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Let G be a finite group. An element g € G is called a vanishing element in G if there
exists an irreducible character x of G such that x(g) = 0. The size of a conjugacy
class of G containing a vanishing element is called a vanishing conjugacy class size of
G. In this paper, we give an affirmative answer to the problem raised by Bianchi,
Camina, Lewis and Pacifici about the solvability of finite groups with exactly one
vanishing conjugacy class size.
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1. Introduction

Throughout this paper, G is a finite group, Z(G) is the centre of G and Fit(G) is
the fitting subgroup of G. For z, y € G, 2¥Y = y~txy. For a € G, o(a) is the order of
a, clg(a) is the conjugacy class in G containing a and Cg(a) denotes the centralizer
of a in G. Let Irr(G) denote the set of the irreducible characters of G. For a normal
subgroup N of G and 0 € Irr(N), let 1 (#) denote the inertia group of 6 in G and
let Irr(G|0) be the set of the irreducible constituents of the induced character 6.
An element g € G is called vanishing in G if there is a character x € Irr(G) such
that x(g) = 0, otherwise, g is non-vanishing in G. We denote by Van(G) the set
of the vanishing elements of G. The size of a conjugacy class of G containing a
vanishing element is called a vanishing conjugacy class size of G.

For a prime p, the set of Sylow p-subgroups of G is denoted by Syl,(G). Let
7(G) be the set of prime divisors of |G|. For a prime r and natural numbers a
and b, |a|. is the r-part of a, |a|,» = a/|a|, and, ged(a, b) and lem(a, b) are the
greatest common divisor and the lowest common multiple of a and b, respectively.
For integers a and n with |a| > 1 and n > 1, the primitive prime divisor of a™ — 1
is a prime [ such that [ | (a” — 1) and 11 (a® — 1), for 1 <i < n. Put Z,(a) = {I:
[ is a primitive prime divisor of a™ — 1} U {2™}, where if either n =1 and a =
1 (mod 4) or n =2 and a = —1 (mod 4), then m = 1. Otherwise, m = 0. Note
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that Z,(a) # {1}, unless (a, n) € {(2, 1), (2, 6), (-2, 2), (=2, 3), (3, 1), (=3, 2)},
by [8].

In [2], Bianchi, Camina, Lewis and Pacifici classify the finite super-solvable groups
with one vanishing conjugacy class size and put forward a problem on the solvability
of the groups with one vanishing conjugacy class size. In this paper, we prove that:

THEOREM 1.1. If G is a finite group with exactly one vanishing conjugacy class
size, then G is solvable.

In this paper, we say that G satisfies (x) when all vanishing conjugacy classes of
G have equal sizes.

2. Some useful lemmas and propositions

For convenience, this section is organized in the following four subsections.

2.1. On the order of elements and Hall subgroups of some finite groups

LEMMA 2.1. Letl > 7 be an integer and S be a finite non-abelian simple group.
(i) Then, there are at least two prime numbers r and t such that1/2 <r <t <.
(ii) Ifr and t are as in (i), then Alt; and Sym,; contains no element of order tr.

(iii) For the triple (S, t, r) given in tables I and 11, S contains no element of order
tr.

(iv) S contains no nilpotent Hall 2'-subgroup. Moreover, if S is isomorphic to
Suz, Coz or Alty, then S contains no nilpotent Hall (7(S) — {2, 3})-subgroup.

Proof. (i) and (iii) follow from [15, lemma 1] and [17], respectively and (i)
is straightforward. Working towards a contradiction, let H be a nilpotent 2-
complement of S. Let t € w(S)—{2}, T €Syl,(H) and 1# z € Z(T). Then,
|cls(z)] is a power of 2, contradicting Burnside’s theorem [11, 15.2]. Obviously,
Alt; contains no nilpotent Hall (7(S) — {2, 3})-subgroup and also, by [4], Suz and
Cos contain no nilpotent Hall (7(S) — {2, 3})-subgroup. So, (iv) follows. O

LEMMA 2.2 [16, 8.2.8]. For a prime p, let P be a p-group and Q be a p'-group.
If P xQ acts on a p-group G such that Ce(P) < Cq(Q), then Q acts trivially
on G.

