection between FIFs and RKHSs was established.
This paper aims to discuss the RKHS consisting of FIFs further and apply such RKHS

to curve fitting problems. Curve-fitting aims to obtain a suitable function that has a
good approximation to the given data set. Such problems have been well studied in
non-parametric regression and machine learning. Although FIFs are constructed to be
interpolation functions, the theory of FIFs has many applications in approximation the-
ory. In [19, 22, 23], FIFs were applied to model discrete sequences. In [24–26], fractal
function spaces with linearly independent sets of α-fractal functions were studied. The
author also discussed the role that these fractal function spaces play in approximation
theory. Since the theory of RKHSs is a useful tool in approximation theory and machine
learning, we are interested in RKHSs that consist of FIFs and their applications to curve
fitting problems.
For a given data set, we aim to fit the data by a linear combination of linearly inde-

pendent FIFs rather than a single FIF constructed from the data set directly. Moreover,
we consider functions of the form fV + fB, where fV belongs to an RKHS of regular
continuous functions and fB belongs to an RKHS of FIFs. Combining these two types of
functions can make solutions to curve-fitting problems more general and flexible.
In § 2, the construction of a particular type of FIFs which are applied in this paper is

given. Each FIF is established from a continuous function and can be treated as a fractal
perturbation of that continuous function. In § 3, we prove that, for fixed parameters,
the set F of these FIFs is a linear space, and there is a one-to-one correspondence
between C[I] and F . Here, C[I], defined below, is the space of continuous functions on
the interval I. We also show that, for a finite set of linearly independent functions in
C[I], we get linearly independent FIFs. Then, for applications in curve fitting problems,
a finite-dimensional RKHS FB ⊂ F is established, and the reproducing kernel k for FB
is defined by a basis of FB. In § 4, suppose a data set D = {(tk, yk) : k = 0, 1, . . . , N} is
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given, and we aim to find a function to fit the data in D. The type of functions considered
here is the sum of a regular continuous function and an FIF. Therefore, we also consider
a finite-dimensional RKHS CV of some classes of regular continuous functions with the
reproducing kernel k∗, and we study the problem of learning a function in CV ⊕ FB for
D by minimizing the regularized empirical error

1

N + 1

N∑
k=0

(yk − (fV(tk) + fB(tk)))
2 + λ1‖fV‖2C + λ2‖fB‖2F (1.1)

for fV ∈ CV and fB ∈ FB with fixed non-negative regularization parameters λ1 and λ2.
Here ‖ · ‖C and ‖ · ‖F are norms on CV and FB, respectively. We show that the solution
of Equation (1.1) can be written in the form

f = fV + fB =
N∑

m=0

γmk∗
tm +

N∑
j=0

αjktj
, (1.2)

where k∗
tm(·) = k∗(·, tm) and ktj

(·) = k(·, tj), and the coefficients γm and αj can be

solved by a system of linear equations.
Throughout this paper, let t0 < t1 < t2 < · · · < tN and I = [t0, tN ], where N is a

positive integer andN ≥ 2. For each k = 1, . . . , N , let Ik = [tk−1, tk] and Jk = [tj(k), tl(k)].
Here j(k), l(k) ∈ {0, 1, . . . , N} and j(k) < l(k). To avoid trivial cases, we assume Jk 6= Ik.
We will denote by C[I] the set of all real-valued continuous functions defined on I. Define
‖f‖∞ = maxt∈I |f(t)| for f ∈ C[I]. For a given set of points D = {(tk, yk) : k =
0, 1, . . . , N}, let CD[I] be the set of functions in C[I] that interpolate all points in D.
It is known that (C[I], ‖ · ‖∞) is a Banach space and CD[I] is a complete metric space,
where the metric is induced by ‖ · ‖∞.

2. Construction of FIFs

The approach to constructing FIFs in this section has been treated in [18]. We show the
details here for readers’ convenience.
Let u ∈ C[I] and D = {(tk, yk) : yk = u(tk), k = 0, 1, . . . , N}. For k = 1, . . . , N , let

Lk : Jk → Ik be a homeomorphism such that Lk(tj(k)) = tk−1 and Lk(tl(k)) = tk, and
define Mk : Jk × R → R by

Mk(t, y) = sky + u(Lk(t))− skpk(t), (2.1)

where −1 < sk < 1 and pk is a polynomial on Jk such that pk(tj(k)) = yj(k) and
pk(tl(k)) = yl(k). Then Mk(tj(k), yj(k)) = yk−1, Mk(tl(k), yl(k)) = yk, and

|Mk(t, y)−Mk(t, y
∗)| ≤ |sk||y − y∗| for all t ∈ Jk and y, y∗ ∈ R. (2.2)

Define Wk : Jk ×R → Ik ×R by Wk(t, y) = (Lk(t),Mk(t, y)). For h ∈ CD[I] and for each
k = 1, . . . , N , let Ak = {(t, h(t)) : t ∈ Jk}. Then Wk(Ak) = {(Lk(t),Mk(t, h(t))) : t ∈
Jk}. Since Lk : Jk → Ik is a homeomorphism, Wk(Ak) can be written as
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Wk(Ak) = {(t,Mk(L
−1
k (t), h(L−1

k (t)))) : t ∈ Ik}.

