MAXIMUM MODULUS THEOREMS AND SCHWARZ LEMMATA FOR SEQUENCE SPACES, II

BY
B. L. R. SHAWYER*

1. Introduction. In this note, we continue the investigations of [3], proving another analogue of the maximum modulus theorem, this time for the sequence space $b v$, and we investigate maximal functions for such theorems. As in [3], we use the notation $f \in M M$ if f is analytic in the disk $|z|<1$, continuous for $|z| \leq 1$ and satisfies $|f(z)| \leq 1$ on $|z|=1$. We also write $f \in S L$ if $f \in M M$ and $f(0)=0$. Whenever $x=\left\{x_{k}\right\}$ is a sequence of complex numbers, we write $f(x)=\left\{f\left(x_{k}\right)\right\}$.

In [3], we proved analogues of the maximum modulus theorem for the sequence spaces s, m and c, and analogues of the Schwarz Lemma for the sequence spaces c_{0}, l_{p} and $b v_{0}$. We begin this note with the sequence space $b v$.
2. The sequence space $b v$. We write $x \in b v$, the space of sequences of bounded variation, if $x \in c$ and $\|x\|_{b v}=\left|\lim _{k \rightarrow \infty} x_{k}\right|+\sum_{k=1}^{\infty}\left|x_{k}-x_{k+1}\right|$ is finite. Note that the usual norm associated with $b v$ is $\left|x_{1}\right|+\sum_{k=1}^{\infty}\left|x_{k}-x_{k+1}\right|$ ([1], p. 239). However, the norm used here is readily shown to be equivalent to the usual norm.

Lemma 1. (Compare the Lemma in [3].) If $x \in b v$ and $f(z)=z^{p+1}(p \in \mathbb{N})$, then $f(x) \in b v$ and $\|f(x)\|_{b v} \leq f\left(\|x\|_{b v}\right)$.

Proof. Since $\sum_{k=1}^{\infty}\left|x_{k}-x_{k+1}\right|<\infty$, we have that $y_{n}=\sum_{k=n}^{\infty}\left|x_{k}-x_{k+1}\right| \rightarrow 0$ as $n \rightarrow \infty$. We also have that $y_{n}-y_{n+1}=\left|x_{n}-x_{n+1}\right|$ and $y_{n} \geq\left|\sum_{k=n}^{\infty}\left(x_{k}-x_{k+1}\right)\right|=$ $\left|x_{n}-\lim _{k \rightarrow \infty} x_{k}\right|$. Thus

$$
\begin{aligned}
\|f(x)\|_{b v}-\left|\lim _{k \rightarrow \infty} f\left(x_{k}\right)\right| & =\sum_{k=1}^{\infty}\left|f\left(x_{k}\right)-f\left(x_{k+1}\right)\right|=\sum_{k=1}^{\infty}\left|x_{k}^{p+1}-x_{k+1}^{p+1}\right| \\
& \leq \sum_{k=1}^{\infty}\left(y_{k}-y_{k+1}\right) \sum_{r=0}^{p}\left(y_{k}+\left|\lim _{n \rightarrow \infty} x_{n}\right|\right)^{r}\left(y_{k+1}+\left|\lim _{n \rightarrow \infty} x_{n}\right|\right)^{p-r} \\
& =\sum_{k=1}^{\infty}\left(\left(y_{k}+\left|\lim _{n \rightarrow \infty} x\right|\right)^{p+1}-\left(y_{k+1}+\left|\lim _{n \rightarrow \infty} x_{n}\right|\right)^{p+1}\right)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& =\left(y_{1}+\left|\lim _{n \rightarrow \infty} x_{n}\right|\right)^{p+1}-\left(\left|\lim _{n \rightarrow \infty} x_{n}\right|\right)^{p+1} \\
& =\left(\|x\|_{b v}\right)^{p+1}-\left(\lim _{k \rightarrow \infty}\left|x_{k}\right|\right)^{p+1}
\end{aligned}
$$
\]

whence

$$
\|f(x)\|_{b v} \leq f\left(\|x\|_{b v}\right)
$$

Suppose that $f(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. If $f \in M M$, the radius of convergence of this series will be at least 1 .