2.2. The conjugacy classes and centralizers of elements

LEMMA 2.3. Let N be a normal subgroup of G, t € w(G) and z, y € G.
(i) If ged(o(x), o(y)) = 1 and xy = yzx, then Cg(zy) = Ca(x) N Ca(y) < Ca(x).
(ii) |Ca(x)|s divides |N||Cq/n(xN)|: and |clg/n(xN)| divides |clg(z)].
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Table 1. Orders of some vanishing elements in finite simple groups of lie type (q = p*)

|Out(S)] S r m t
ged(n, ¢ — 1) -k - 2 PSLn(q) p p(g" % = 1)/ged(n, ¢ — 1) t € Znk(p)
n>=3
(n, @) # (3, 2)
(3, 4), (6, 2)
ged(2, ¢ —1) -k PSL2(q) r € Z1x(p) (@—-1)/2 t € Zax(p)
41 (g—1)
q#5
ged(2, ¢ —1) -k PSLa(q) T € Zak(p) (¢+1)/2 t € Z1x(p)
41 (g+1)
k PSLy(2%) re Zik(2) ok 1 t € Zop(2)
2% — 1 is not prime
k PSLy(2F) € Zai(2) 2k 41 te Z1,(2)
2% — 1 is prime
and k # 2
2 PSLg(2) 2 2024 — 1) 31
3.2.2 PSL3(4) 2 4 7
ged(n, ¢+ 1) - 2k PSUn(q) p p(g" " = (=1)""?)/ged(n, ¢ + 1) t € Zynk(—p)
n>=3
(n, @) # (3, 2)
n>3 or 2fg: Bu(q), Cn(q) P p(q" " +1)/ged(2, ¢ — 1) t € Zonk(p)
ged(2,g—1) -k n>2
otherwise: 2k (n, q) # (3, 2)

(2,2)

9¥ e

Yapruvyy "N
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Table 1. Continued
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|Out(S)] S r m t

1 B3(2) = C3(2) 2 2(2%2 4+1) 7

n=4: Dn(q) p p(g" % +1)/ged(4, ¢" — 1) t € Zon-1)k(p)

ged(2, g —1)% k-6 n>4

n > 4, even: (n, q) # (4, 2)

ged(2, g — 1)2 k-2

n >4, odd:

ged(4, ¢" —1) - k-2

6 Dy4(2) 2 2(2% +1) 7

ged(4, ¢" +1) - k-2 *Dn(q) P p(g" % +1)/ged(4, ¢" + 1) t € Zonk(p)
n>4

p#3k Ga(q) p plg+1) t € Zgk(p)

p=3:2k q#2

ged(2, q) -k Fy(q) P plg+1) t € Z12k(p)

gcd(S, q—1)-k Ee(q) p plg+1) t € Z12k(p)

ged(3, ¢ +1) - k-2 *Fs(q) p plg+1) t € Z1sk(p)

ged(2, ¢ —1) -k Ez(q) P plg+1) t € Z18k(p)

k Es(q) p plg+1) t € Zsor(p)

3k 3D4(q) P plg+1) t € Z121(p)

2n + 1 2By(2%nTh) 2 4 t € Zoan+1)(2)
n=1

2n + 1 2@y (32t 3 6 t € Zg(ant1)(3)
n>1

2n +1 2Ry (227t 2 2227+ 1) t € Ziaan+1)(2)
n>1

2 2Ry(2) 2 4 13

2218 §s0)0 fiovbnluod burysiuva auo fippovra ypm sdnoib apulf ue)