Hence Wk(Ak) is the graph of the continuous function hk : Ik → R defined by

hk(t) = Mk(L
−1
k (t), h(L−1

k (t))).

It is easy to see that hk(tk−1) = yk−1 and hk(tk) = yk. Define a mapping T : CD[I] →
CD[I] by T (h)(t) = hk(t) for t ∈ Ik, that is, for h ∈ CD[I] and t ∈ Ik,

T (h)(t) = skh(L
−1
k (t)) + u(t)− skpk(L

−1
k (t)). (2.3)

For h1, h2 ∈ CD[I], we have

‖T (h1)− T (h2)‖∞ ≤ s‖h1 − h2‖∞, s = max{|s1|, . . . , |sN |}.

Since 0 ≤ s < 1, we see that T is a contraction mapping on CD[I].

Theorem 2.1. (Luor [ 18, Theorem 2.1]). The operator T given by Equation (2.3) is
a contraction mapping on CD[I].

Definition 2.2. The fixed point f[u] of T in CD[I] is called an FIF on I corresponding
to the continuous function u.

The FIF f[u] given in Definition 2.2 satisfies the equation for k = 1, . . . , N :

f[u](t) = sk

{
f[u](L

−1
k (t))− pk(L

−1
k (t))

}
+ u(t), t ∈ Ik. (2.4)

If sk = 0 for all k, then f[u] = u. Therefore, f[u] can be treated as a fractal perturbation
of u.

3. RKHSs of FIFs

3.1. Introduction to RKHSs

We give a brief introduction to RKHSs. We refer the readers to [6] and [28] for more
details. Recall that a m ×m real matrix A = [ai,j ] is positive semi-definite if and only if
for every α1, . . . , αm ∈ R we have that

∑m
i,j=1 αiαjai,j ≥ 0. We call A positive definite if

and only if for every α1, . . . , αm ∈ R with α2
1+ · · ·+α2

m 6= 0, we have
∑m

i,j=1 αiαjai,j > 0.
Let Ω be a set. The function k : Ω × Ω → R is positive semi-definite (definite) if for

every positive integer m and every choice of distinct points t1, . . . , tm in Ω, the matrix
[k(ti, tj)] is positive semi-definite (definite). Here, we call k a kernel if it is symmetric and
positive semi-definite. By Moore’s theorem (Paulsen and Raghupathi [28, Theorem 2.14]),
there exists an RKHS H of functions defined on Ω with an inner product 〈·, ·〉H such that
k is the reproducing kernel for H. For each t ∈ Ω, define kt(z) = k(z, t), z ∈ Ω. Then
kt ∈ H and for f ∈ H, we have f(t) = 〈f,kt〉H. Moreover, k(z, t) = kt(z) = 〈kt,kz〉H
for t, z ∈ Ω, and the set span{kt : t ∈ Ω} is dense in H.
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Throughout the following subsections, we suppose that N, t0, . . . , tN , tj(1), . . ., tj(N),
tl(1), . . ., tl(N) and s1, . . . , sN are all fixed numbers, and L1, . . . , LN given in § 2 are fixed
functions. Let F be the subset of C[I] such that each f in F is an FIF corresponding
to some function u ∈ C[I] and is constructed by the approach given in § 2 with linear
polynomials pk for k = 1, . . . , N .

3.2. F is a linear space

If u ≡ 0, the interpolated data set is {(tk, 0) : k = 0, 1, . . . , N} and each pk is the zero
polynomial on Jk. The mapping T defined by Equation (2.3) is reduced to T (h)(t) =
skh(L

−1
k (t)) for h ∈ CD[I]. The zero function is the fixed point of T and hence f[u] ≡

0 ∈ F .
Suppose that f, g ∈ F and a, b ∈ R. Then f and g are FIFs on I corresponding to

some u and v in C[I], respectively. For t ∈ Ik, we have

f(t) = skf(L
−1
k (t))− skpk(L

−1
k (t)) + u(t), (3.1)

g(t) = skg(L
−1
k (t))− skqk(L

−1
k (t)) + v(t), (3.2)

where pk is a linear polynomial on Jk such that pk(tj(k)) = u(tj(k)), pk(tl(k)) = u(tl(k)),
and qk is a linear polynomial on Jk such that qk(tj(k)) = v(tj(k)), qk(tl(k)) = v(tl(k)).
Then

(af + bg)(t) = sk(af + bg)(L−1
k (t))− sk(apk + bqk)(L

−1
k (t)) + (au+ bv)(t), t ∈ Ik.

