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We investigate the instabilities and transition mechanisms of Boussinesq stratified
boundary layers on sloping boundaries when subjected to oscillatory body forcing parallel
to the slope. We examine idealized forms of boundary layers on hydraulically smooth
abyssal slopes in tranquil mid- to low-latitude regions, where low-wavenumber internal
tides gently heave isopycnals up and down adiabatic slopes in the absence of mean
flows, high-wavenumber internal tides, shelf breaks, resonant tide–bathymetry interactions
(critical slopes) and other phenomena associated with turbulence ‘hot spots’. In
non-rotating low-Reynolds-number flow, increased stratification on the downslope phase
has a relaminarizing effect, while on the upslope phase we find transition-to-turbulence
pathways arise from shear production triggered by gravitational instabilities. When
rotation is significant (low slope Burger numbers) we find that boundary layer turbulence
is sustained throughout the oscillation period, resembling stratified Stokes–Ekman layer
turbulence. Simulation results suggest that oscillating boundary layers on smooth slopes
at low Reynolds number (Re � 840), unity Prandtl number and slope Burger numbers
greater than unity do not cause significant irreversible turbulent buoyancy flux (mixing),
and that flat-bottom dissipation rate models derived from the tide amplitude are accurate
within an order of magnitude.

Key words: boundary layer stability, buoyancy-driven instability, stratified flows

1. Introduction

Irreversible buoyancy flux convergence within oscillating stratified boundary layers on
sloping bathymetry in the abyss may be a significant mechanism driving the deep branch
of the global overturning circulation (Ferrari et al. 2016). The boundary layers, combined
with other bottom-intensified sources of turbulence, such as the breaking of internal
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waves, contribute to observed patterns of intense irreversible buoyancy flux convergence
(Polzin 1996) at turbulence ‘hot spots’ (Thorpe 2007). However, little is known about the
laminar, transitional and turbulent processes on gently sloping smooth bathymetry in the
‘tranquil regions’ (Angel 1990) of the abyssal ocean. One example of a tranquil region
slope is at 34◦N 70◦W, where the northwest edge of the Sargasso Sea meets the deep
end of the continental slope. Modelled maximum (spring tide) tidal current velocities
near the seafloor (Turnewitsch et al. 2013), assessments of slope criticality (Becker &
Sandwell 2008) and abyssal mooring observations (Tarbell, Montgomery & Briscoe 1985;
Nash et al. 2004) at that location suggest ‘tranquil region’ boundary layers characterized
by subcritical slopes, tide velocity amplitudes of less than or approximately equal to
0.01 m s−1 and boundary layer thicknesses of O(10) m.

How unstable are tranquil region boundary layers on abyssal slopes, and what are the
instability mechanisms? In this article, we employ theory and simulations to investigate
the pathways between laminar, transitional and turbulent states of boundary layers that are
forced by the M2 barotropic tide and occur on hydraulically smooth abyssal slopes in the
absence of forcing by high-wavenumber internal waves, mean flows, far-field turbulence on
larger scales and resonant tidal–bathymetric interaction. Although tranquil region abyssal
slopes are typically subcritical (Becker & Sandwell 2008), we extend our analyses to
supercritical slopes for completeness.

The boundary layers are formed as momentum and buoyancy are diffused by no-slip and
adiabatic boundary conditions on sloping bathymetry as low-wavenumber internal waves
heave isopycnals (constant-density contours) up and down slopes. Figure 1 illustrates the
scale separations between the horizontal length scale of bathymetric features such as
continental slopes, k−1, the excursion length scale of the tide, L, and the largest boundary
layer length scale, δl. The excursion length scale, L, is the characteristic scale of the
across-isobath distance between the trajectory extrema in the inviscid problem, defined
as

L ∼ U∞
ω

, (1.1)

where U∞ is the barotropic tide amplitude projected onto the across-slope tangential
coordinate (x) and ω is the tide frequency. We assume that the slope is reasonably
approximated as constant on scales of the order of the excursion length, L. Thus the
boundary layers investigated in this article apply to boundary layer flows on hydraulically
smooth slopes where the excursion parameter

E = kL (1.2)

is small, E � 1. The excursion parameter E is the ratio of net fluid advection by the
barotropic tide to the topographic length. The baroclinic response to the barotropic forcing
is highly nonlinear for large-excursion-parameter flows E (Bell 1975a,b; Garrett & Kunze
2007; Sarkar & Scotti 2017). Here, we investigate the dynamics on scales at or smaller
than the excursion length; thus we assume that the baroclinic tide (or internal waves)
generated by bathymetric features with horizontal length scales of k−1 can be locally
approximated as irrotational over L ∼ O(100) m. Therefore we model low-wavenumber
baroclinic tides, or any oscillatory forcing occurring at frequencies in the range f < ω < N
and characterized by vertical and horizontal structure that can be reasonably approximated
as spatially homogeneous over length scales O(10) m, as an across-isobath oscillating body
force.

Non-rotating, large-angle (42◦), low-Re experiments by Hart (1971) showed that, when
ω2 � N2, ‘plumes’ form during the upward boundary layer flow phase that are mixed
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Figure 1. Illustration of boundary layers in tranquil abyssal regions at the deep end of a continental slope.
The heaving of density surfaces up and down the slope by oscillations with vertical and horizontal structure
characterized by length scales much greater than O(10) m creates an oscillating boundary layer.

and stabilized during the downslope phase. Our objectives are (1) to determine if these
boundary layers are laminar, transitional, intermittent or fully turbulent for a range
of parameters that include those typical of abyssal ocean non-dimensional parameters
associated with the M2 tide, (2) to investigate the transition mechanisms and (3) to test
back-of-the-envelope estimation for barotropic tide dissipation rates at the seafloor. The
rest of this article is organized as follows. In § 2 we discuss the relevant governing
equations and non-dimensional parameters. In § 3 we investigate analytical solutions for
the laminar flows to estimate the necessary conditions for boundary layer gravitational
instabilities. In § 4 we analyse the stability of simulated boundary layers and in § 5 we
summarize the observed transition mechanisms and drag coefficients.

2. Problem formulation

The flows examined in this study are subject to a body force in the across-isobath, or
streamwise, direction (the x direction in figure 1):

Fd(td) = −Re[Adieiωtd ], (2.1)

where Ad is the dimensional amplitude of the pressure gradient ∂xP̃d and td is dimensional
time.

Several geometric and physical approximations are invoked for the sake of tractibility
and conceptual simplicity. The flow is approximated as Boussinesq: the density variations
are small enough that the incompressibility condition is justified, and Joule heating
(increases of internal energy due to the viscous dissipation of mechanical energy) is
neglected. We idealize abyssal buoyancy as a linear function of temperature alone.

A Cartesian coordinate system, rotated θ radians counterclockwise above the horizontal
(figure 1), was chosen for analytical convenience. The z coordinate is the wall-normal (or
transverse) coordinate, which is at angle θ from the vertical coordinate (the coordinate
anti-parallel to gravity). To distinguish between the slope-normal and vertical coordinates,
the vertical coordinate (and vertical velocities, fluxes, etc.) in the direction normal to
Earth’s surface will be denoted as η, such that η = x sin θ + z cos θ , shown in figure 1.
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The non-dimensional Boussinesq governing equations for conservation of mass,
momentum and thermodynamic energy for the flow are

∂xũ + ∂yṽ + ∂zw̃ = 0, (2.2)

dtũ = 1
Ro

ṽ − ∂xp̃ + 1
ReL

(
∂xx + ∂yy + ∂zz

)
ũ + C2b̃ + F(t), (2.3)

dtṽ = − 1
Ro

ũ − ∂yp̃ + 1
ReL

(
∂xx + ∂yy + ∂zz

)
ṽ, (2.4)

dtw̃ = −∂zp̃ + 1
ReL

(
∂xx + ∂yy + ∂zz

)
w̃ + C2b̃ cot θ, (2.5)

dtb̃ = 1
Pr ReL

(
∂xx + ∂yy + ∂zz

)
b̃, (2.6)

where dt = ∂t + ũ · ∇ and F(t) = Fd(td)/(U∞ω) = A sin(t). The variables are non-
dimensionalized as follows (subscript ‘d’ denoting dimensional variables):

x = xd/L, ũ = ũd/U∞, t = ωtd, p̃ = p̃d/U2
∞, b̃ = b̃d/(LN2 sin θ), (2.7a–e)

where the reference density ρ0 is absorbed into the mechanical pressure pd such that it
has units of J kg−1. Parameter N2 is the square of the buoyancy frequency (the natural
frequency associated with the restoring force of stratification). The buoyancy is defined
as the acceleration associated with density anomalies, bd = g(ρ0 − ρ)/ρ0, where g is the
(constant) gravity and ρ is the density.