L7E
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Table 2. Orders of some vanishing elements in some finite simple groups

|Out(S)| S r m t |Out(S)| S room

1 My 2 6 11 2 Mo 3 6 11
1 Ji 2 6 19 2 My 3 6 11
1 Mas 2 6 23 2 Jo 5 15 7T
2 J3 2 6 19 2 HS 5 15 11
1 McL 2 6 11 1 Ru 5 15 29
2 He 2 6 17 1 Coy 5 15 23
2 O'N 2 6 31 1 Moy 5 15 23
1 Coo 2 6 23 1 BM 5 15 47
2 Figs 2 6 13 2 Suz 7 21 13
2 HN 2 6 19 1 Cog 7 21 23
1 Ly 2 6 67

1 Th 2 6 31

1 Fia3 2 6 23

1 J4 2 6 43

2 Fib, 2 6 29

1 M=F 2 6 71

(iii) If ged(o(xzN), o(yN)) =1 and N #yN € Cg/n(xN), then there erist
x1, y1 € G such that xtN = z1N, o(xN) = o(x1), yN = y1 N, o(yN) = o(y1)
and y1 € Ca(xy).

(iv) Let D#mCw(N). If 2w and for every w-clement x € N — Z(N),
lcla(z)| = m, for some integer m, then N has nilpotent Hall w-subgroups.

(v) Let A and M be subgroups of G. If N < M and gcd(|A], |N|) =1, then
Cuyn(AN/N) = Cpy(A)N/N and |Crr(A)] = [Cn (A)||Crryn (AN/N)].

(vi) Let A be a t'-group of automorphisms of an abelian t-group T. Then, T =
Cr(A) x [T, A].

Proof. The proof of (i) is straightforward. For proving (ii), let 77 € Syl,(Cg(x)).
Then, T1N/N < Cg(z)N/N < Cg/n(xN). Thus, [T1/(Ty N N)| | |Cq/n(xN)|. So,
|Cq(x)|; = |T1| divides |N|;|Ceq/n(2N)|;. The remaining claim of (i) is straightfor-
ward. Also, (iii) and (iv) are taken from [1, lemma 2.5(iv) and theorem 1.1]. Finally,
(v) and (vi) follow from [3, lemma 2.7] and [9, lemma 5.2.3]. O

The following corollary follows immediately from lemma 2.3(v).

COROLLARY 2.4. Let {1} = Lo < Ly <---< Ly =1L be a chief series of a finite
group L such that Ly_1 is a p-group, for some prime p. If B is a subgroup of L such
thatp 1 |B|, then |CL(B)| = |CL, (B)||Cr, /1, (BL1/L1)| -+ |Cr,/r,  (BLt—1/Li-1)|.

LEMMA 2.5. Let p € w(G) and let N be a Hall p'-subgroup of Fit(G). If for every

x € G —Fit(Q), |cg(x)| = m, for some positive integer m, then for every x € G —
Fit(G), |clg/n(xN)|p = [mlp.
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Proof. Let z € G —Fit(G) and P be a p-subgroup of G such that PN/N €
Syl,(Cg/n(zN)). Then, N € Cg/n(PN/N). By lemma 2.3(v), Cq/n(PN/N) =
Ce(P)N/N. So, x = yn, for some y € Cg(P) and n € N. As, N < Fit(G) and
z ¢ Fit(G), y € Fit(G). Hence, |clg(y)| = m. Since P < Cq(y), |m|p = |cla(y)|p <
(Gly/IP|. S0, el (eN)}p = |G/N]y/|Cayn (2N ]y = |G/ N/ [PN/N| = |Glo/ [P] >
|m|p. By lemma 2.3(ii), |clg/n(2N)], < |m|,. Hence, |clg/n(xN)|, = |m|p. O

LEMMA 2.6. Suppose that N <G is a p-group, for some prime p and G/N is a
non-abelian simple group such that the order of the Schur multiplier of G/N is
not divisible by p. Let {1} = My < My < --- < My =N < G be a chief series of
G. If M;/M; 1 < Z(G/M;_1), for every i € {1, ..., t}, then G = N x L, for some
subgroup L of G.