Since apk + bqk is a linear polynomial that satisfies

(apk + bqk)(tj(k)) = (au+ bv)(tj(k)), (apk + bqk)(tl(k)) = (au+ bv)(tl(k))

for k = 1, . . . , N , we see that af + bg satisfies Equation (2.4) with f[u], pk, and u being
replaced by af + bg, apk + bqk and au + bv, respectively. This shows that af + bg is an
FIF in F corresponding to the function au + bv, and hence F is a linear space.

3.3. One-to-one correspondence between C[I] and F

Note that functions in F only depend on functions in C[I]. When u ∈ C[I] is given,
the data set for interpolation, D = {(tk, yk) : yk = u(tk), k = 0, 1, . . . , N}, and all linear
polynomials pk are determined. Then, the unique FIF f[u] in F can be obtained by the
approach in § 2.

Theorem 3.1. The mapping Φ : C[I] → F defined by Φ(u) = f[u] is a one-to-one and
onto bounded linear mapping.
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Proof. We first show that Φ is bounded. For u ∈ C[I] and t ∈ Ik,

|f[u](t)− u(t)| = |sk||f[u](L−1
k (t))− pk(L

−1
k (t))|

≤ |sk|
(
sup
z∈Jk

|f[u](z)|+ sup
z∈Jk

|pk(z)|
)

≤ |sk|
(
‖f[u]‖∞ +max{|u(tj(k))|, |u(tl(k))|}

)
.

This implies that ‖f[u] − u‖∞ ≤ s‖f[u]‖∞ + s‖u‖∞, where s = max{|s1|, . . . , |sN |}. Then

‖f[u]‖∞ ≤ ‖f[u] − u‖∞ + ‖u‖∞ ≤ s‖f[u]‖∞ + (s+ 1)‖u‖∞

and hence

‖Φ(u)‖∞ = ‖f[u]‖∞ ≤
(
1 + s

1− s

)
‖u‖∞, u ∈ C[I]. (3.3)

The boundedness of Φ is obtained by Equation (3.3).
Suppose u, v ∈ C[I] and Φ(u) = f[u], Φ(v) = f[v]. Then f[u] and f[v] satisfy

the Equations (3.1) and (3.2) with f and g being replaced by f[u] and f[v], respectively.
Then, for a, b ∈ R, af[u]+ bf[v] is in F and is constructed from the function au + bv. This
shows that Φ(au+ bv) = af[u] + bf[v] = aΦ(u) + bΦ(v), and Φ is linear.
The mapping Φ is onto since every f in F is constructed from a function u in C[I].
In the following, we show that Φ is one-to-one. Since Φ is linear, we prove that

f[u] ≡ 0 only when u ≡ 0. If f[u](t) = 0 for all t ∈ I, then the interpolated data set
is {(tk, 0) : k = 0, 1, . . . , N} and then each pk is the zero polynomial on Jk. Since f[u]
satisfies Equation (2.4), we have u(t) = 0 for all t ∈ I. �

Note that F is a subset of C[I] and each function in F is an FIF constructed by the
approach given in § 2. For fixed numbers N, t0, . . . , tN , tj(1), . . ., tj(N), tl(1), . . ., tl(N),
s1, . . . , sN and for fixed functions L1, . . . , LN , Theorem 3.1 shows that each function
f ∈ F is an FIF corresponding to a function u ∈ C[I], and for different functions in C[I],
we get different FIFs.

Corollary 3.2. If u1, . . . , un are linearly independent functions in C[I], then f[u1],
. . ., f[un] are linearly independent.