Despite the assumptions and idealizations listed above, the dynamical parameter space
is vast. The relevant non-dimensional ratios are the Prandtl number Pr, the slope Rossby
number Ro, the slope frequency ratio C and Stokes layer Reynolds number Re. In this
study, the Stokes layer Reynolds number is referred to in the analysis of the flow instead
of the excursion length Reynolds number,

ReL = U∞L
ν

= U2∞
νω

, (2.8)

because the Stokes layer Reynolds number is common in literature regarding oscillating
boundary layers. The Prandtl and Stokes layer Reynolds numbers are defined as

Pr = ν

κ
, (2.9)

Re = U∞δ

ν
=
√

2ReL, (2.10)

where κ is the molecular diffusivity of buoyancy and ν is the kinematic viscosity of abyssal
seawater, and where the Stokes layer thickness is

δ =
√

2ν/ω. (2.11)

The slope frequency ratio is defined as the ratio of the projection of the buoyant
acceleration onto the across-slope (x) direction (parallel to the forcing) to the acceleration
of the oscillatory forcing:

C = N sin θ

ω
. (2.12)

The slope frequency ratio was first identified as an important ratio for describing the
boundary layer by Hart (1971) (who denoted it as Q, where Q = C2), while the frequency
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ratio N/ω emerges as an important measure of the role of stratification in the stratified
form of Stokes’ second problem (Gayen & Sarkar 2010a). The slope frequency ratio is
indicative of the degree of resonance between the oscillation body forcing and the buoyant
restoring force.

Finally, the fourth non-dimensional ratio is the slope Rossby number:

Ro = ω

f cos θ
, (2.13)

which indicates the ratio of the influence of planetary vorticity (projected onto the
wall-normal direction) relative to vorticity with a characteristic time scale of the tide
period, ω−1. For the finite-Rossby-number cases examined, ω is the M2 tide frequency,
the Coriolis parameter, f , is 10−4 s−1 and the range of slope angles investigated are
within 0 < θ � 14◦. Therefore, the slope Rossby number is approximately 1.4 for all of
the rotating reference frame flows investigated.

2.1. Inviscid, linear flow
The inviscid, linearized forms of the governing equations (2.2)–(2.6) describe the heaving
of isopycnals up and down the slope:

∂tũ = 1
Ro

ṽ + C2b̃ + F(t), (2.14)

∂tṽ = − 1
Ro

ũ, (2.15)

∂tb̃ = −ũ. (2.16)

Crucially, the solutions to (2.14)–(2.16) prescribe the amplitude of the non-dimensional
body force:

A =
(

C2 + 1
Ro2 − 1

)
, (2.17)

where Ad = AU∞ω. The solutions to (2.16)–(2.16) are

ũ(t) = − cos(t), (2.18)

ṽ(t) = Ro−1 sin(t), (2.19)

b̃(t) = sin(t). (2.20)

2.2. Resonance
The assumption that the vertical and horizontal structure of an internal wave is constant
over a length scale of O(10) m is not valid if the wave is critical. At critical slope, the
forcing model F(t) in (2.1) and (2.14) is degenerate and vanishes if the critical slope
condition

C2 + 1
Ro2 − 1 = 0 (2.21)

is satisfied. If (2.21) is satisfied, the energy of the inviscid baroclinic tide is tightly focused
into narrow beams that follow the curvature of the bathymetry (Balmforth, Ierley & Young
2002).
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Equation (2.21) is formally consistent with internal wave theory. In internal wave theory,
critical slopes are defined by

tan θc =
√

ω2 − f 2

N2 − ω2 , (2.22)

where θc is the critical slope angle. If the slope angle θ /= θc, then (2.17) is satisfied, A /= 0.
Equation (2.17) can be rearranged to obtain

tan θ =
√

ω2(1 + A) − f 2

N2 − ω2(1 + A)
. (2.23)

Therefore the criticality condition in (2.21) is just a rearrangement of the criticality
condition defined by the slope parameter ε from internal wave theory:

ε = tan θ

tan θc
, (2.24)

where criticality states are defined:

if A < 0 then ε < 1 → θ is subcritical,
if A = 0 then ε = 1 → θ is critical,
if A > 0 then ε > 1 → θ is supercritical.

⎫⎬⎭ (2.25)

2.3. Boundary conditions
At the solid boundary at z = 0, the boundary conditions on the total velocity are no-slip
and impermeability

ũ = 0, (2.26)

and the boundary conditions on the total buoyancy is the adiabatic condition:

∂zb̃ = 0. (2.27)

As z → ∞, the velocity boundary conditions are the oscillatory solutions for the
inviscid flow, and zero flow in the wall-normal direction: (2.18), (2.19) and w̃ = 0. The
non-dimensional buoyancy field as z → ∞ has two components, the inviscid oscillation
and the constant background stratification:

b̃ = x + z cot θ + sin(t). (2.28)

2.4. Variable decomposition
The total velocity and buoyancy fields are decomposed into three components that when
summed together satisfy (2.2)–(2.6) and (2.26)–(2.28). To distinguish the components, let
‘H’ denote the hydrostatic (and possibly geostrophic) component, let ‘S’ denote the steady
component and let ‘O’ denote the oscillating component:

ũ(x, y, z, t) = uH + uS(z) + uO(x, y, z, t), (2.29)

b̃(x, y, z, t) = bH(x, z) + bS(z) + bO(x, y, z, t), (2.30)

p̃(x, y, z, t) = pH(x, z) + pS(z) + pO(x, y, z, t). (2.31)

The hydrostatic component of the buoyancy field is merely the background stratification
in the rotated coordinate system, bH,d(xd, zd) = N2(xd sin θ + zd cos θ) in dimensional
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form, and the quiescent hydrostatic velocity field uH = 0 everywhere except in the
finite-Rossby-number flow regime, in which case it is the along-slope geostrophic velocity
that arises from the across-isobath pressure gradient imposed by the slope (Phillips 1970;
Wunsch 1970). The buoyancy frequency N is defined in the same manner as convention:

N2 = − g
ρ0

∂ηρH = ∂ηbH,d, (2.32)

where η denotes the vertical position coordinate as shown in figure 1.
The steady and oscillating flow components are anomalies from the hydrostatic

background that ensure the satisfaction of frictional and diffusive boundary conditions
at the wall and inviscid oscillations far from the wall. It is convenient to solve for the
anomalies,

u(x, y, z, t) = uS(z) + uO(x, y, z, t), (2.33)

b(x, y, z, t) = bS(z) + bO(x, y, z, t), (2.34)

p(x, y, z, t) = pS(z) + pO(x, y, z, t), (2.35)

because the removal of the hydrostatic background permits periodic analytical and
numerical solutions for u and b.

3. Linear solutions

Analytical solutions to linearized forms of (2.2)–(2.6) contain a wealth of information
pertaining to the laminar, disturbed laminar and intermittently turbulent regimes (i.e.
low- to moderate-Reynolds-number flows) that are investigated numerically in this study.
Thorpe (1987) provided solutions of the rotating linear problem, a detailed derivation of
which is given in Appendix A. The solutions in Appendix A are written in a form that
readily collapses in the Ro → ∞ regime.

3.1. Necessary conditions for gravitational instability
The linear solutions for the steady flow component of both rotating and non-rotating flows
is always gravitationally stable, meaning that the total vertical buoyancy gradient is never
negative,

∂ηbH + ∂ηbS = 1 − cos2 θe−η/δS
√

2 sin
(

η

δS
+ π

4

)
� 0, (3.1)

if the oscillating component vanishes. The boundary layer thickness of the steady
component (Phillips 1970; Wunsch 1970) is

δS =
(

f 2 cos2 θ

4ν2 + Pr
N2 sin2 θ

4ν2

)−1/4

. (3.2)

The oscillating flow component solutions exhibit transient gravitationally unstable
buoyancy gradients, δηb̃ < 0, when denser fluid is advected over lighter fluid during
portions of the oscillation period. If the oscillating component is non-zero, then the
minimum necessary condition for gravitational instabilities is defined by

∂ηbH + ∂ηbS < −∂ηbO, (3.3)

because if (3.3) is satisfied, then the total vertical buoyancy gradient is negative, δηb̃ < 0.
However, instabilities can grow only if the negative buoyancy gradient is sustained for a
significant amount of time and if it is negative enough to overcome resistance from friction.
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Figure 2. Total buoyancy gradient minima. The minimum value (in both time and space) of the
non-dimensional linear solution vertical buoyancy gradient for (a) the non-rotating reference frame case (f = 0)
and (b) the rotating reference frame case.

A characteristic boundary layer Rayleigh number and a ratio of the time scale of the
growth of an instability to the period of the oscillation are required to estimate the
minimum (quasi-steady) conditions for the growth of gravitational instabilities. However,
the linear solutions do not readily yield a single boundary layer buoyancy gradient length
scale. If the buoyancy gradient length scale is assumed to scale with δ = √

2ν/ω, then a
tenable time-dependent boundary layer Rayleigh number is defined:

Ra(t) ∼ 4PrN2

ω2 ∂ηb̃(t), (3.4)

which only applies when ∂ηb̃(t) < 0. To estimate the gravitational stability of the flow
without explicitly accounting for the time dependence of the basic state (the quasi-steady
assumption), the basic state of the flow cannot change more rapidly than the growth
rate of a gravitational instability. If the instabilities are ‘slowly modulated’ by the basic
state (Davis 1976), the quasi-steady assumption is reasonable for stability analysis. The
dimensional instantaneous growth rate of a gravitational instability can be estimated as

σ ∼ Im
[√

∂ηb̃N2
]

. (3.5)

If |ω/σ | � 1, then the modulation by the basic state is sufficiently slow for the growth of
gravitational instabilities.