Proof. Let i be the smallest number such that 0 <i <t and G/M; = N/M; x
M/M;, for some subgroup M; < M I G. Then, M/M; = G/N. Working towards
a contradiction, let ¢ > 0. Then, (M/M;_1)" £ M;/M;_1, because M /M; is non-
abelian. So, {M;/M;_,} # MMi) Mi/Mioy g M/Mioy o~ pNp/ppoo G/N. Thus,

M;/M;_1 — M;/M;_;
(M/M;_1) Mi/M;i_1 _ M/M;_; : ) . 3 ini
N My = MM Since M;/M;_; is a minimal normal subgroup

of G/Mi_l, (M/Mi_l)/ N Mi/Mi—l = Mi/Mi—l or {Mi—1}~ Therefore, either
(M/M;—1) = M/M;—y or M/M;_y = (M/M;_1) x M;/M;_1. In the former case,
since M;/M;_y < Z(M/M;_1) and M/M; = G/N, we get that |M;/M;_1| divides
the order of the Schur multiplier of G/N, a contradiction, because M;/M,_; is
a p-group. In the latter case, regarding M/M; 1 N N/M;_1 = M;/M,_1, we have
(M/Mi_l)/ﬂN/Mi_l = (M/Mi_l)/ﬂMi/Mi_l = {Mi—1}~ AISO, (M/Mi_l)/ =
C:/]\/v7 hence |G/M1_1| = |G/NHN/M1_1| = |(M/M1_1)/HN/M7_1‘ Consequently,
G/M;_y = (M/M;_1) x N/M;_1, a contradiction with minimality of 7. Therefore,
i = 0. Now, the lemma follows. O

LEMMA 2.7. Let N be a normal 3-subgroup of G such that G/N = Alts. If P €
Syly(G) and M is a minimal normal subgroup of G such that M < N, then:

(i) P={1, z, y, zy} such that o(xz) = o(y) = o(zy) = 2;

(i) M < Z(N) and M is an elementary abelian 3-group. Also, either M < Z(G)
or M = Cy(P) x Cr(x) x Cr(y) x Cr(zy), where T = [P, M];

(iii) Ng(P) contains a 3-element o such that o & N, x% =y, y° = zy and (xy)? =
x. In particular, Cr(x)? = Cr(y), Cr(y)° = Cr(zy) and Cr(xy)” = Cr(x);

(iv) for everyt € P— {1}, u € P—{1,t} and 1 #n € Cr(t), we have n* = n?.

Proof. (i) follows immediately from the facts that P = P/(PNN) = PN/N €
Syly(G/N) and G/N = Alts. Since N is a 3-group and M I N, Z(N)NM #
{1}. Hence, we get from minimality of M that M N Z(N)= M. Consequently,
M < Z(N). Now, let M £ Z(G). Since M <G, P acts on M. By lemma 2.3(vi),
M = Cy(P) x T, where T = [M, P). If T = {1}, then M = Cp;(P). So N, P <
Ce(M). Therefore, {N} # PN/N < Cq(M)/N 9 G/N = Alts. By simplicity of
G/N, Cea(M) = G, a contradiction with M € Z(G). This guarantees that 7" # {1}.
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We observe that P acts on T by conjugation and Cr(z) x Cr(y) x Cr(xy) < T.
Taking into account the fact that ged(|P|, |T|) =1, Maschke’s theorem yields
the existence of a P-invariant subgroup T; of T such that T = Cp(z) x Cp(y) X
Cr(xy) x Ty. I Ty # {1}, then since (Cr(z) x Cr(y) x Cr(zy)) N Ty = {1}, we get
that P acts fixed point freely on T7. Hence, P is cyclic, a contradiction. This shows
that 77 = {1} and M = Cp(P) x Cr(z) x Cr(y) x Cr(zy), as needed in (ii).

Since G/N = Alt; and PN/N € Syl,(G/N), we get that Ng(P)N/N =
Ng/n(PN/N) is a non-abelian group of order 12. Thus, Ng(P) contains a 3-
element ¢ such that o ¢ N U Cg(P). Hence, o permutes the elements of P — {1}.
Without loss of generality, we can assume that 7 =y, y? = zy and (zy)? = z. As
o € Ng(P), we can see T? = T'. Hence, (iii) follows.

