Canad. Math. Bull. Vol. 21 (1), 1978

MAXIMUM MODULUS THEOREMS AND SCHWARZ LEMMATA FOR SEQUENCE SPACES, II

ву B. L. R. SHAWYER*

1. Introduction. In this note, we continue the investigations of [3], proving another analogue of the maximum modulus theorem, this time for the sequence space bv, and we investigate maximal functions for such theorems. As in [3], we use the notation $f \in MM$ if f is analytic in the disk |z| < 1, continuous for $|z| \le 1$ and satisfies $|f(z)| \le 1$ on |z| = 1. We also write $f \in SL$ if $f \in MM$ and f(0) = 0. Whenever $x = \{x_k\}$ is a sequence of complex numbers, we write $f(x) = \{f(x_k)\}$.

In [3], we proved analogues of the maximum modulus theorem for the sequence spaces s, m and c, and analogues of the Schwarz Lemma for the sequence spaces c_0 , l_p and bv_0 . We begin this note with the sequence space bv.

2. The sequence space bv. We write $x \in bv$, the space of sequences of bounded variation, if $x \in c$ and $||x||_{bv} = |\lim_{k\to\infty} x_k| + \sum_{k=1}^{\infty} |x_k - x_{k+1}|$ is finite. Note that the usual norm associated with bv is $|x_1| + \sum_{k=1}^{\infty} |x_k - x_{k+1}|$ ([1], p. 239). However, the norm used here is readily shown to be equivalent to the usual norm.

LEMMA 1. (Compare the Lemma in [3].) If $x \in bv$ and $f(z) = z^{p+1} (p \in \mathbb{N})$, then $f(x) \in bv$ and $||f(x)||_{bv} \leq f(||x||_{bv})$.

Proof. Since $\sum_{k=1}^{\infty} |x_k - x_{k+1}| < \infty$, we have that $y_n = \sum_{k=n}^{\infty} |x_k - x_{k+1}| \to 0$ as $n \to \infty$. We also have that $y_n - y_{n+1} = |x_n - x_{n+1}|$ and $y_n \ge |\sum_{k=n}^{\infty} (x_k - x_{k+1})| = |x_n - \lim_{k \to \infty} x_k|$. Thus

$$\begin{split} \|f(x)\|_{bv} - |\lim_{k \to \infty} f(x_k)| &= \sum_{k=1}^{\infty} |f(x_k) - f(x_{k+1})| = \sum_{k=1}^{\infty} |x_k^{p+1} - x_{k+1}^{p+1}| \\ &\leq \sum_{k=1}^{\infty} (y_k - y_{k+1}) \sum_{r=0}^{p} \left(y_k + \left| \lim_{n \to \infty} x_n \right| \right)^r \left(y_{k+1} + \left| \lim_{n \to \infty} x_n \right| \right)^{p-r} \\ &= \sum_{k=1}^{\infty} \left(\left(y_k + \left| \lim_{n \to \infty} x \right| \right)^{p+1} - \left(y_{k+1} + \left| \lim_{n \to \infty} x_n \right| \right)^{p+1} \right) \end{split}$$

Received by the editors October 8, 1975 and, in revised form, September 21, 1977.

^{*} Supported in part by the National Research Council of Canada.

$$= \left(y_1 + \left|\lim_{n \to \infty} x_n\right|\right)^{p+1} - \left(\left|\lim_{n \to \infty} x_n\right|\right)^{p+1}$$
$$= \left(\|x\|_{bv}\right)^{p+1} - \left(\lim_{k \to \infty} |x_k|\right)^{p+1}.$$

whence

$$||f(x)||_{bv} \le f(||x||_{bv}).$$

Suppose that $f(z) = \sum_{n=0}^{\infty} b_n z^n$. If $f \in MM$, the radius of convergence of this series will be at least 1.

THEOREM 1. (Compare Theorem 5 in [3].) If $f \in MM$ with $\sum_{n=0}^{\infty} |b_n| \le 1$ and $x \in bv$ with $||x||_{bv} \le 1$, then $f(x) \in bv$ and $||f(x)||_{bv} \le 1$.