Theorem 1. (Compare Theorem 5 in [3].) If $f \in M M$ with $\sum_{n=0}^{\infty}\left|b_{n}\right| \leq 1$ and $x \in b v$ with $\|x\|_{b v} \leq 1$, then $f(x) \in b v$ and $\|f(x)\|_{b v} \leq 1$.

Proof. Using the above lemma, it follows that

$$
\begin{aligned}
\|f(x)\|_{b v} & =\left|\lim _{k \rightarrow \infty} f(x)\right|+\sum_{k=1}^{\infty}\left|f\left(x_{k}\right)-f\left(x_{k+1}\right)\right| \\
& =\left|f\left(\lim _{k \rightarrow \infty} x_{k}\right)\right|+\sum_{k=1}^{\infty}\left|\sum_{n=0}^{\infty} b_{n}\left(x_{k}^{n}-x_{k+1}^{n}\right)\right| \\
& \leq \sum_{n=0}^{\infty}\left|b_{n}\right| \cdot\left(\left|\lim _{k \rightarrow \infty} x_{k}\right|\right)^{n}+\sum_{n=0}^{\infty}\left|b_{n}\right|\left(\left(\|x\|_{b v}\right)^{n}-\left(\left|\lim _{k \rightarrow \infty} x_{k}\right|\right)^{n}\right) \\
& =\sum_{n=0}^{\infty}\left|b_{n}\right| \cdot\left(\|x\|_{b v}\right)^{n} \leq \sum_{n=0}^{\infty}\left|b_{n}\right| \leq 1 .
\end{aligned}
$$

It is worth observing that the proofs of Theorem 5 in [3] and Theorem 1 above, give rise to the inequalities
(A)

$$
\|f(x)\|_{b v_{0}} \leq\|x\|_{b v_{0}} \cdot \sum_{n=1}^{\infty}\left|b_{n}\right|
$$

and
(B)

$$
\|f(x)\|_{b v} \leq \sum_{n=0}^{\infty}\left|b_{n}\right| .
$$

Thus, we immediately obtain the following result.
Theorem 2. (1) If $f \in S L$ with $\sum_{n=1}^{\infty}\left|b_{n}\right|<\infty$ and $x \in b v_{0}$ with $\|x\|_{b v_{0}} \leq 1$ then (A) holds. Further,
(1.1) if there is an x such that $\|f(x)\|_{b v_{0}}=\|x\|_{b_{0}} \neq 0$, then $\sum_{n=1}^{\infty}\left|b_{n}\right| \geq 1$;
(1.2) if $\sum_{n=1}^{\infty}\left|b_{n}\right|<1$, then $\|f(x)\|_{b v_{0}}<\|x\|_{b v_{0}}$ for all $x \in b v_{0}$;
(1.3) if $\sum_{n=1}^{\infty}\left|b_{n}\right| \leq 1$ and there is an x such that $\|f(x)\|_{b v_{0}}=\|x\|_{b v_{0}} \neq 0$, then $\sum_{n=1}^{\dot{\infty}}\left|b_{n}\right|=1$.
(2) If $f \in M M$ with $\sum_{n=0}^{\infty}\left|b_{n}\right|<\infty$ and $x \in b v$ with $\|x\|_{b v} \leq 1$, then $f(x) \in b v$ and (B) holds. Further
(2.1) if there is an x such that $\|f(x)\|_{b v}=1$, then $\sum_{n=0}^{\infty}\left|b_{n}\right| \geq 1$;
(2.2) if $\sum_{n=0}^{\infty}\left|b_{n}\right|<1$, then $\|f(x)\|_{b v}<1$ for all $x \in b v$;
(2.3) if $\sum_{n=0}^{\infty}\left|b_{n}\right| \leq 1$ and there is an x such that $\|f(x)\|_{b v}=1$, then $\sum_{n=0}^{\infty}\left|b_{n}\right|=$ 1.
3. The sequence space $\boldsymbol{b} \boldsymbol{v}_{0}^{\lambda}$. We write $x \in b v_{0}^{\lambda}$, the space of null sequences of bounded variation with index $\lambda \quad(\lambda>0)$, if $x \in c_{0}$ and $\|x\|_{b v_{0}{ }^{\lambda}}=$ $\left(\sum_{k=1}^{\infty}\left|x_{k}-x_{k+1}\right|^{\lambda}\right)^{1 / \lambda}$ is finite.