Proof. Let
∑n

i=1 aif[ui] ≡ 0. Since f[ui] = Φ(ui) for each i and Φ is linear, we have

Φ(
∑n

i=1 aiui) ≡ 0. This implies
∑n

i=1 aiui ≡ 0 by the one-to-one property of Φ. Since
u1, . . . , un are linearly independent, we have a1 = · · · = an = 0. �

3.4. Finite-dimensional RKHSs of fractal interpolants

Suppose that an inner product 〈·, ·〉F on F is defined. Let B = {φ0, φ1, . . . , φη}
be a linearly independent set of functions in F and let FB be the subspace FB =
span{φ0, φ1, . . . , φη}. Then FB is a finite-dimensional Hilbert space with a basis B.
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Let A = [Ai,j ], where Ai,j = 〈φi, φj〉F . By [28, Proposition 2.23], A is a positive definite
matrix; hence, A is invertible. Define

k(t′, t) =

η∑
j=0

η∑
m=0

φj(t
′)φm(t)Bj,m, t′, t ∈ I, (3.4)

where the matrix B = [Bj,m] is the inverse of A. Here, we show that k is positive
semi-definite. Since B is symmetric, let B1/2 be the matrix such that B1/2B1/2 = B.
Let ` be any positive integer and let z1, . . . , z` be any choice of distinct points in I. Let
Ψ = [φi(zj)]. Then for any column vector d = [d1, . . . , d`]

T in R`,

∑̀
p=1

∑̀
q=1

dpdqk(zp, zq) = dTΨTBΨd = (B1/2Ψd)T (B1/2Ψd) ≥ 0.

Let kt(·) = k(·, t) and we write kt in the form

kt(·) =
η∑

j=0

( η∑
m=0

φm(t)Bj,m

)
φj(·). (3.5)

Then for f =
∑η

k=0 akφk ∈ FB and t ∈ I,

〈f,kt〉F =

η∑
k=0

η∑
j=0

ak

( η∑
m=0

φm(t)Bj,m

)
〈φk, φj〉F

=

η∑
k=0

η∑
m=0

akφm(t)

( η∑
j=0

Ak,jBj,m

)
=

η∑
k=0

akφk(t) = f(t). (3.6)

We also have k(t′, t) = kt(t
′) = 〈kt,kt′〉F for t, t′ ∈ I.

Theorem 3.3. The space FB is a finite-dimensional RKHS with the reproducing kernel
k defined by Equation (3.4).

By Equation (3.5), we have

kti
=

η∑
j=0

( η∑
m=0

φm(ti)Bj,m

)
φj , i = 0, 1, . . . , N. (3.7)

In general, kt0
, . . . ,ktN

may not be linearly independent. Since each kti
is a function in

FB, kt0
, . . . ,ktN

are linearly dependent when η < N .

Proposition 3.4. Let K = [k(ti, tj)] and Ψi = [φ0(ti), φ1(ti), . . . , φη(ti)]
T for i, j =

0, . . . , N . Then, the following three statements are equivalent.
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(1) kt0
, . . . ,ktN

are linearly independent.
(2) The column vectors Ψ0,Ψ1, . . . ,ΨN are linearly independent.
(3) The matrix K is positive definite.

Proof. We first show that statements (1) and (2) are equivalent. Suppose that

c0kt0
+ · · ·+ cNktN

=

η∑
j=0

( N∑
i=0

η∑
m=0

ciBj,mφm(ti)

)
φj ≡ 0.

Since φ0, . . . , φη are linearly independent, we have BΨC = 0, where B = [Bj,m], C =
[c0, . . . , cN ]T , 0 is the zero column vector, and Ψ = [φm(ti)] is the matrix with column
vectors Ψi, i = 0, . . . , N . Since B is invertible, we have ΨC = 0. Therefore, kt0

, . . . ,ktN
are linearly independent if and only if the equation ΨC = 0 has only one solution, ci = 0
for i = 0, . . . , N , if and only if Ψ0,Ψ1, . . . ,ΨN are linearly independent.
The following shows that statements (1) and (3) are equivalent. Since k(ti, tj) =

〈ktj
,kti

〉F for i, j = 0, . . . , N , we see that, for α0, . . . , αN ∈ R,

N∑
i=0

N∑
j=0

αiαjk(ti, tj) =

〈 N∑
j=0

αjktj
,

N∑
i=0

αikti

〉
F
=

∥∥∥∥ N∑
j=0

αjktj

∥∥∥∥2
F
≥ 0. (3.8)

The matrix K is positive definite if and only if for every α0, . . . , αN ∈ R with α2
0 +

· · · + α2
N 6= 0, we have

∑N
i=0

∑N
j=0 αiαjk(ti, tj) > 0. Then statements (1) and (3) are

equivalent and can be obtained by Equation (3.8). �

If N is large, functions kt0
, . . . ,ktN

are usually linearly dependent. In the following,

we investigate the dependence of these functions. Let uj = Φ−1(φj) for j = 0, 1, . . . , η
and Ui = [u0(ti), u1(ti), . . . , uη(ti)]

T for i = 0, 1, . . . , N . Since uj(ti) = φj(ti), we have
Ui = Ψi for each i, where Ψi is given in Proposition 3.4.