Figure 2 shows the minimum values of the non-dimensional total vertical buoyancy
gradient from the linear solutions for non-rotating and rotating cases as a function of
slope parameter and Stokes Reynolds number. Assuming that the gravitational instability
in the boundary layer is physically similar to that of Rayleigh–Bénard instability in
the case of one rigid and one stress-free boundary, then the critical Rayleigh number
for the boundary layer is Rac ≈ 1100 (Chandrasekhar 1961), which corresponds to
|ω/σ | = 0.06. For the chosen fluid properties (holding Pr = 1, f = 10−4, N = 10−3 and
ω = 1.4 × 10−4 constant), Rac ≈ 1100 corresponds to a critical non-dimensional vertical
buoyancy gradient of ∂ηb̃ = −5.4, which is shown as the blue lines in figure 2. The
minimum boundary layer buoyancy gradient is less than zero for all non-zero Re and ε, and
the minimum boundary layer buoyancy gradient is increasingly negative with increasing
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Cases Re Ro C ε θ (rad)

1, 9 840, 420 ∞ 0.25 0.25 3.53 × 10−2

2, 10 840, 420 ∞ 0.75 0.75 1.06 × 10−1

3, 11 840, 420 ∞ 1.25 1.25 1.76 × 10−1

4, 12 840, 420 ∞ 1.75 1.75 2.47 × 10−1

5, 13 840, 420 1.41 0.25 0.35 3.53 × 10−2

6, 14 840, 420 1.41 0.75 1.06 1.06 × 10−1

7, 15 840, 420 1.43 1.25 1.79 1.76 × 10−1

8, 16 840, 420 1.45 1.75 2.53 2.47 × 10−1

Table 1. Prescribed non-dimensional simulation parameters. The four independent parameters are Re, Ro, C,
θ , where Pr = 1 is not varied. The slope parameter ε = tan θ/ tan θc is also used in this study to directly connect
results to internal wave parameters. The slope Burger number is Bu = N2 tan2 θ/f 2 = Ro2C2.

Reynolds number and with increasing slope parameter. The discontinuity at ε = 1 is an
artefact of the degeneracy of linear solutions at critical slope. The ε axis between the
non-rotating and rotating cases is different because rotation alters the angle of critical
slope; both plots show the same slope angle range, 0 < θ � 16◦.

4. Nonlinear solutions

In this section we examine the nonlinear stability and development of turbulence in
boundary layers on smooth abyssal slopes for both rotating and non-rotating regimes.
The boundary layers are initialized by the oscillating laminar flow solutions derived in
Appendix A. We varied the slope Rossby number (nearly constant with slope, (2.13)),
slope frequency ratio (2.12), Reynolds number (2.10), slope parameter (2.24) and slope
angle θ for each of the 16 simulations as shown in table 1. The slope frequency ratio C and
slope parameter ε are redundant for the non-rotating case, but are shown together because
C /= ε for the rotating flow, and C appears explicitly in the forcing of the across-isobath
(x) momentum equation. We observed bursts of turbulence, triggered by two-dimensional
gravitational instabilities that rapidly become three-dimensional, during the upslope flow
phase of all cases at Re = 840 except for the case of lowest slope Burger number, which
exhibits turbulence sustained throughout the period. At Re = 420, the flow matched the
laminar analytical solutions except for weak turbulent bursts that occurred at the highest
slope angles in the rotating regime.

4.1. Numerical implementation
The flow anomalies, as defined by (2.33) and (2.34), are discretized to satisfy periodic
boundary conditions in the wall-parallel directions via Fourier spectral bases in the
across-isobath (x) and along-isobath (y) directions. Periodicity is not merely numerically
convenient; it also eliminates the need to prescribe buoyancy forcing (‘restratification’)
because the oscillating flow can advect the background field to gain or lose buoyancy. In
the periodic domain, the boundary layer buoyancy can only reach a homogenized steady
state if the turbulence sustainably converts tidal momentum to potential energy throughout
the entire period.

Although the planar extent of the computational domain is less than the excursion length
of the tide, the domain size (table 2) is justifiably sufficient because the largest eddies in
oscillating boundary layers are those associated with the transverse (wall-normal) length
scale, which is much less than the excursion length. Indeed, at higher Reynolds number
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Re (Lx, Ly)/δ H/δ (�x+, �y+) �z+
wall (�x, �y)/lK �zwall/lK �td/τK �td/T

420 59.3 177.8 9.5 0.69 13.8 0.40 0.01 2.2 × 10−5

840 59.3 177.8 13.5 0.97 18.0 0.52 0.02 2.2 × 10−5

Table 2. Resolution parameters. The grid is identical in the x and y directions. Kolmogorov scales are
estimated assuming that the law of the wall holds; therefore, characteristic dissipation rate is estimated a
priori by ε ∼ U3∗/(δκ∗), where the von Kármán constant is κ∗ = 0.41 and the friction velocity is estimated
by U∗ ∼ √

νU∞/δ.

(Re = 1790), Gayen & Sarkar (2010b) found the turbulent boundary layer thickness, δl,
was δl = 15δ for the unstratified problem and δl = 17δ for flat-plate stratified oscillating
boundary layers at the same Reynolds number. The grid resolution parameters for the
two Reynolds numbers examined are shown in table 2, where (Lx, Ly, H) are the domain
dimensions in (x, y, z), lK and τK are the Kolmogorov length and time scales, respectively,
and wall units (denoted by superscript +) are scaled by the viscous length scale δv =
ν/U∗, where U∗ is the a priori estimate of the friction velocity, which is approximated as
U∗ = √

ν∂zū ∼ √
νU∞/δ.

Our decomposition of the flow is the same as that of Phillips (1970) and Wunsch (1970):
we decompose the flow into a quiescent, hydrostatic background flow (denoted by the
subscript ‘H’ variables in (2.29), (2.30) and (2.31), where uH = 0) and solve for anomalies
from the background flow (the left-hand sides of (2.33), (2.34) and (2.35)) that, when
summed with the background flow component, satisfy the no-slip (2.26) and adiabatic
(2.27) boundary conditions at the wall imposed on the total flow. The nonlinear governing
equations for the anomalies are

∂xu + ∂yv + ∂zw = 0, (4.1)

dtu = 1
Ro

v − ∂xp + 1
ReL

(
∂xx + ∂yy + ∂zz

)
u + C2b + F(t), (4.2)

dtv = − 1
Ro

u − ∂yp + 1
ReL

(
∂xx + ∂yy + ∂zz

)
v, (4.3)

dtw = −∂zp + 1
ReL

(
∂xx + ∂yy + ∂zz

)
w + C2b cot θ, (4.4)

dtb = 1
Pr ReL

(
∂xx + ∂yy + ∂zz

)
b, (4.5)

where the anomalies u, v, w, p and b are defined by (2.33)–(2.35). The material derivative
on the left-hand side of (4.5) contains nonlinear buoyancy anomaly advection terms
as well as the terms describing the time rate of change of anomalous buoyancy,
−(u + w cot θ), by the advection of background buoyancy. Since the linear solutions for
the oscillating laminar flow (Thorpe 1987; Baidulov 2010) contain only the advective
terms corresponding to the background buoyancy advection, the laminar stratification
oscillates from negative to positive and back again in a linear advection–diffusion balance.
However, the boundary layer stratification can weaken, relative to the oscillating laminar
stratification, if the vertical gradient of the nonlinear anomalous buoyancy advection in
(4.5) is negative and dominates the vertical gradient of background buoyancy advection.
Therefore, gradients of nonlinear anomalous buoyancy advection must continually
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overcome the restratifying tendency of background buoyancy advection (e.g. u > 0
corresponds to a local decrease in buoyancy as relatively heavy fluid is advected upslope)
for weakened boundary layer stratification to persist.

The anomalies were computed using the MPI-parallel pseudo-spectral partial
differential equation solver Dedalus (Burns et al. 2019) using 1283 modes. A third-order,
four-stage, implicit–explicit Runge–Kutta method derived by Ascher, Ruuth & Spiteri
(1997) was used for temporal integration. Chebyshev polynomial bases of the first kind
were employed for spatial discretization on a cosine grid in the wall-normal direction.
Chebyshev polynomials permit the exact enforcement of the adiabatic wall-boundary
condition ((2.27) minus the background component) on the buoyancy field and
no-slip/impermeability wall-boundary conditions on the velocities ((2.26) minus the
background component). The 3/2 rule dealiasing scheme is used not only for dealiasing
the spatial modes online but also for dealiasing post-processed flow statistics.