In this section, we shall make use of Jensen's inequality: $g(\lambda)=\left(\sum\left|u_{k}\right|^{\lambda}\right)^{1 / \lambda}$ is a decreasing function of λ for $\lambda>0$.
We interpret this result in the wide sense in that $g(\lambda)$ may be infinite for some values of λ, but if it is finite for some value of λ, then it is finite for all larger values of λ.

Lemma 2. If $x \in b v_{0}^{\lambda}$ with $0<\lambda \leq 1$ and if $f(z)=z^{p+1}(p \in N)$ then $f(x) \in b v_{0}^{\lambda}$ and $\|f(x)\|_{b v_{0}{ }^{\lambda}} \leq f\left(\|x\|_{b v_{0}{ }^{\lambda}}\right)$.
Proof. Let $y_{n}=\sum_{k=n}^{\infty}\left|x_{k}-x_{k+1}\right|^{\lambda}$, so that $y_{n} \rightarrow 0$ as $n \rightarrow \infty$. By Jensen's inequality, $\quad\left(y_{n}\right)^{1 / \lambda}=\left(\sum_{k=n}^{\infty}\left|x_{k}-x_{k+1}\right|^{\lambda}\right)^{1 / \lambda} \geq \sum_{k=n}^{\infty}\left|x_{k}-x_{k+1}\right| \geq\left|x_{n}\right| . \quad$ Also, $\left|x_{n}-x_{n+1}\right|^{\lambda}=y_{n}-y_{n+1}$, so that

$$
\begin{aligned}
\left(\left\|x^{p+1}\right\|_{b v_{0}}\right)^{\lambda} & =\sum_{k=1}^{\infty}\left|x_{k}^{p+1}-x_{k+1}^{p+1}\right|^{\lambda} \leq \sum_{k=1}^{\infty}\left|x_{k}-x_{k+1}\right|^{\lambda}\left(\sum_{r=0}^{p}\left|x_{k}\right|^{r}\left|x_{k+1}\right|^{p-r}\right)^{\lambda} \\
& \leq \sum_{k=1}^{\infty}\left(y_{k}-y_{k+1}\right)\left(\sum_{r=0}^{p}\left(y_{k}\right)^{r / \lambda}\left(y_{k+1}\right)^{(p-r) / \lambda}\right)^{\lambda} \leq \sum_{k=1}^{\infty}\left(y_{k}-y_{k+1}\right) \sum_{r=0}^{p} y_{k}^{r} y_{k+1}^{p-r}
\end{aligned}
$$

by Jensen's enequality, since $1 / \lambda \geq 1$

$$
=\sum_{k=1}^{\infty}\left(y_{k}^{p+1}-y_{k+1}^{p+1}\right)=y_{1}^{p+1}=\left(\|x\|_{b v_{0}}\right)^{(p+1) \lambda},
$$

whence

$$
\|f(x)\|_{b v_{0}} \leq f\left(\|x\|_{b v_{0}}\right) .
$$

By using this lemma and the techniques of the proof of Theorem 5 in [3], we can readily prove the following result.