Proposition 3.5. If ktδ
=

∑s
i=1 βiktr(i)

, where βi 6= 0, δ, r(i) ∈ {0, 1, . . . , N} and

r(i) 6= δ for i = 1, . . . , s, then Uδ =
∑s

i=1 βiUr(i). The converse is also true.

Proof. By Equation (3.5), we have

ktδ
=

η∑
j=0

( η∑
m=0

φm(tδ)Bj,m

)
φj =

s∑
i=1

βi

{ η∑
j=0

( η∑
m=0

φm(tr(i))Bj,m

)
φj

}

=

η∑
j=0

( η∑
m=0

s∑
i=1

βiφm(tr(i))Bj,m

)
φj .

This implies

η∑
j=0

{ η∑
m=0

φm(tδ)Bj,m −
η∑

m=0

s∑
i=1

βiφm(tr(i))Bj,m

}
φj = 0. (3.9)
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Since φ0, . . . , φη are linearly independent, we have

η∑
m=0

(
φm(tδ)−

s∑
i=1

βiφm(tr(i))

)
Bj,m = 0, j = 0, 1, . . . , η. (3.10)

Then

B(Ψδ − [Ψr(1), . . . ,Ψr(s)]β) = 0,

where B = [Bj,m], β = [β1, . . . , βs]
T , and 0 is the zero column vector. Here Ψ` =

[φ0(t`), φ1(t`), . . . , φη(t`)]
T for ` = δ, r(1), . . . , r(s). Since B is invertible, we have Ψδ =∑s

i=1 βiΨr(i). The equalities Ui = Ψi for each i show that Uδ =
∑s

i=1 βiUr(i).
Conversely, if Uδ =

∑s
i=1 βiUr(i), then Equation (3.10) holds and we have

Equation (3.9). This implies ktδ
=

∑s
i=1 βiktr(i)

. �

4. Curve fitting problems

Let D = {(tk, yk) : k = 0, 1, . . . , N} be a given data set. Suppose that tj(1), . . ., tj(N),
tl(1), . . ., tl(N) and s1, . . . , sN are all fixed numbers, and L1, . . . , LN given in § 2 are fixed
functions. Let F be the space of FIFs that are constructed by the approach given in
§ 2 with a function u ∈ C[I], where I = [t0, tN ], and linear polynomials pk on Jk =
[tj(k), tl(k)] such that pk(tj(k)) = u(tj(k)) and pk(tl(k)) = u(tl(k)) for k = 1, . . . , N . Let
B = {φ0, φ1, . . . , φη} be a linearly independent set of functions in F and let FB =
span{φ0, φ1, . . . , φη}. Suppose that an inner product 〈·, ·〉F on F is defined. Theorem 3.3
shows that FB is a finite-dimensional RKHS with a basis B, and the reproducing kernel
k is given by Equation (3.4).
Let V = {v0, v1, . . . , vξ} be a linearly independent set of functions in C[I] such that

B ∪ V is also linearly independent. Let CV = span{v0, v1, . . . , vξ}. Suppose that an inner
product 〈·, ·〉C on C[I] is defined. By a similar approach given in § 3.4, we see that CV is
also a finite-dimensional RKHS with the kernel k∗ defined by

k∗(t′, t) =

ξ∑
j=0

ξ∑
m=0

vj(t
′)vm(t)B∗

j,m, t′, t ∈ I, (4.1)

where the matrix [B∗
j,m] is the inverse of A∗ = [〈vi, vj〉C ].

Consider the problem of learning a function in CV ⊕ FB from D by minimizing the
regularized empirical error

1

N + 1

N∑
k=0

(yk − (fV(tk) + fB(tk)))
2 + λ1‖fV‖2C + λ2‖fB‖2F (4.2)

for fV ∈ CV and fB ∈ FB with fixed non-negative regularization parameters λ1 and λ2.
Here ‖fV‖2C = 〈fV , fV〉C and ‖fB‖2F = 〈fB, fB〉F . The function fV + fB is in CV ⊕ FB,
and the first item of Equation (4.2) is the empirical mean squared error. It is often to add
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a complexity penalty item to the objective function to avoid overfitting. In the RKHS
approach, we may choose the squared norm of functions in RKHS as the penalty item. In
this paper, the penalty item is given by λ1‖fV‖2C + λ2‖fB‖2F . ‖fV‖2C and ‖fB‖2F measure
the complexity of the functions, and λ1 and λ2 control the strength of the complexity
penalty. If λ1 = λ2 = 0, minimizing Equation (4.2) is reduced to the least mean squared
error problem. If there exists an interpolation function for D in CV ⊕FB, it is a solution
for the least mean squared error problem, and the empirical mean squared error is equal
to 0.
Let k and k∗ be the kernels defined by Equations (3.4) and (4.1), respectively. Let