At the maximum wall-normal extent of the domain, the boundary conditions at infinity
(2.18), (2.19) and (2.28) were approximated for the anomalies as free-slip, impermeable
conditions:

∂zu = ∂zv = w = 0, (4.6)

and an adiabatic condition on just the anomaly:

∂zb = 0, (4.7)

such that the total flow buoyancy gradient at z = H is the background buoyancy gradient
in that direction.

Although the impermeability condition causes the reflection of internal waves that reach
the upper boundary, the effects are assumed to be negligible because of the negligible
amount of energy propagated by such high-wavenumber waves in low-Reynolds-number
flow. Gayen & Sarkar (2010a) found that for flat-bottomed stratified oscillatory flow at
larger-Reynolds-number flow (Re = 1790), the vertical wave energy flux is less than 1 % of
the boundary layer dissipation and production rates. Indeed, small but non-zero dissipation
rates of turbulent kinetic energy (TKE) were found near the upper boundary in some of
the simulations, presumably from subharmonic parametric instability or other wave–wave
instabilities because of the free-slip reflective upper boundary condition. However, 99.9 %
of the shear production rate and dissipation rate occurred within one Ozmidov length of
the wall (LO =

√
ε/N3, using the magnitude of the background stratification for N) at the

lower boundary for all simulations.
A small amount of grid-scale noise was observed primarily in the x, y directions

for Re = 840 cases. However, the wall-normal integrated TKE balances (figure 4) the
residual of the right-hand-side TKE equation terms and the calculation of ∂tK matched
to graphical accuracy, suggesting the grid-scale noise did not significantly alter energetics.
The resolution of �x/lK = �y/lK = 13.8, 18.0 (table 2) was chosen by estimating the
characteristic scale of ε = O(10−10) m2 s−3 a priori assuming fully developed steady
turbulence that satisfies the law of the wall, even though law-of-the-wall turbulence was
not anticipated because of the transitional Reynolds numbers prescribed. The a priori
estimate ε = O(10−10) m2 s−3 roughly agrees with the majority of the corresponding a
posteriori average dissipation rates shown in table 4, despite the false assumptions of the a
priori estimate. Since the TKE equation closes to graphical accuracy and the instabilities
investigated are laminar in origin, we anticipate that the results of this study will remain
the same at higher resolution. However, the small amount of signal attenuation at the
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Nyquist wavenumbers suggests that the shear production and dissipation rates may be
slightly underestimated.

The initial conditions were specified as the sum of the steady component (Phillips 1970;
Wunsch 1970), the oscillating component (Thorpe 1987) at time t = 0 and uniformly
distributed white noise corresponding to buoyancy anomaly perturbations of magnitude
10−10 m s−2. All of the simulations that exhibited turbulence (defined as wall-normal
integrated production rates of TKE greater than 10−10 m3 s−3) did so within two
oscillations.

The parameter regimes shown in table 1 qualitatively describe flows forced by the M2

tide frequency, which is specified as ω = 1.4 × 10−4 (rad s−1, for a 12.4 h tide period) and
the Coriolis parameter is specified as f = 10−4 (rad s−1). Much of the abyssal ocean is
filled with Antarctic Bottom Water (AABW), characterized by temperatures near 0 ◦C and
practical salinities of approximately 35 psu. At 0 ◦C and 35 psu, the kinematic viscosity
is 1.8 × 10−6 m2 s−1 (Chen et al. 1973; Talley 2011) and the thermal diffusivity is
1.4 × 10−7 m2 s−1 (Thorpe 2007); thus Pr ≈ 13 for AABW. We specify the kinematic
viscosity as ν = 2 × 10−6 m2 s−1 in the relevant parameters in table 1 and Pr = 1 for
simplicity. We approximate the background buoyancy frequency at mid-latitude abyssal
depths as N = 10−3 rad s−1 (Thurnherr & Speer 2003). Baroclinic tide amplitudes of
U∞ � 0.01 m s−1 in tidal models (Turnewitsch et al. 2013) agree with observations at
the northwestern edge of the Sargasso Sea at 34◦N 70◦W (Tarbell et al. 1985; Nash et al.
2004). Global assessments of slope criticality suggest that the same region is characterized
by subcritical, low-angle slopes. We also examine supercritical slopes for completeness.
The prescribed non-dimensional parameters in table 1 were varied by only varying the
velocity, U∞ = 0.01, 0.005 m s−1 corresponding to the two Reynolds numbers, and the
slope angle (shown in the rightmost column of table 1).

4.2. Intermittent turbulent bursts
The integrated TKE budget of each simulation was computed in order to distinguish the
laminar and turbulent regimes and to quantify turbulence production mechanisms. The
planar mean TKE is defined as

K(z, t) ≡ 1
2

(
u′2 + v′2 + w′2

)
, (4.8)

where the planar mean operator and variable decomposition are defined:

φ̄(z, t) = 1
LxLy

∫ Lx/2

−Lx/2

∫ Ly/2

−Ly/2
φ( y, z, t) dy dx, (4.9)

φ(x, y, z, t) = φ̄(z, t) + φ′(x, y, z, t), (4.10)

and φ is any of the anomalous variables defined by (2.33)–(2.35). The planar mean TKE
evolution equation is

∂tK + ∂zT = P + B − ε. (4.11)

The TKE transport term ∂zT includes all TKE flux divergences (mean, turbulent, pressure,
diffusion), which vanish upon wall-normal integration of (4.11). The rate production of
TKE by mean shear is P (production in the sense that, generally, P > 0), and it is defined
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as

P(z, t) = −u′w′∂zū − v′w′∂zv̄, (4.12)

P13 = −u′w′∂zū, (4.13)

P23 = −v′w′∂zv̄. (4.14)

The buoyancy flux B is typically downgradient (B < 0 amidst ∂zb̄ > 0 or B > 0 amidst
∂zb̄ < 0), in which case it represents the conversion of TKE into potential energy, and it is
defined as

B(z, t) = w′
ηb′ = u′b′ sin θ + w′b′ cos θ, (4.15)

B1 = u′b′ sin θ, (4.16)

B3 = w′b′ cos θ (4.17)

in the rotated reference frame (where wη = dtη is the velocity in the vertical, not the
wall-normal velocity w). Defined in this manner a downgradient buoyancy flux may be
reversible. A reversible buoyancy flux may be thought of as a buoyancy flux that converts
TKE into potential energy through stirring alone. Finally, the dissipation rate of TKE

ε(z, t) = ν
(
(∂xu′)2 + (∂xv′)2 + (∂xw′)2 + (∂yu′)2 + (∂yv′)2

+(∂yw′)2 + (∂zu′)2 + (∂zv′)2 + (∂zw′)2
)

(4.18)

is positive definite and therefore the last term of (4.11) is always a sink of TKE.
The laminar oscillating boundary layer buoyancy gradient is transient and evanescent;

therefore, we seek an integral quantity to measure the stabilizing/destabilizing effects
of the time-periodic laminar buoyancy gradient. We borrow the concept of boundary
layer displacement thickness (Monin & Yaglom 1971) and apply it to transient bulk
buoyancy gradients rather than momentum. We refer to this measure as the boundary layer
stratification thickness, δs. If the total buoyancy field is not constant over small distance in
the wall-normal direction z1, then it can be approximated as constant over some distance
z0 from the wall, where z0 is defined by

N2z0 =
∫ z1

0
∂zb̃ dz. (4.19)

It follows that

δs = z1 − z0 =
∫ z1

0

(
1 − ∂zb̃

N2

)
dz. (4.20)

Since ∂zb̃ → N2 as z1 → ∞ the integrand of (4.20) vanishes as z1 → ∞.
Figure 3 shows the geometric interpretation of (4.19). Here δs > 0 and indicates that,

in bulk, the oscillating laminar boundary layer stratification is less than the background
stratification, and vice versa as the sign of the laminar boundary layer buoyancy gradient
oscillates from negative to positive in the laminar flow solutions provided in Appendix A.
The stratification thickness is positive when heavier fluid is advected over lighter fluid that
has been impeded from flowing upslope by molecular friction at the boundary. Note that
δs < 0 for the laminar steady flow component solutions because the analytical solutions
(Phillips 1970; Wunsch 1970) require steady positive bulk stratification near the boundary,
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z1

z1

z0

∂zb ∂zbN2

z

z0

N2

∂zb ∂zbN2 N2

z

A1

A2

A1 = A2

A1 = A2

z1 > z0

z1 < z0

Bulk BL stratification

less than interior

(b)(a)

(d )(c) z z

Bulk BL stratification

greater than interior 

A2A1

Figure 3. (a–d) Stratification thickness concept.

where isopycnals curve downwards. The stratification thickness was calculated for each
flow investigated here, using the linear analytical solutions for the laminar oscillating flows
and setting z1 � 1.