Theorem 3. If $x \in b v_{0}^{\lambda}$ with $0<\lambda \leq 1$ and $\|x\|_{b v_{0}{ }^{\lambda}} \leq 1$ and if $f(z) \in S L$ with $\sum_{n=1}^{\infty}\left|b_{n}\right|^{\lambda}$ finite, then $f(x) \in b v_{0}^{\lambda}$ and $\|f(x)\|_{b v_{0}^{\lambda}} \leq\left(\sum_{n=1}^{\infty}\left|b_{n}\right|^{\lambda}\right)^{1 / \lambda}\|x\|_{b v_{0}{ }^{\lambda}}$. Further, if $\sum_{n=1}^{\infty}\left|b_{n}\right|^{\lambda} \leq 1$, then $\|f(x)\|_{b v_{0}} \leq\|x\|_{b v_{0}}$.

Other statements, similar to those in Theorem 2 above can be made as well.
For $\lambda>1$, it is not possible to obtain such a result as the following example shows: Let $x_{k}=\left(2^{\lambda}-1\right)^{1 / \lambda} 2^{1-k}$ so that $\|x\|_{b v_{0}{ }^{\lambda}}=1$; however $\left\|x^{2}\right\|_{b v_{0}{ }^{\lambda}}=$ $3\left(2^{\lambda}-1\right)^{2 / \lambda}\left(4^{\lambda}-1\right)^{-1 / \lambda}>1$.
4. The sequence space $\boldsymbol{b} \boldsymbol{v}^{\lambda}$. We write $x \in b v^{\lambda}$, the space of sequences of bounded variation with index $\lambda(\lambda>0)$, if $x \in c$ and

$$
\|x\|_{b v^{\lambda}}=\left(\left|\lim _{k \rightarrow \infty} x_{k}\right|^{\lambda}+\sum_{k=1}^{\infty}\left|x_{k}-x_{k+1}\right|^{\lambda}\right)^{1 / \lambda}
$$

is finite.
In a similar way to that in which Lemma 2 above adapts the proof of the lemma in [3], we can adapt the proof of Lemma 1 above, and the proof of Theorem 1 above, to obtain

Lemma 3. If $x \in b v^{\lambda}$ with $0<\lambda \leq 1$ and if $f(z)=z^{p+1}(p \in N)$ then $f(x) \in b v^{\lambda}$ and $\|f(x)\|_{b v^{\lambda}} \leq f\left(\|x\|_{b v^{\lambda}}\right)$.

Theorem 4. If $x \in b v^{\lambda}$ with $0<\lambda \leq 1$ and $\|x\|_{b v^{\lambda}} \leq 1$, and if $f(z) \in M M$ with $\sum_{n=0}^{\infty}\left|b_{n}\right|^{\lambda}$ finite, then $f(x) \in b v^{\lambda}$ and

$$
\|f(x)\|_{b v^{\lambda}} \leq\left(\sum_{n=0}^{\infty}\left|b_{n}\right|^{\lambda}\right)^{1 / \lambda}
$$

Further, if $\sum_{n=0}^{\infty}\left|b_{n}\right|^{\lambda} \leq 1$, then $\|f(x)\|_{b v^{\lambda}} \leq 1$.
Again we cannot obtain a similar theorem for $\lambda>1$; the same example as in $\S 3$ suffices to show this.
5. Maximal elements. We write $f \in \overline{M M}$ if f is analytic in a region containing the closed unit disk and $f \in M M$. If $f \in \overline{M M}$ and $f(0)=0$, then we write $f \in \overline{S L}$. For $f \in \overline{M M}$, it is well known what the maximal elements are.

Proposition. (See, e.g., [2], p. 129.] If $f \in \overline{M M}$ and $|f(z)|=1$ whenever $|z|=1$, then $f(z)=e^{i \theta} z^{\gamma} \prod_{k=1}^{N}\left(\alpha_{k} z-\beta_{k}\right) /\left(\overline{\beta_{k}} z-\overline{\alpha_{k}}\right)$ where θ is real, γ is a nonnegative integer and $\left|\alpha_{k}\right|>\left|\beta_{k}\right|>0$. (By convention, N is a non-negative integer, and empty products have value 1.)