FD = span{kt0
,kt1

, . . . ,ktN
} and C∗

D = span{k∗
t0
,k∗

t1
, . . . ,k∗

tN
}, where kti

is given by

Equation (3.7) and

k∗
ti
=

ξ∑
j=0

( ξ∑
m=0

vm(ti)B
∗
j,m

)
vj , i = 0, 1, . . . , N. (4.3)

We see that FD is a subspace of FB and C∗
D is a subspace of CV .

For fB ∈ FB, let PFD (fB) be the orthogonal projection of fB on FD. Then

fB(ti)−PFD (fB)(ti) = 〈fB −PFD (fB),kti
〉F = 0, i = 0, . . . , N,

and hence fB(ti) = PFD (fB)(ti) for i = 0, . . . , N . Similarly, for fV ∈ CV , fV(ti) =
PC∗

D
(fV)(ti) for each i, where PC∗

D
(fV) is the orthogonal projection of fV on C∗

D. Since

‖PFD (fB)‖F ≤ ‖fB‖F and ‖PC∗
D
(fV)‖C ≤ ‖fV‖C , we see that if a function fV + fB

minimizes the regularized empirical error given in Equation (4.2), where fV ∈ CV and
fB ∈ FB, then fV ∈ C∗

D and fB ∈ FD. Therefore, a solution of Equation (4.2) can be
written in the form

f = fV + fB =
N∑

m=0

γmk∗
tm +

N∑
j=0

αjktj
. (4.4)

This implies

f(ti) =
N∑
j=0

γjk
∗(ti, tj) +

N∑
j=0

αjk(ti, tj) i = 0, 1, . . . , N,

and

‖fV‖2C = 〈fV , fV〉C =

〈 N∑
j=0

γjk
∗
tj
,

N∑
i=0

γik
∗
ti

〉
C

=
N∑
j=0

N∑
i=0

γjγik
∗(ti, tj).

‖fB‖2F = 〈fB, fB〉F =

〈 N∑
j=0

αjktj
,

N∑
i=0

αikti

〉
F
=

N∑
j=0

N∑
i=0

αjαik(ti, tj).
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Then, Equation (4.2) can be reduced to

1

N + 1

N∑
i=0

(
yi −

N∑
j=0

γjk
∗(ti, tj)−

N∑
j=0

αjk(ti, tj)

)2

+ λ1

N∑
j=0

N∑
i=0

γjγik
∗(ti, tj) + λ2

N∑
j=0

N∑
i=0

αjαik(ti, tj). (4.5)

It is not hard to see that the solutions {γj} and {αj} that minimize Equation (4.5) satisfy
the following equations

N∑
i=0

( N∑
j=0

γjk
∗(ti, tj) +

N∑
j=0

αjk(ti, tj)− yi

)
k∗(ti, t`)

+ λ1(N + 1)
N∑
i=0

γik
∗(ti, t`) = 0,

N∑
i=0

( N∑
j=0

γjk
∗(ti, tj) +

N∑
j=0

αjk(ti, tj)− yi

)
k(ti, tn)

+ λ2(N + 1)
N∑
i=0

αik(ti, tn) = 0,

for `, n = 0, 1, . . . , N . Let D = [γ0, γ1, . . . , γN ]T , C = [α0, α1, . . . , αN ]T , Y =
[y0, y1, . . . , yN ]T , K = [k(ti, tj)], K∗ = [k∗(ti, tj)], and let 0 be the zero column matrix.
We can write the equations in the matrix forms

K∗(K∗D+KC− Y) + λ1(N + 1)K∗D = 0, (4.6)

K(K∗D+KC− Y) + λ2(N + 1)KC = 0. (4.7)

Putting the two matrix equations together, we have[
K∗ 0

0 K

]([
K∗ K
K∗ K

]
+ (N + 1)

[
λ1I 0

0 λ2I

])[
D

C

]
=

[
K∗ 0

0 K

][
Y
Y

]
. (4.8)