The wave- and planar-averaged, wall-normal integrated TKE budget statistics for Re =
840 are shown in figure 4. The statistics were wave-averaged over 5–10 oscillations. All
of the integrated TKE budgets at Re = 840, with the exceptions of case 5 and arguably
case 7, possess a single burst of chaotic three-dimensional motion that is characterized by
a rapid increase in the production rate of the TKE from the across-slope shear, P13, the
component of shear parallel to the direction of the oscillating body force. The turbulent
bursts, which occur shortly after t/T ≈ 0.5, preferentially select the phase regime during
which the velocity is upslope but decelerating, the sign of the oscillating buoyancy changes
from positive to negative and the stratification thickness is negative (as indicated by the
dark grey shading in figure 4). The negative stratification thickness preference of the bursts
contrasts the low-Reynolds-number, intermittent turbulence regime of Stokes’ second
problem, in which a single burst occurs per oscillation, corresponding to the random
selection of one of two shear maxima that occur within one period (Spalart & Baldwin
1987).

To investigate the role of the linear buoyancy dynamics in the formation of the turbulent
bursts in figure 4, the time of the minimum total vertical buoyancy gradient in the linear
solutions, which the reader may recall is negative for all of the considered parameter space
as shown in figure 2, is depicted as the vertical dashed black line. The maximum TKE
production rate by the mean shear approximately coincides in the time of the minimum
total vertical buoyancy gradient for cases 1 and 6, the smallest intensity turbulent bursts
shown in figure 4. The shear production is predominantly by P13, consistent with the
notion that w′ > 0 disturbances initiated by gravitational instabilities impede the mean
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Figure 4. (a–h) Wall-normal integrated, planar mean TKE budgets. The grey shading corresponds to the sign
of the stratification thickness (negative (positive) represents enhanced (weak or negative) bulk boundary layer
stratification). The dashed lines correspond to the time of the minimum total vertical buoyancy gradient in the
linear solutions. The far-field velocity oscillates with − cos(t).
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shear and trigger u′ < 0. The negative Reynolds stresses combined with ∂zū > 0 during
the upslope flow at t ≈ 0.5 subsequently produce P13 > 0 as plotted in figure 4. In the
rotating cases, P23 is non-zero as mean shear in the along-isobath direction provides a
source of TKE which is present in the non-rotating regime. This result suggests that the
bursts of TKE production rate by the mean shear are triggered by buoyant ejections of
low-momentum fluid upward. However, the triggering of buoyancy ejections is brief, weak
and not sustained, because the buoyancy fluxes in figure 4 are negligible prior to bursts in
the along-isobath shear production. Thus the gravitational instabilities appear to initiate,
but not drive, bursts of chaotic three-dimensional motion.

It is well known that boundary layer turbulence is inherently anisotropic. However, the
majority of ocean turbulence measurements measure the fluctuations of the vertical shear
of the horizontal velocities and then assume homogeneous isotropic turbulent motion to
subsequently estimate the dissipation rate (Polzin & Montgomery 1996; St. Laurent, Toole
& Schmitt 2001). The isotropic, homogeneous turbulence dissipation rate of TKE (Taylor
1935) is defined in the sloped coordinate frame as

εhi = 15
4 ν cos2 θ

(
(∂zu′)2 + (∂zv′)2

)
. (4.21)

The wall-normal integrated forms of εhi are plotted for the rotating reference frame
cases in figure 4. Comparison of the dissipation rate assuming homogeneous isotropic
turbulence (4.21) and the full dissipation rate (4.18), shown for the rotating cases, indicates
that the assumption of homogeneous isotropic turbulence leads to overpredictions of
the dissipation rate by a factor of approximately two. At high Reynolds number in
unstratified boundary layers it is well known that the boundary layer dissipation rate
is highly anisotropic in the viscous sublayer (Pope 2000); therefore we speculate that,
if the Prandtl number remains unity, then the anisotropy of the dissipation rate will be
similarly significant in the viscous sublayer of the high-Reynolds-number regimes of the
flow investigated here.

4.3. Gravitationally unstable rolls
Except for case 6, all of the simulations at Re = 840 exhibited rolls characterized by
growing streamwise vorticity. Figure 5 shows the instantaneous vertical velocity of case 2
to illustrate the life cycle of the rolls. In figure 5, red corresponds to upward motions and
blue approximately corresponds to downward motions. The generation of two-dimensional
convective rolls in the along-isobath/wall-normal (y–z) plane is visible just prior to the
beginning of a burst. At time t = 0.51 the rolls appear and by t = 0.55 the rolls have
begun to shear apart, erupting into the three-dimensional turbulence at the time of increase
in TKE production by mean shear at t = 0.55.

The rolls formed by gravitational instabilities in figure 5 are qualitatively consistent
with rolls observed in oscillating sloping stratified boundary layer experiments by Hart
(1971). Hart (1971) identified spanwise plumes and rolls associated with the periodic
reversals of the density gradient that qualitatively resembled the rolls that appeared in
high-Rayleigh-number Couette flow experiments by Bénard & Avsec (1938), Chandra
(1938) and Brunt (1951). Perhaps due to the similarity to the convection experiments,
the rolls observed by Hart (1971) were referred to as ‘convective rolls’. Linear stability
analyses by Deardorff (1965), Gallagher & Mercer (1965) and Ingersoll (1966) revealed
that the growth of gravitationally unstable disturbances in high-Rayleigh-number Couette
flows is suppressed in the plane of the shear (the streamwise–vertical plane) by the shear
(i.e. the suppression of the spanwise vorticity disturbances). They also found that the
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t = 0.49 t = 0.51 t = 0.52

t = 0.55 t = 0.60 t = 0.70

x
y

(a) (b) (c)

(d ) (e) ( f )

Figure 5. (a–f ) Contours of the vertical velocity, w, for case 2. The contour plots show the vertical velocity
at a fixed distance (roughly δ) in the wall-normal direction at six consecutive times. Here w > 0 is coloured
red, while w < 0 is coloured blue. At t = 0.5 the across-isobath velocity is positive but begins to decelerate.
Simultaneously, (b) two-dimensional rolls form in the y–z plane, as heavier fluid is advected over lighter fluid
trapped near the wall by the friction.

growth of disturbances in the spanwise–vertical plane (steamwise vorticity disturbances)
is unimpeded by the shear and grows in the same manner as pure convection. It has since
been established that streamwise (the across-isobath direction) vortices with axes in the
direction of a mean shear flow (or ‘rolls’) can arise due to heating or centrifugal effects (Hu
& Kelly 1997). Linear stability analyses by Kaiser (2020) of the same regimes indicate that
the streamwise (across-isobath) vorticity, which describes the rolls in figure 5, is linearly
gravitationally unstable at the low Reynolds numbers investigated here. The initial growth
of the rolls in figure 5 appears to have similar attributes.

To verify the hypothesis that gravitational instabilities spawn the rolls, which in turn
spawn the turbulent burst, an additional simulation with the same parameters as those
of case 2, but with the nonlinear advective terms in the buoyancy equation removed (i.e.
replacing the material derivative dtb̃ with ∂tb̃ in (2.6)), was executed. The simulation of the
non-advective buoyancy equation version of case 2 had no turbulent bursts over 10 cycles
(all other simulations with bursts developed a burst within 2 cycles). The rolls are a bypass
transition mechanism, lifting low-momentum fluid up and bringing high-momentum fluid
down into the near-wall flow, and so they transiently destabilize the shear. The transient
gravitationally unstable buoyancy gradients, discussed previously, can trigger oscillating
boundary layer turbulent bursts even if the buoyancy fluxes are a negligible source of TKE.

Large-eddy simulation of a non-rotating internal wave beam at critical slope and at
Re = 10 500 (U∞ = 0.125 m s−1) by Gayen & Sarkar (2011) revealed turbulent bursts at
the same time in the phase as those shown in figure 4: the bursts occur as the far-field
velocity changes from downslope to upslope flow. However, the wall-normal structure
of the prescribed internal wave beam investigated in Gayen & Sarkar (2011) produced
turbulence dominated by buoyancy fluxes as the beam generated a much larger supply of
potential energy through isopycnal tucking (dense water advected over light water) than is
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possible by molecular diffusion. Given the differences in the magnitudes of the buoyancy
fluxes in Gayen & Sarkar (2011) and those shown in figure 4, we speculate that the low-
to transitional-Reynolds-number regime is characterized by shear-driven turbulent bursts
triggered by gravitational instability, while the higher Reynolds number/smaller internal
tide vertical wavelength regime is characterized by large buoyancy fluxes due to significant
isopycnal tucking.