If $f \in \overline{M M}$ and $x \in m$ (or c or c_{0}) with $\|x\|_{m}=\sup _{k}\left|x_{k}\right|=1$ (or $\|x\|_{c}=\|x\|_{m}$ or $\|x\|_{c_{0}}=\|x\|_{m}$) then it is easy to see that f must have the form as in the above proposition (except that in the case of c_{0}, where we need $f \in \overline{S L}$, the result demands that $\gamma \geq 1$). For $x \in b v_{0}$ or $x \in b v$, the result is more interesting.

Theorem 5. If $f \in \overline{S L}$ and, for every $x \in b v_{0}$ with $\|x\|_{b v_{0}}=1$, we have $\|f(x)\|_{b v_{0}}=$ $\|x\|_{b_{0}}$, then $f(z)=e^{i \theta} z$ where θ is real.

Proof. First, consider $x=\{z, 0,0,0, \ldots\}$ where $|z|=1$, so that $\|x\|_{b v_{0}}=1$. Thus $\|f(x)\|_{b_{0}}=|f(z)-f(0)|=|f(z)|=1$. From the proposition, we obtain that

$$
f(z)=e^{i \theta} z^{\gamma} \prod_{k=1}^{N}\left(\alpha_{k} z-\beta_{k}\right) /\left(\overline{\beta_{k}} z-\overline{\alpha_{k}}\right) .
$$

Let

$$
\begin{aligned}
& X=\{\{0, z / 2,0,0,0, \ldots\},\{z / 3,0, z / 3,0,0,0, \ldots\},\{0, z / 4,0, z / 4,0,0,0, \ldots\} \\
&\{z / 5,0, z / 5,0, z / 5,0,0,0, \ldots\}, \ldots\} \text { where }|z|=1,
\end{aligned}
$$

Let $x=X_{n}$, so that $\|x\|_{b v_{0}}=1=\|f(x)\|_{b_{0}}=n|f(z / n)|$. Thus

$$
1=n^{1-\gamma} \prod_{k=1}^{N}\left|\left(\alpha_{k} z-n \beta_{k}\right) /\left(\overline{\beta_{k}} z-n \overline{\alpha_{k}}\right)\right| .
$$

Now

$$
\lim _{n \rightarrow \infty} \prod_{k=1}^{N}\left|\left(\alpha_{k} z-n \beta_{k}\right) /\left(\overline{\beta_{k}} z-n \overline{\alpha_{k}}\right)\right|=\prod_{k=1}^{N}\left|\beta_{k} / \alpha_{k}\right|=M .
$$

Since $0<M<1$, it follows that $\gamma=1$ and $N=0$, so that $f(z)=e^{i \theta} z$.
Theorem 6. If $f \in \overline{M M}$, and for every $x \in b v$ with $\|x\|_{b v}=1$, we have $\|f(x)\|_{b v}=$ 1, then it follows that
(a) if $f(0)=0$ then $f(z)=e^{i \theta} z$,
(b) if $f(0) \neq 0$ then $f(z)=e^{i \theta}$,
where θ is real.
Proof. (a) If $f(0)=0$, then we follow the proof of Theorem 5 to obtain that $f(z)=e^{i \theta} z$
(b) If $f(0) \neq 0$, we first consider $x=\{z, 0,0,0, \ldots\}$ with $|z|=1$, so that $\|x\|_{b v}=1$. Thus

$$
f(x)=\{f(z), f(0), f(0), f(0), \ldots\} \quad \text { and } \quad\|f(x)\|_{b v}=|f(0)|+|f(z)-f(0)|=1 .
$$

If $|f(0)|=1$, then $|f(z)-f(0)|=0$ on $|z|=1$ and the minimum modulus theorem gives that $f(z)=f(0)=e^{i \theta}$.