Here I is the (N + 1) × (N + 1) identity matrix and 0 is the (N + 1) × (N + 1) zero
matrix. If [DT CT ]T is a column matrix that satisfies Equation (4.8), then

f = [k∗
t0
, . . . ,k∗

tN
]D+ [kt0

, . . . ,ktN
]C (4.9)

is a function in CV ⊕FB that minimizes Equation (4.2).
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If K∗ and K are invertible, then Equations (4.6) and (4.7) imply λ1D = λ2C. In the
case that λ2 = 0 and λ1 6= 0, we have γm = 0 for m = 0, . . . , N , and f ∈ FB. Similarly,
in the case that λ1 = 0 and λ2 6= 0, we have αj = 0 for j = 0, . . . , N , and f ∈ CV . If
λ1 = λ2 6= 0, then D = C.
The empirical error defined in Equation (4.5) is equal to

1

N + 1
‖Y−K∗D−KC‖22 + λ1D

TK∗D+ λ2C
TKC

=
1

N + 1
(YT −DTK∗ −CTK)(Y−K∗D−KC) + λ1D

TK∗D+ λ2C
TKC

=
1

N + 1
YT (Y−K∗D−KC). (4.10)

The last equality is based on Equations (4.6) and (4.7). If K∗ is invertible, then
Equation (4.6) implies that Y − K∗D − KC = λ1(N + 1)D, and Equation (4.10) can
be reduced to λ1YTD. Similarly, if K is invertible, then Equation (4.7) implies that
Y−K∗D−KC = λ2(N + 1)C, and Equation (4.10) can be reduced to λ2YTC.
Let Φ be the operator given in Theorem 3.1. For the basis B = {φ0, φ1, . . . , φη} of the

RKHS FB, let U = {ui : ui = Φ−1(φi), i = 0, 1, . . . , η}. Let CU = span{u0, u1, . . . , uη}.
If we choose 〈·, ·〉C to be an inner product on CU , then CU is a finite-dimensional RKHS
with the kernel k̃ defined by

k̃(t′, t) =

η∑
m=0

η∑
j=0

um(t)uj(t
′)B̃j,m, t, t′ ∈ I, (4.11)

where the matrix [B̃j,m] is the inverse of Ã = [〈ui, uj〉C ]. Consider the problem of learning
a function in CV ⊕ CU by minimizing the regularized empirical error

1

N + 1

N∑
k=0

(yk − (fV(tk) + u(tk)))
2 + λ1‖fV‖2C + λ2‖u‖2C , (4.12)

where fV ∈ CV and u ∈ CU . In the following, we show that if we define 〈f, g〉F =
〈Φ−1(f),Φ−1(g)〉C for f, g ∈ F , and if fV +u minimizes Equation (4.12), then fV +Φ(u)
minimizes Equation (4.2). Suppose that fV + u minimizes Equation (4.12). Then by a

similar approach, u can be written in the form u =
∑N

i=0 α̃ik̃ti
, where

k̃ti
=

η∑
j=0

( η∑
m=0

um(ti)B̃j,m

)
uj , i = 0, 1, . . . , N, (4.13)

and the vectors D and C̃ = [α̃0, α̃1, . . . , α̃N ]T satisfy[
K∗ 0

0 K̃

]([
K∗ K̃
K∗ K̃

]
+ (N + 1)

[
λ1I 0

0 λ2I

])[
D

C̃

]
=

[
K∗ 0

0 K̃

][
Y
Y

]
, (4.14)
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Figure 1. Monthly mean total sunspot numbers.

where K̃ = [k̃(ti, tj)]. Since Am,j = 〈φm, φj〉F = 〈um, uj〉C = Ãm,j , A = Ã and then

[Bj,m] = [B̃j,m]. By um(ti) = φm(ti), m = 0, 1, . . . , η and i = 0, 1, . . . , N , we have

Φ(k̃ti
) = kti

for each i. By Equations (3.4) and (4.11), k(ti, tj) = k̃(ti, tj) for each i, j

and hence K = K̃. This implies that Equations (4.14) and (4.8) have the same solutions.
Note that ‖Φ(u)‖2F = ‖u‖2C and Φ(u)(tk) = u(tk) for k = 0, 1, . . . , N . Therefore, if fV +u
minimizes Equation (4.12), then fV + Φ(u) minimizes Equation (4.2). In general, this
conclusion may be false if we define 〈·, ·〉F in another way.

Remark 4.1. Gaussian process regression is a Bayesian-based machine learning model
that produces a posterior distribution for an unknown regression function [29]. The pos-
itive semi-definite kernel k defined by Equation (3.4) can be applied to Gaussian process
regression as the covariance function. Applications of FIFs and k to the Gaussian process
are interesting and valuable directions for future research.