Although the streamwise rolls are initially two-dimensional, they produce a
three-dimensional vorticity field. The inherent three-dimensionality of the gravitational
instability is evident in the Boussinesq baroclinic production of vorticity term (∇ × b̃) in
the absolute vorticity budget for rotating and non-rotating oscillating boundary layers:

baroclinic production = C2(
nonlinear 2-D rolls

and 3-D bursts︷ ︸︸ ︷
∂yb̃ cot θ i + (

nonlinear
3-D bursts︷ ︸︸ ︷
∂xb̃ cot θ −

linear flow
and 3-D bursts︷︸︸︷

∂zb̃ )j −

nonlinear 2-D rolls
and 3-D bursts︷︸︸︷

∂yb̃k
)
. (4.22)

The linear oscillating boundary layer vorticity field has only one vorticity component, the
spanwise vorticity in the y direction, and the linear rotating oscillating boundary layer
vorticity field is comprised of the spanwise vorticity and the streamwise vorticity in the
x direction. In either case, only the ∂zb̃j term in (4.22) is non-zero. However, the rolls
produce gradients in the buoyancy field in the y direction. The first and last terms on the
right-hand side of (4.22) indicate that the rolls in the y–z plane will inevitably generate
vorticity in the streamwise and wall-normal directions; therefore, the rolls may induce
three-dimensional motion in the oscillating boundary layers if viscosity and/or other
mechanisms that suppress secondary instabilities are overcome. Therefore the coherent
structures shown in figure 5, which facilitate the transition to turbulence, may initiate
secondary instabilities through three-dimensional baroclinic production of vorticity, a
phenomenon that is widely observed in other stratified shear flow instabilities (e.g. Peltier
& Caulfield 2003).

4.4. Relaminarization and instability suppression
During the phase of enhanced boundary layer stratification relative to the background, δs <

0 (the white regions in figure 4), the boundary shear instabilities must overcome not only
the stabilizing effect of increased stratification but also the stabilizing effect of the wall
that is present regardless of phase. Linear stability analysis by Schlichting (1935) yielded a
critical gradient Richardson number of 1/24 for a stratified Blasius boundary layer, notably
lower than the Miles–Howard theorem threshold for inviscid stratified shear. This suggests
that the flow is stabilized with respect to shear perturbations during δs < 0, although it is
difficult to derive a suitable gradient Richardson number from the time-periodic boundary
layer velocity and buoyancy solutions (Appendix A) because of inner and outer boundary
layer gradients with opposite sign as well as shear and buoyancy gradient sign changes
(figure 6). However, if the flow is turbulent during the phase of δs < 0, turbulence model
simulations at high Reynolds number by Umlauf & Burchard (2011) suggest mixing is
much more efficient, presumably because the turbulence intensity required to overcome
the strengthened boundary layer stratification must be considerable.

Three other mechanisms contribute to the relaminarization of the turbulent bursts in
figure 4. First, the turbulent burst diffuses the mean shear and thus its primary energy
source. Second, the tidal acceleration opposes the mean shear during the second half of
the phase, so the decay and reversal of the shear amplitude imply that less mean flow
kinetic energy is available. Third, once the flow reverses the outer boundary layer becomes
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Figure 6. (a–h) Hövmuller plots of mean stratification for Re = 840. The total wall-normal buoyancy gradients
are non-dimensionalized by N2. The colour bar axes show that the boundary layer stratification maxima/minima
increase/decrease with increasing slope.

increasingly stratified, as mentioned previously, when δs < 0. For a burst to persist across
the entire period it must have a constant source of mean shear of large enough magnitude
to sustain production of TKE throughout flow reversals and increased stratification.
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Case Bu

5, 13 0.124
6, 14 1.127
7, 15 3.173
8, 16 6.347

Table 3. Rotating boundary layer simulation slope Burger numbers.

4.5. The effect of rotation
Only case 5 features sustained turbulence throughout the period (figure 4) and sustained
boundary layer buoyancy homogenization (figure 6), because projection of the Coriolis
force onto the wall-normal direction increases with decreasing slope, and thus oscillating
Stokes–Ekman-like boundary layers develop at low angle. As the slope angle decreases,
the boundary layer velocity spiral broadens in the along-isobath direction and mean shear
is produced in the along-isobath direction, providing an additional source of TKE through
a component of shear production, P23, that is not active in the non-rotating cases (figure 4).
The Burger number is the ratio of the squares of the inertial period to the time scale
associated with the buoyant restoring force. The slope Burger number accounts for the
rotated reference frame, defined as

Bu = Ro2C2 = N2 tan2 θ

f 2 . (4.23)

If Bu < 1, the buoyant restoring force acts more slowly than the Coriolis force and rotation
is significant. Table 3 shows the Burger number for the rotating boundary layer flows, cases
5–8 and 13–16. Cases of the lowest slope Burger number, cases 5 and 13, are influenced the
most by rotation. In case 5, the highest-Reynolds-number and lowest-Burger-number flow,
the turbulence is sustained throughout the period and the mean velocity field oscillates
in a tidal ellipse. These results suggest that, within the investigated parameter regime,
low-Burger-number flows are more likely to sustain turbulence throughout the entire
period because the tidal ellipse of the boundary layer mean shear can supply TKE even at
times in the oscillation when the component of mean shear in the across-isobath direction
is weak.

4.6. Barotropic tide dissipation
In oceanography, the rate of energy loss to drag per square metre of the barotropic flow
by tidal bottom boundary layers is often estimated using the quasi-empirical model D ≈
ρ0cD|U|U2 (Hoerner 1965), where cD is the dimensionless drag coefficient and U is an
estimate of the bulk velocity (Jayne & St. Laurent 2001; St. Laurent & Garrett 2002). The
rate of energy dissipated by the tide can be represented in terms of watts per metre squared
by

D ≈ ρ0

∫ 30δ

0
ε̄ dz, (4.24)

where ε̄ is the dimensional time mean dissipation rate of TKE (units m2 s−3). Lacking
a time-mean length scale for the boundary layer thickness that applies to bursting flows,
we spatially average the dissipation rate of TKE over the region of 5 m near the wall,
equivalent to averaging over approximately 0 < z < 30δ. For flat-plate boundary layers,
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Case Re cD εBL (LO/LK)4/3

1 840 1.8 × 10−4 3.5 × 10−11 1.8 × 101

2 840 9.7 × 10−4 1.9 × 10−10 9.6 × 101

3 840 1.6 × 10−3 3.2 × 10−10 1.6 × 102

4 840 3.5 × 10−3 6.9 × 10−10 3.5 × 102

5 840 4.7 × 10−3 9.3 × 10−10 4.6 × 102

6 840 5.1 × 10−4 1.0 × 10−10 5.0 × 101

7 840 5.0 × 10−3 9.9 × 10−10 4.9 × 102

8 840 5.4 × 10−3 1.1 × 10−9 5.3 × 102

9 420 8.8 × 10−5 2.2 × 10−12 1.1 × 100

10 420 ∼0 ∼0 ∼0
11 420 ∼0 ∼0 ∼0
12 420 ∼0 ∼0 ∼0
13 420 ∼0 ∼0 ∼0
14 420 1.6 × 10−8 3.9 × 10−16 2.0 × 10−4

15 420 1.5 × 10−3 3.7 × 10−11 1.8 × 10−1

16 420 1.4 × 10−3 3.4 × 10−11 1.7 × 10−1

Table 4. Drag coefficients, averaged dissipation rates and Ozmidov–Kolmogorov length-scale ratios
estimated from time-mean simulation results.

the transitional flow regime is characterized by drag coefficients in the range 0.001 �
cD � 0.005, for 1 < Re < 103 or equivalently 1 < ReL < 106 (Hoerner 1965). The drag
coefficients for the low-Reynolds-number boundary layers in this study were calculated as

cD = D
ρ0U3∞

. (4.25)

The drag coefficients are shown in table 4. The drag coefficient values shown in table 4
mostly fall within the expected range for flat-plate boundary layers, with the exception of
the steepest slope case at Re = 840, case 8. The drag coefficients are small at Re = 420
for all but the steepest slope angles in the rotating reference frame (cases 15 and 16). In
table 4, ∼0 represents negligible drag. The drag coefficients increase with slope at constant
Reynolds number, and they effectively vanish in a portion of the range 420 < Re < 840
on lower slopes where the flow is in the laminar or disturbed laminar abyssal slope regime.