Suppose hereafter that $0<|f(0)|<1$. Let $F(z)=(f(z)-f(0) / 1-|f(0)|)$. Thus $|F(z)|=1$ on $|z|=1$, so that

$$
F(z)=e^{i \theta} z^{\gamma} \prod_{k=1}^{N}\left(\alpha_{k} z-\beta_{k}\right) /\left(\overline{\beta_{k}} z-\overline{\alpha_{k}}\right)
$$

and, a fortiori, $f(z)=f(0)+\{1-|f(0)|\} e^{i \theta} z^{\gamma}$

$$
\prod_{k=1}^{N}\left(\alpha_{k} z-\beta_{k}\right) /\left(\overline{\beta_{k}} z-\overline{\alpha_{k}}\right) .
$$

Define X as in the proof of Theorem 5 and let $x=X_{n}$, so that $\|x\|_{b v}=1$. Further

$$
\|f(x)\|_{b v}=|f(0)|+n|f(z / n)-f(0)|=1
$$

so that

$$
1=|f(0)|+\{1-|f(0)|\} n^{1-\gamma} \prod_{k=1}^{N}\left|\left(\alpha_{k} z-n \beta_{k}\right) /\left(\overline{\beta_{k}} z-n \overline{\alpha_{k}}\right)\right| .
$$

Now

$$
\lim _{n \rightarrow \infty} \prod_{k=1}^{N}\left|\left(\alpha_{k} z-n \beta_{k}\right) /\left(\overline{\beta_{k}} z-n \overline{\alpha_{k}}\right)=\prod_{k=1}^{N}\right| \beta_{k} / \alpha_{k} \mid=M
$$

Since $0<M<1$, it follows that $\gamma=1$ and $N=0$. Thus

$$
f(z)=f(0)+e^{i \theta}\{1-|f(0)|\} z=p+q z, \text { say }
$$

where $0<|p|<1$ and $0<|q|<1$.
Now choose any $x \in b v$ with $\|x\|_{b v}=1$ and $\lim _{k \rightarrow \infty} x_{k}=z$ where $|z|=1$. Then

$$
\begin{aligned}
\|f(x)\|_{b v} & =\left|f(z)+\sum_{k=1}^{\infty}\right| q|\cdot| x_{k}-x_{k+1} \mid \\
& =|p+q z|+|q|\left(\|x\|_{b v}-|z|\right)=|p+q z|=1 .
\end{aligned}
$$

This is impossible unless either $p=0,|q|=1$ or $q=0,|p|=1$, both of which are excluded. Hence $f(z)=e^{i \theta}$.
These last two theorems give the answer to the question posed in [3] as to whether $\sum\left|b_{n}\right| \leq 1$ is a necessary condition, if we insist that $\|x\|=1$. The answer is yes, but in an unexpected way.

Maximal element theorems for $b v_{0}^{\lambda}$ and $b v^{\lambda}$ can be proved in similar ways to those used in Theorems 5 and 6 using

$$
Y=\left\{\left\{0, z / 2^{1 / \lambda}, 0,0,0, \ldots\right\},\left\{z / 3^{1 / \lambda}, 0, z / 3^{1 / \lambda}, 0,0,0, \ldots\right\} \ldots\right\}
$$

instead of X. However, the proofs will demand, as a necessary condition for the existence of maximal elements, that $\lambda=\gamma$ and since γ is an integer, we must have $\gamma=1$. Thus we obtain Theorem 5 only for $b v_{0}^{1}=b v_{0}$ and Theorem 6 only for $b v^{1}=b v$.

References

1. Dunford, N., and Schwartz, J. T., Linear Operators, Part I, Interscience, New York, Fourth Printing, 1967.
2. Conway, J. B., Functions of One Complex Variable, Springer-Verlag, New York, Second Printing, 1975.
3. Shawyer, B. L. R., Maximum Modulus Theorems and Schwarz Lemmata for Sequence Spaces, Canad. Math. Bull., 18 (1975), 593-596.

Department of Mathematics
The University of Western Ontario
London, Ontario, Canada N6A 5B9

[^0]: Received by the editors October 8, 1975 and, in revised form, September 21, 1977.

 * Supported in part by the National Research Council of Canada.