Proof. Using the above lemma, it follows that

$$\begin{split} \|f(x)\|_{bv} &= \left|\lim_{k \to \infty} f(x)\right| + \sum_{k=1}^{\infty} |f(x_k) - f(x_{k+1})| \\ &= \left|f\left(\lim_{k \to \infty} x_k\right)\right| + \sum_{k=1}^{\infty} \left|\sum_{n=0}^{\infty} b_n (x_k^n - x_{k+1}^n)\right| \\ &\leq \sum_{n=0}^{\infty} |b_n| \cdot \left(\left|\lim_{k \to \infty} x_k\right|\right)^n + \sum_{n=0}^{\infty} |b_n| \left((\|x\|_{bv})^n - \left(\left|\lim_{k \to \infty} x_k\right|\right)^n\right) \\ &= \sum_{n=0}^{\infty} |b_n| \cdot (\|x\|_{bv})^n \leq \sum_{n=0}^{\infty} |b_n| \leq 1. \end{split}$$

It is worth observing that the proofs of Theorem 5 in [3] and Theorem 1 above, give rise to the inequalities

(A)
$$||f(x)||_{bv_0} \le ||x||_{bv_0} \cdot \sum_{n=1}^{\infty} |b_n|,$$

and

(B)
$$||f(x)||_{bv} \leq \sum_{n=0}^{\infty} |b_n|.$$

Thus, we immediately obtain the following result.

THEOREM 2. (1) If $f \in SL$ with $\sum_{n=1}^{\infty} |b_n| < \infty$ and $x \in bv_0$ with $||x||_{bv_0} \le 1$ then (A) holds. Further,

- (1.1) if there is an x such that $||f(x)||_{bv_0} = ||x||_{bv_0} \neq 0$, then $\sum_{n=1}^{\infty} |b_n| \ge 1$;
- (1.2) if $\sum_{n=1}^{\infty} |b_n| < 1$, then $||f(x)||_{bv_0} < ||x||_{bv_0}$ for all $x \in bv_0$;
- (1.3) if $\sum_{n=1}^{\infty} |b_n| \le 1$ and there is an x such that $||f(x)||_{bv_0} = ||x||_{bv_0} \ne 0$, then $\sum_{n=1}^{\infty} |b_n| = 1$.
- (2) If $f \in MM$ with $\sum_{n=0}^{\infty} |b_n| < \infty$ and $x \in bv$ with $||x||_{bv} \le 1$, then $f(x) \in bv$ and (B) holds. Further

https://doi.org/10.4153/CMB-1978-012-6 Published online by Cambridge University Press

[March

- (2.1) if there is an x such that $||f(x)||_{bv} = 1$, then $\sum_{n=0}^{\infty} |b_n| \ge 1$;
- (2.2) if $\sum_{n=0}^{\infty} |b_n| < 1$, then $||f(x)||_{bv} < 1$ for all $x \in bv$;
- (2.3) if $\sum_{n=0}^{\infty} |b_n| \le 1$ and there is an x such that $||f(x)||_{bv} = 1$, then $\sum_{n=0}^{\infty} |b_n| = 1$.

3. The sequence space bv_0^{λ} . We write $x \in bv_0^{\lambda}$, the space of null sequences of bounded variation with index λ ($\lambda > 0$), if $x \in c_0$ and $||x||_{bv_0^{\lambda}} = (\sum_{k=1}^{\infty} |x_k - x_{k+1}|^{\lambda})^{1/\lambda}$ is finite.

In this section, we shall make use of Jensen's inequality: $g(\lambda) = (\sum |u_k|^{\lambda})^{1/\lambda}$ is a decreasing function of λ for $\lambda > 0$.

We interpret this result in the wide sense in that $g(\lambda)$ may be infinite for some values of λ , but if it is finite for some value of λ , then it is finite for all larger values of λ .

LEMMA 2. If $x \in bv_0^{\lambda}$ with $0 < \lambda \le 1$ and if $f(z) = z^{p+1}(p \in N)$ then $f(x) \in bv_0^{\lambda}$ and $||f(x)||_{bv_0^{\lambda}} \le f(||x||_{bv_0^{\lambda}})$.