The average boundary layer dissipation rates εBL and the ratio of Ozmidov to
Kolmogorov length scales (LO/LK)4/3 are also shown in table 4, where

εBL ≈ 1
30δ

∫ 30δ

0
ε̄ dz, (4.26)(

LO

LK

)4/3

= εBL

νN2 . (4.27)

The use of the ratio of Ozmidov to Kolmogorov length scales LO/LK to characterize the
bulk effect of stratification on turbulence can be traced to the isotropy parameter of Gargett,
Osborn & Nasmyth (1984). More recently, Gargett’s ratio raised to the 4/3 power has been
referred to as the isotropy parameter I (Thorpe 2007; Ivey, Winters & Koseff 2008) and
as the buoyancy Reynolds number Reb (Ivey et al. 2021; Mashayek et al. 2022). To avoid
confusion, we refer to Gargett’s ratio raised to the 4/3 power as the Ozmidov–Kolmogorov
length-scale ratio.
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Sign changes in the oscillating boundary layer buoyancy gradient (see figure 6 and
the buoyancy solutions for the laminar flow provided in Appendix A) and therefore it
does not lend itself to a simple time-mean estimate of the buoyancy gradient; therefore,
the background buoyancy gradient N2 is used in (4.27). Since the Ozmidov–Kolmogorov
length-scale ratio does not distinguish between weak stratification and strong turbulence,
the O(100) values presented in table 4 should be interpreted as weak turbulence, or chaotic
motions with little scale separation that overcome weaker stratification. The dissipation
rates presented in table 4 are consistent with observed minimum abyssal dissipation
rates of ε ∼ 10−10 m2 s−3 (Thorpe 2007). The low levels of dissipation rate and the
relaminarization of the turbulent bursts imply that in all but the sustained turbulence
case (case 5) the irreversible buoyancy flux is negligible. However, I > 100 in stratified
homogeneous turbulence is associated with significant irreversible buoyancy fluxes in
laboratory experiments (Shih et al. 2005; Ivey et al. 2008), suggesting (1) that a better
estimation of the characteristic boundary layer buoyancy gradient is required and (2)
that the interpretation of the Ozmidov–Kolmogorov length-scale ratio near adiabatic
boundaries is ambiguous because (LO/LK)4/3 → ∞ on a steady adiabat.

5. Conclusions

We investigated transition pathways of low-Reynolds-number, oscillating, stratified,
diffusive boundary layers on infinite slopes in rotating and non-rotating reference
frames on extra-critical slopes. Our results suggest that the laminar boundary layers
are destabilized by a two-dimensional gravitational instability, characterized by the
formation of rolls aligned axially in the across-isobath direction, which triggers bursts
of turbulence that are supplied with energy from the mean shear. This phenomenon
occurred for all of the investigated parameter space, except for low slope Burger
number (Bu � 1/8) and for cases of low Reynolds number and low slope angle
(Re = 420, θ < 0.1). The low-slope-angle, low-Reynolds-number cases remained laminar.
The low-slope-Burger-number, Re ≈ 840, case is qualitatively similar to stratified
Stokes–Ekman layers, and it was the only simulation that exhibited sustained boundary
layer buoyancy homogenization, or ‘mixing’. In that case, steady shear-driven turbulence
throughout the period continually eroded the stratification (P13 and P23 in figure 4), even
during the downslope phase when light buoyancy anomalies advected downslope increase
the stratification and suppress motion in the boundary layer (figure 6).

Vertically integrated TKE budgets suggest that energy supply to the transient turbulent
bursts (Re ≈ 840 flows except for case 5 in figure 4) was extracted from the mean
shear. Increasing the slope parameter ε resulted in increases in turbulent burst intensity,
quantified by integrated TKE shear production, and to a much lesser degree also
induced larger positive turbulent buoyancy fluxes. The positive turbulent buoyancy fluxes
eroded negative buoyancy gradients and generated downgradient buoyancy diffusion. The
turbulent bursts in rotating reference frames (slope Ro = 1.4) were qualitatively similar to
the non-rotating reference frame bursts.

During the phase of downslope mean flow the bursts where observed to relaminarize.
With the exception of Bu � 1/8 (case 5), we observed that the boundary layer stratification
significantly controls the transitional and intermittent regimes within 420 � Re � 840 by
suppressing turbulence during the downslope flow phase and triggering TKE production
by the mean shear during the upslope flow phase.

Bulk estimates of the maximum boundary layer Rayleigh number (see figure 2) from
analytical solutions were consistent with gravitational instabilities that were observed
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in simulations of varying parameter space. The gravitational instabilities for rolls
qualitatively resemble the convective rolls of diabatic Couette flow (Ingersoll 1966),
and the correlation between the timing of their formation and gravitationally unstable
stratification in the boundary layer suggests that the instabilities are characterized by the
upward ejection of buoyant low-momentum fluid near the wall which acts similarly to
near-wall ejections in unstratified flows by initiating shear production (Robinson 1991).
Our results agree with Floquet linear instability of the laminar flow solutions (Kaiser 2020)
that the boundary layers investigated are susceptible to linear gravitational instabilities at
low Reynolds number.

The dissipation rates of TKE and drag coefficients increased with increased slope
parameter, more for the non-rotating cases than the rotating cases. The drag coefficients
(table 4) become negligibly small as the Reynolds number is decreased because, below
Re ≈ 840, the oscillating boundary layer is laminar and thus the time-mean drag
is negligible, D ≈ 0. The drag coefficients at Re = 840 increased with slope angle.
The time-mean boundary layer Ozmidov–Kolmogorov length-scale ratio (LO/LK)4/3 =
ε/(νN2) was found to be elevated in some cases despite the low levels of turbulence
mixing. However, both the definition of a time-mean buoyancy gradient for a boundary
layer with time-periodic buoyancy gradient sign changes and the meaning of the
Ozmidov–Kolmogorov length-scale ratio near an adiabatic boundary are ambiguous.

The idealized flows investigated here are different from ‘tranquil region’ abyssal slopes,
such as can be found at 34◦N 70◦W, in several ways. First, we set the Prandtl number to
unity, whereas in § 4.1 we observed that a plausible abyssal value of the Prandtl number
for AABW is Pr ≈ 13. We speculate that Pr > 1 will increase the role of gravitational
instabilities from merely triggering shear-driven turbulent bursts to the production of
significant buoyancy fluxes. Second, we investigated steep slope angles, which are not
characteristic of the continental slopes or other large-horizontal-scalebathymetric features.
However, the results shown here may be relevant to shorter-horizontal-scale bathymetric
features (e.g. abyssal hills of 10 km horizontal scale) if the boundary oscillation has
negligible variability over O(10) m scales. Despite these differences, the dissipation rates
of TKE are consistent with background abyssal dissipation rates of ε ∼ O(10−10) m2 s−3

(Thorpe 2007), and the drag coefficient of case 5 (low slope Burger number, Re = 840,
arguably the most characteristic case of mid-latitude tranquil regions in the abyss) is
similar to the drag coefficient found in significantly more turbulent boundary layers on
the continental shelf (Zulberti, Jones & Ivey 2020), suggesting that cD ∼ O(10−3) is
potentially applicable to disparate oceanic boundary layers across a broad range of Re.
Further investigation is needed to assess the role of increased Pr, higher Re, hydraulic
roughness and other phenomena that occur on extra-critical slopes in the abyssal ocean.
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Appendix A

The following is a derivation of the solutions to (A2), (A3) and (A4). In the other sections
of this paper, partial derivatives are denoted by ∂zz for the second derivative in z, for
example. In this appendix, Leibniz notation is used for derivatives. We begin by assuming
linear oscillating solutions of the form

uO,d = U(z)eiωt, vO,d = V(z)eiωt, bO,d = B(z)ieiωt, (A1a–c)

where d denotes the variables are dimensional and O denotes the oscillating components
(2.29) and (2.31). It does not matter if we make the ansatz V(z)eiωt or V(z)ieiωt (the latter
is the correct final form) because the particular solution fixes the phase relationship of u
and v. The oscillating components of the dimensional and linearized forms of (2.2)–(2.6),
with no variation in the across-isobath (x) or along-isobath (y) directions, satisfy

∂tuO,d = f vO,d + ν∂zzuO,d + bO,d sin θ + Fd(t), (A2)

∂tvO,d = −fu + ν∂zzvO,d, (A3)

∂tbO,d = −uO,dN2 sin θ + κ∂zzbO,d, (A4)

where the wall-normal momentum vanishes by conservation of mass and the wall-normal
momentum equation again reduces to a diagnostic equation for the pressure field.
Substitution of the ansatz (A1a–c) into the linearized governing equations (A2), (A3) and
(A4) yields (

iω − ν
∂2

∂z2

)
U = V f cos θ + iB sin θ + Ai, (A5)(

iω − ν
∂2

∂z2

)
V = −U f cos θ, (A6)(

iω − κ
∂2

∂z2

)
iB = −UN2 sin θ. (A7)

The equations above can be reduced to a single inhomogeneous linear partial differential
equation for the wall-normal buoyancy structure B(z):[(

iω − ν
∂2

∂z2

)(
iω − ν

∂2

∂z2

)(
iω − κ

∂2

∂z2

)
+ N2 sin2 θ

(
iω − ν

∂2

∂z2

)
−f 2 cos2 θ

(
iω − κ

∂2

∂z2

)]
iB = AωN2 sin θ. (A8)

Equation (A8) has six characteristic roots for the complementary (homogeneous)
component of the solution and six linearly independent solutions. To obtain the
characteristic solutions, we expand all of the terms in (A8):(

∂6

∂z6 − i
(

2ω

ν
+ ω

κ

)
∂4

∂z4 +
(

−ω2

ν2 − 2ω2

νκ
+ f 2 cos2 θ

ν2 + N2 sin2 θ

νκ

)
∂2

∂z2

+i

(
− f 2 cos2 θω

ν2κ
− N2 sin2 θω

ν2κ
+ ω3

ν2κ

))
B = i

AωN2 sin θ

ν2κ
. (A9)
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Therefore the non-homogeneous ordinary differential equation has the form(
∂6