5. An example

5.1. Data description

The monthly mean total sunspot number is obtained by taking the arithmetic mean of
the daily total sunspot numbers over all days of each calendar month. The data set we
used in our example is the series of monthly mean total sunspot numbers from 1990/01 to
2017/01. There are 325 data in total. These data are open and available on the webpage
https://www.sidc.be/SILSO/datafiles.
We choose the monthly mean total sunspot numbers for 1990/01, 1993/01,..., 2014/01,

and 2017/01 as our data in D. To simplify our example, we set D = {(k, yk) : k =
0, 1, . . . , 9}. The data curve of the monthly mean total sunspot numbers and data points
in D are shown in Figure 1.
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Table 1. Values of parameters.

s1 s2 s3 s4 s5 s6 s7 s8 s9

−0.6 0.2 0.2 −0.8 −0.5 0.1 0.1 −0.6 0.3

Figure 2. Fractal curve of fV + fB(λ1 = 0.02, λ2 = 0.03).

Figure 3. Fractal curve of fV + fB(λ1 = 0.02, λ2 = 0).

Define 〈f, g〉F =
∫
I
f(t)g(t)dt for f, g ∈ F . For k = 1, . . . , 9, let Jk = I = [0, 9] and let

Lk be the linear polynomial that satisfies the conditions Lk(0) = k − 1 and Lk(9) = k.
For j = 0, 1, . . . , 9, let uj be the Gaussian function defined by
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Figure 4. Fractal curve of fV + fB(λ1 = 0, λ2 = 0.03).

Figure 5. Fractal curve of fV + fB(λ1 = 0, λ2 = 0.0).

uj(t) =
1

h
exp

[
− (t− tj)

2

h2

]
, h > 0. (5.1)

In this example, tj = j, and we set h =0.7. We construct φj = Φ(uj) by the approach
given in § 2 with linear polynomials pk and parameters sk given in Table 1. We also define
〈f, g〉C =

∫
I
f(t)g(t)dt for f, g ∈ C, and let
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Figure 6. Fractal curve of fV (λ1 = 0.02).

Figure 7. Fractal curve of fB(λ2 = 0.03).

vj(t) = cos

(
πjt

|I|

)
, j = 0, 1, . . . , ξ.

In this example, |I| = 9 and we choose ξ=9.
Let k∗ and k be defined by Equations (4.1) and (3.4), respectively. By choosing λ1 =

0.02, λ2 = 0.03, we compute the coefficients γk and αk by Equation (4.8) and then
establish
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Figure 8. Fractal curve of fV + fB(λ1 = 0.02, λ2 = 0.03).

Figure 9. Fractal curve of fV + fB(λ1 = 0.02, λ2 = 0.0).

f = fV + fB =
9∑

m=0

γmk∗
tm +

9∑
j=0

αjktj
, (5.2)

where each k∗
tm is given by Equation (4.3) with ξ=9 and each ktj

is given by

Equation (3.7) with η=9. The graph of f is shown in Figure 2. The fractal curve with
λ1 = 0.02 and λ2 = 0 is shown in Figure 3. The fractal curve with λ1 = 0 and λ2 = 0.03
is demonstrated in Figure 4. If we choose λ1 = λ2 = 0, we obtain the fractal interpolation
curve which is shown in Figure 5.
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Figure 10. Fractal curve of fV + fB(λ1 = 0.0, λ2 = 0.03).

Figure 11. Fractal curve of fV + fB(λ1 = 0.0, λ2 = 0.0).

A function in CV that minimizes

1

N + 1

N∑
k=0

(yk − (fV(tk)))
2 + λ1‖fV‖2C (5.3)

with N =9 is given by fV =
∑9

m=0 γmk∗
tm , where D = [γ0, γ1, . . . , γ9]

T satisfies

K∗(K∗ + λ1(N + 1)I)D = K∗Y. (5.4)
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Figure 12. Fractal curve of fV (λ1 = 0.02).

If we set λ1 = 0.02, the graph of fV is shown in Figure 6.
A function in FB that minimizes

1

N + 1

N∑
k=0

(yk − (fB(tk)))
2 + λ2‖fB‖2F (5.5)

with N =9 is given by fB =
∑9

j=0 αjktj
, where C = [α0, α1, . . . , α9]

T satisfies

K(K+ λ2(N + 1)I)C = KY. (5.6)

If we set λ2 = 0.03, the graph of fB is shown in Figure 7.
Similar graphs of functions for the case ξ=4 are given in Figures 8–12.

Remark 5.1. In this paper, the parameters {sk} given in Table 1 are just an example
of the graphs of fractal functions constructed by our approach. These parameters are
not good choices for the cases shown in Figures 5 and 11. Determining parameters {sk}
plays an essential role in the theory of fractal functions and applications on curve fitting
problems. The study of finding the optimal values of {sk} for curve fitting problems is
one of our future research directions.
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