Proof. Let $y_n = \sum_{k=n}^{\infty} |x_k - x_{k+1}|^{\lambda}$, so that $y_n \to 0$ as $n \to \infty$. By Jensen's inequality, $(y_n)^{1/\lambda} = (\sum_{k=n}^{\infty} |x_k - x_{k+1}|^{\lambda})^{1/\lambda} \ge \sum_{k=n}^{\infty} |x_k - x_{k+1}| \ge |x_n|$. Also, $|x_n - x_{n+1}|^{\lambda} = y_n - y_{n+1}$, so that

$$\begin{aligned} (\|x^{p+1}\|_{bv_0^{\lambda}})^{\lambda} &= \sum_{k=1}^{\infty} |x_k^{p+1} - x_{k+1}^{p+1}|^{\lambda} \leq \sum_{k=1}^{\infty} |x_k - x_{k+1}|^{\lambda} \left(\sum_{r=0}^{p} |x_k|^r |x_{k+1}|^{p-r}\right)^{\lambda} \\ &\leq \sum_{k=1}^{\infty} (y_k - y_{k+1}) \left(\sum_{r=0}^{p} (y_k)^{r/\lambda} (y_{k+1})^{(p-r)/\lambda}\right)^{\lambda} \leq \sum_{k=1}^{\infty} (y_k - y_{k+1}) \sum_{r=0}^{p} y_k^r y_{k+1}^{p-r} \end{aligned}$$

by Jensen's enequality, since $1/\lambda \ge 1$

$$= \sum_{k=1}^{\infty} (y_k^{p+1} - y_{k+1}^{p+1}) = y_1^{p+1} = (||x||_{bv_0^{\lambda}})^{(p+1)\lambda},$$

whence

 $||f(x)||_{bv_0} \le f(||x||_{bv_0}).$

By using this lemma and the techniques of the proof of Theorem 5 in [3], we can readily prove the following result.

THEOREM 3. If $x \in bv_0^{\lambda}$ with $0 < \lambda \le 1$ and $||x||_{bv_0^{\lambda}} \le 1$ and if $f(z) \in SL$ with $\sum_{n=1}^{\infty} |b_n|^{\lambda}$ finite, then $f(x) \in bv_0^{\lambda}$ and $||f(x)||_{bv_0^{\lambda}} \le (\sum_{n=1}^{\infty} |b_n|^{\lambda})^{1/\lambda} ||x||_{bv_0^{\lambda}}$. Further, if $\sum_{n=1}^{\infty} |b_n|^{\lambda} \le 1$, then $||f(x)||_{bv_0} \le ||x||_{bv_0}$.

Other statements, similar to those in Theorem 2 above can be made as well.

For $\lambda > 1$, it is not possible to obtain such a result as the following example shows: Let $x_k = (2^{\lambda} - 1)^{1/\lambda} 2^{1-k}$ so that $||x||_{bv_0^{\lambda}} = 1$; however $||x^2||_{bv_0^{\lambda}} = 3(2^{\lambda} - 1)^{2/\lambda}(4^{\lambda} - 1)^{-1/\lambda} > 1$.

6

4. The sequence space bv^{λ} . We write $x \in bv^{\lambda}$, the space of sequences of bounded variation with index $\lambda(\lambda > 0)$, if $x \in c$ and

$$\|x\|_{bv^{\lambda}} = \left(\left|\lim_{k \to \infty} x_k\right|^{\lambda} + \sum_{k=1}^{\infty} |x_k - x_{k+1}|^{\lambda}\right)^{1/\lambda}$$

is finite.

In a similar way to that in which Lemma 2 above adapts the proof of the lemma in [3], we can adapt the proof of Lemma 1 above, and the proof of Theorem 1 above, to obtain

LEMMA 3. If $x \in bv^{\lambda}$ with $0 < \lambda \le 1$ and if $f(z) = z^{p+1}(p \in N)$ then $f(x) \in bv^{\lambda}$ and $||f(x)||_{bv^{\lambda}} \le f(||x||_{bv^{\lambda}})$.