∂z6 + ia4
∂4

∂z4 + a2
∂2

∂z2 + ia0

)
B = ifp, (A10)

where the subscript p denotes ‘particular solution’ and

a4 = −
(

2ω

ν
+ ω

κ

)
= −ω

κ

(
2
Pr

+ 1
)

= −ω

κ

(
2 + Pr

Pr

)
,

a2 = −ω2

ν2 − 2ω2

νκ
+ f 2 cos2 θ

ν2 + N2 sin2 θ

νκ
= f 2 cos2 θ+PrN2 sin2 θ−ω2(1+2Pr)

κ2Pr2 ,

a0 = ω3

ν2κ
− f 2 cos2 θω

ν2κ
− N2 sin2 θω

ν2κ
= ω(ω2 − f 2 cos2 θ − N2 sin2 θ)

κ3Pr
,

fp = AωN2 sin θ

ν2κ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A11)

Equation (A10) has the characteristic equation

λ6 + ia4λ
4 + a2λ

2 + ia0 = 0, (A12)

which has six distinct solutions for λ. The total general solution is the sum of
the complementary (homogeneous) solutions and the particular (non-homogeneous)
solutions:

B(z) = BC(z) + Bp(z). (A13)

The complementary solution is therefore of the form

BC(z) = c1eλ1 + c2eλ2 + c3eλ3 + c4eλ4 + c5eλ5 + c6eλ6 (A14)

and the particular part of the solution is of the form

Bp = ap, (A15)

where ap is an unknown constant.

A.1. The particular solution
To solve for ap, we substitute the particular solution form (A15) into the non-homogeneous
governing equation (A10):

ap = fp
a0

= AN2 sin θ

ω2 − f 2 cos2 θ − N2 sin2 θ
. (A16)

A.2. The complementary solution
Let φ = λ2 in (A12) to obtain

φ3 + ia4φ
2 + a2φ + ia0 = 0, (A17)
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where

λ1,2 = ±
√

φ1, λ3,4 = ±
√

φ2, λ5,6 = ±
√

φ2. (A18a–c)

The solutions to this equation are

β = 3

√
2ia3

4 + 9ia2a4 + 3
√

3
√

4a3
2 + a2

4a2
2 + 18a0a4a2 + 4a0a3

4 − 27a2
0 − 27ia0, (A19)

φ1 = β

3 3√2
−

3√2
(
a2

4 + 3a2
)

3β
− ia4

3
, (A20)

φ2 = −
(

1 − i
√

3
)

β

6 3√2
+
(

1 + i
√

3
) (

a2
4 + 3a2

)
3·22/3β

− ia4

3
, (A21)

φ3 = −
(

1 + i
√

3
)

β

6 3√2
+
(

1 − i
√

3
) (

a2
4 + 3a2

)
3·41/3β

− ia4

3
. (A22)

A.3. Boundary conditions
For the parameter space we are interested in c1 = c3 = c5 = 0 (to have finite solutions at
z = ∞):

B(z) = c2e−√
φ1z + c4e−√

φ2z + c6e−√
φ3z + ap. (A23)

Now we reinterpret the boundary conditions in terms of B:

(i) No slip at the wall (z = 0) applied to the across-slope velocity

U = − 1
N2 sin θ

(
iω − κ

∂2

∂z2

)
iB = 0 (A24)

leads to the expression

c2(ω + iκφ1) + c4(ω + iκφ2) + c6(ω + iκφ3) = −apω. (A25)

(ii) No slip at the wall (z = 0) applied to the along-slope velocity

V = 1
f cos θ

(
1

N2 sin θ

(
ω2 + iω(ν + κ)

∂2

∂z2 − νκ
∂4

∂z4

)
B − sin θB − A

)
= 0

(A26)
leads to the expression

c6(iωφ3(κ + ν) − κνφ2
3 − N2 sin2 θ + ω2)

+ c2

(
iωφ1(κ + ν) − κνφ2

1 − N2 sin2 θ + ω2
)

+ c4

(
iωφ2(κ + ν) − κνφ2

2 − N2 sin2 θ + ω2
)

= AN2 sin θ − ap

(
ω2 − N2 sin2 θ

)
. (A27)
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(iii) The adiabatic wall boundary condition

∂B
∂z

= 0 + 0i at z = 0 (A28)

leads to the expression

− c4
√

φ2 − c6
√

φ3 − c2
√

φ1 = 0. (A29)

Therefore we can solve for the coefficients. In matrix form:

E · x = y (A30)

or ⎡⎣E11 E12 E13
E21 E22 E23
E31 E32 E33

⎤⎦⎡⎣x1
x2
x3

⎤⎦ =
⎡⎣y1

y2
y3

⎤⎦ , (A31)

where we solve for

x1 = c2 = b1, x2 = c4 = b2, x3 = c6 = b3, (A32a–c)

with E and y specified by the boundary conditions:

y1 = −apω, y2 = AN2 sin θ − ap

(
ω2 − N2 sin2 θ

)
, y3 = 0, (A33a–c)

E11 = ω + iκφ1, E12 = ω + iκφ2, E13 = ω + iκφ3,

E21 = iωφ1(κ + ν) − κνφ2
1 − N2 sin2 θ + ω2,

E22 = iωφ2(κ + ν) − κνφ2
2 − N2 sin2 θ + ω2,

E23 = iωφ3(κ + ν) − κνφ2
3 − N2 sin2 θ + ω2,

E31 = −
√

φ1, E32 = −
√

φ2, E33 = −
√

φ3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A34)

The solutions for the coefficients in the B solution (see (A32a–c)) are

Υ = κ2ν(
√

φ2φ3φ1 +
√

φ1φ3φ2 +
√

φ1φ2φ3)

+ iκνω(
√

φ1φ2 +
√

φ1φ3 +
√

φ2φ3 + φ1 + φ2 + φ3)

+ νω2 + κN2 sin2 θ, (A35)

b1 = − 1(√
φ1 − √

φ2
) (√

φ1 − √
φ3
)
Υ

(
AκN2

√
φ2φ3 sin θ + iAN2ω sin θ

+κN2ap
√

φ2φ3 sin2 θ + iκνapω(
√

φ3φ
3/2
2 + φ3φ2 +

√
φ2φ

3/2
3 ) + νapω

2
√

φ2φ3

)
,

(A36)
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b2 = 1(√
φ1 − √

φ2
) (√

φ2 − √
φ3
)
Υ

(
AκN2

√
φ1φ3 sin θ + iAN2ω sin θ

+κN2ap
√

φ1φ3 sin2 θ + iκνapω(
√

φ3φ
3/2
1 + φ3φ1 +

√
φ1φ

3/2
3 ) + νapω

2
√

φ1φ3

)
,

(A37)

b3 = − 1(√
φ1 − √

φ3
) (√

φ2 − √
φ3
)
Υ

(
AκN2

√
φ1φ2 sin θ + iAN2ω sin θ

+κN2ap
√

φ1φ2 sin2 θ + iκνapω(
√

φ2φ
3/2
1 + φ2φ1 +

√
φ1φ

3/2
2 ) + νapω

2
√

φ1φ2

)
.

(A38)

A.4. Solutions
The solutions for the oscillating component of the flow (the components with subscript
‘O’ in (2.29) and (2.30)) are

bO,d(z, t) = Re
[
B(z)ieiωt

]
= Re

[(
c2e−√

φ1z + c4e−√
φ2z + c6e−√

φ3z + ap

)
ieiωt

]
,

(A39)
where b1, b2 and b3 are given by (A36), (A37) and (A38). The across-slope velocity
coefficients are

u1 = b1(ω + iκφ1), (A40)

u2 = b2(ω + iκφ2), (A41)

u3 = b3(ω + iκφ3), (A42)

and the along-slope velocity coefficients are

v1 = b1(iωφ1(κ + ν) − κνφ2
1 − N2 sin2 θ + ω2), (A43)

v2 = b2(iωφ2(κ + ν) − κνφ2
2 − N2 sin2 θ + ω2), (A44)

v3 = b3(iωφ3(κ + ν) − κνφ2
3 − N2 sin2 θ + ω2), (A45)

and the velocity solutions are

uO,d(z, t) = Re
[
U(z)eiωt

]
= Re

⎡⎣
(

u1e−√
φ1z + u2e−√

φ2z + u3e−√
φ3z + apω

)
eiωt

N2 sin θ

⎤⎦ , (A46)

vO,d(z, t) = Re
[
V(z)ieiωt

]
= Re

⎡⎣
(
v1e−√

φ1z + v2e−√
φ2z + v3e−√

φ3z + ap(ω
2 − N2 sin2 θ) − AN2 sin θ

)
ieiωt

fN2 cos θ sin θ

⎤⎦ .

(A47)
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