THEOREM 4. If $x \in bv^{\lambda}$ with $0 < \lambda \le 1$ and $||x||_{bv^{\lambda}} \le 1$, and if $f(z) \in MM$ with $\sum_{n=0}^{\infty} |b_n|^{\lambda}$ finite, then $f(x) \in bv^{\lambda}$ and

$$\|f(x)\|_{bv^{\lambda}} \leq \left(\sum_{n=0}^{\infty} |b_n|^{\lambda}\right)^{1/\lambda}$$

Further, if $\sum_{n=0}^{\infty} |b_n|^{\lambda} \leq 1$, then $||f(x)||_{bv^{\lambda}} \leq 1$.

Again we cannot obtain a similar theorem for $\lambda > 1$; the same example as in §3 suffices to show this.

5. Maximal elements. We write $f \in MM$ if f is analytic in a region containing the closed unit disk and $f \in MM$. If $f \in \overline{MM}$ and f(0) = 0, then we write $f \in \overline{SL}$. For $f \in \overline{MM}$, it is well known what the maximal elements are.

PROPOSITION. (See, e.g., [2], p. 129.] If $f \in \overline{MM}$ and |f(z)| = 1 whenever |z| = 1, then $f(z) = e^{i\theta} z^{\gamma} \prod_{k=1}^{N} (\alpha_k z - \beta_k)/(\overline{\beta_k} z - \overline{\alpha_k})$ where θ is real, γ is a non-negative integer and $|\alpha_k| > |\beta_k| > 0$. (By convention, N is a non-negative integer, and empty products have value 1.)

If $f \in MM$ and $x \in m$ (or c or c_0) with $||x||_m = \sup_k |x_k| = 1$ (or $||x||_c = ||x||_m$ or $||x||_{c_0} = ||x||_m$) then it is easy to see that f must have the form as in the above proposition (except that in the case of c_0 , where we need $f \in \overline{SL}$, the result demands that $\gamma \ge 1$). For $x \in bv_0$ or $x \in bv$, the result is more interesting.

THEOREM 5. If $f \in \overline{SL}$ and, for every $x \in bv_0$ with $||x||_{bv_0} = 1$, we have $||f(x)||_{bv_0} = ||x||_{bv_0}$, then $f(z) = e^{i\theta}z$ where θ is real.

Proof. First, consider $x = \{z, 0, 0, 0, ...\}$ where |z| = 1, so that $||x||_{bv_0} = 1$. Thus $||f(x)||_{bv_0} = |f(z) - f(0)| = |f(z)| = 1$. From the proposition, we obtain that

$$f(z) = e^{i\theta} z^{\gamma} \prod_{k=1}^{N} (\alpha_k z - \beta_k) / (\overline{\beta_k} z - \overline{\alpha_k}).$$

Let

$$X = \{\{0, z/2, 0, 0, 0, \ldots\}, \{z/3, 0, z/3, 0, 0, 0, \ldots\}, \{0, z/4, 0, z/4, 0, 0, 0, \ldots\}, \{z/5, 0, z/5, 0, z/5, 0, 0, 0, \ldots\}, \ldots\} \text{ where } |z| = 1,$$

Let $x = X_n$, so that $||x||_{bv_0} = 1 = ||f(x)||_{bv_0} = n ||f(z/n)|$. Thus

$$1 = n^{1-\gamma} \prod_{k=1}^{N} |(\alpha_k z - n\beta_k)/(\overline{\beta_k} z - n\overline{\alpha_k})|.$$

Now

$$\lim_{n\to\infty}\prod_{k=1}^{N}|(\alpha_{k}z-n\beta_{k})/(\overline{\beta_{k}}z-n\overline{\alpha_{k}})|=\prod_{k=1}^{N}|\beta_{k}/\alpha_{k}|=M.$$

Since 0 < M < 1, it follows that $\gamma = 1$ and N = 0, so that $f(z) = e^{i\theta}z$.

THEOREM 6. If $f \in \overline{MM}$, and for every $x \in bv$ with $||x||_{bv} = 1$, we have $||f(x)||_{bv} = 1$, then it follows that

(a) if
$$f(0) = 0$$
 then $f(z) = e^{i\theta}z$,
(b) if $f(0) \neq 0$ then $f(z) = e^{i\theta}$,

where θ is real.

Proof. (a) If f(0) = 0, then we follow the proof of Theorem 5 to obtain that $f(z) = e^{i\theta}z$

(b) If $f(0) \neq 0$, we first consider $x = \{z, 0, 0, 0, ...\}$ with |z| = 1, so that $||x||_{bo} = 1$. Thus

$$f(x) = \{f(z), f(0), f(0), f(0), \ldots\}$$
 and $||f(x)||_{bv} = |f(0)| + |f(z) - f(0)| = 1.$

If |f(0)| = 1, then |f(z) - f(0)| = 0 on |z| = 1 and the minimum modulus theorem gives that $f(z) = f(0) = e^{i\theta}$.

Suppose hereafter that 0 < |f(0)| < 1. Let F(z) = (f(z) - f(0)/1 - |f(0)|). Thus |F(z)| = 1 on |z| = 1, so that

$$F(z) = e^{i\theta} z^{\gamma} \prod_{k=1}^{N} (\alpha_k z - \beta_k) / (\overline{\beta_k} z - \overline{\alpha_k})$$

and, *a fortiori*, $f(z) = f(0) + \{1 - |f(0)|\}e^{i\theta}z^{\gamma}$

$$\prod_{k=1}^{N} (\alpha_k z - \beta_k) / (\overline{\beta_k} z - \overline{\alpha_k}).$$

Define X as in the proof of Theorem 5 and let $x = X_n$, so that $||x||_{bv} = 1$. Further

$$||f(x)||_{bv} = |f(0)| + n |f(z/n) - f(0)| = 1$$

B. L. R. SHAWYER

so that $1 = |f(0)| + \{1 - |f(0)|\} n^{1-\gamma} \prod_{k=1}^{N} |(\alpha_k z - n\beta_k)/(\overline{\beta_k} z - n\overline{\alpha_k})|.$

Now
$$\lim_{n\to\infty}\prod_{k=1}^{N}|(\alpha_{k}z-n\beta_{k})/(\overline{\beta_{k}}z-n\overline{\alpha_{k}})=\prod_{k=1}^{N}|\beta_{k}/\alpha_{k}|=M.$$

Since 0 < M < 1, it follows that $\gamma = 1$ and N = 0. Thus

$$f(z) = f(0) + e^{i\theta} \{1 - |f(0)|\} z = p + qz, \text{ say},$$

where 0 < |p| < 1 and 0 < |q| < 1.

Now choose any $x \in bv$ with $||x||_{bv} = 1$ and $\lim_{k\to\infty} x_k = z$ where |z| = 1. Then

$$\|f(x)\|_{bv} = |f(z) + \sum_{k=1}^{\infty} |q| \cdot |x_k - x_{k+1}|$$

= $|p + qz| + |q| (||x||_{bv} - |z|) = |p + qz| = 1.$

This is impossible unless either p = 0, |q| = 1 or q = 0, |p| = 1, both of which are excluded. Hence $f(z) = e^{i\theta}$.

These last two theorems give the answer to the question posed in [3] as to whether $\sum |b_n| \le 1$ is a necessary condition, if we insist that ||x|| = 1. The answer is yes, but in an unexpected way.

Maximal element theorems for bv_0^{λ} and bv^{λ} can be proved in similar ways to those used in Theorems 5 and 6 using

$$Y = \{\{0, z/2^{1/\lambda}, 0, 0, 0, \ldots\}, \{z/3^{1/\lambda}, 0, z/3^{1/\lambda}, 0, 0, 0, \ldots\} \ldots\}$$

instead of X. However, the proofs will demand, as a necessary condition for the existence of maximal elements, that $\lambda = \gamma$ and since γ is an integer, we must have $\gamma = 1$. Thus we obtain Theorem 5 only for $bv_0^1 = bv_0$ and Theorem 6 only for $bv^1 = bv$.

REFERENCES

1. Dunford, N., and Schwartz, J. T., *Linear Operators*, Part I, Interscience, New York, Fourth Printing, 1967.

2. Conway, J. B., Functions of One Complex Variable, Springer-Verlag, New York, Second Printing, 1975.

3. Shawyer, B. L. R., Maximum Modulus Theorems and Schwarz Lemmata for Sequence Spaces, Canad. Math. Bull., 18 (1975), 593-596.

DEPARTMENT OF MATHEMATICS

The University of Western Ontario London, Ontario, Canada N6A 5B9

84