Finally, suppose that ¢t € P — {1} and u € P — {1, t}. Let 1 # n € Cp(t). Note
that n* € Cru(t*) = Cr(t) and regarding o(u) = 2, (n"n)" = n“n. Thus, nn €
Cr(t)NCr(u) = Cp(P) = Cy(P)NT = {1}. This gives n“n = 1. Since T < M,
o(n) = 3. It follows that n* = n?, as desired in (iv). O

PROPOSITION 2.8. Suppose that N is a normal subgroup of G which is a 3-group and
G/N = Alts. Let P € Syly(G), 5 € G — N be of order 5 and let {1} = My < M; <
-+ < My =N <G be a chief series of G. If for every y € G — N, |clg(y)|s = 3,
for some positive integer e, then for every 1 # x € P, there is an 1 <1i <t such
that M;/M;_y £ Z(G/M;—1) and |Crg, jag;_, (w5 Mi-1)| = |Cng, yag,_y (2 M1 )]

Proof. Set % = {1 <i <t:|Cuym,_, (vsM;—1)| = |Chs,jar,_, (v2M; 1)}, for some
1 # 29 € P. Since G/N = Alts, |Cq/n(25N)|3 = |Ca/n(22N)[3 = 1. So, corollary
2.4 yields that 2A# (). Working towards a contradiction, let for every i€
Ql, Mi/Mi,1 < Z(G/Mifl), WhiCh gives that CMi/NIi_l(l‘SMifl) = Mi/Mi,1 =

Chw, vy (w2 M;—q). If there exists an integer 7 € {1, ..., t} =%, then [Cys,/n,_,
(w5 M;_1)| < |Chs,yna,_, (w2 M;1)|. Hence, corollary 2.4 forces [Ca(2s)|3 < |Ca(w2)s,
a contradiction. Therefore, 2 = {1, ..., t}. So, for every i € {1, ..., t}, M;/M;_; <

Z(G/M;_1). By lemma 2.6, G = M x N, where M = Alts. Let 23 € M be of order
3. Then, z3 € G — N and 3° = |clg(z3)|3 = 1. Hence, |clg(x5)|3 = 1. By lemma
2.3(v), 3| |Cq/n(xsN)|, a contradiction, because G/N = Alts. Thus, there is an
i € A such that M;/M; 1 £ Z(G/M;_1), as wanted. O

2.3. The conjugacy class sizes of elements outside a normal subgroup

Let N <G and G = N U (U;H;), where H; < G are subgroups satisfying H; N
H; C N when i # j. Then, G is said to be partitioned relative to N (see [13,
definition 1]).

LEMMA 2.9 [13, proposition 4]. Suppose that N < G, G is partitioned relative to N
and G/N s abelian. Let p be a prime divisor of [G : N| and a Sylow p-subgroup of
G be normal in G. Then, G/N is an elementary abelian p-group.

Now, we prove proposition 2.10 which is a key tool in the proof of theorem A.

PROPOSITION 2.10. For an integer m > 1, let G,, = {g € G : |clg(g)| = m}. Let N
be a normal subgroup of G and G = G/N. Suppose that T is the image of an element
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x of G in G and r is a divisor of o(%) such that o(Z)/r is not prime. If for every
g € (z) with o(g) 17, y € G, then for every prime divisor p of o(Z)/r, we have:

(i) the Sylow p-subgroups of N are abelian and Cg(x) contains a Sylow
p-subgroup of N;

(i) [Nlplo(@)]p | |Ca()]-

Proof. Let p be a prime divisor of o(Z)/r and P € Syl,(N). By the Frattini argu-
ment, G = NNg(P). Thus, x = na’, for some n € N and 2’ € Ng(P). First suppose
that n = 1. Then, x € Ng(P). Set T = (P, x). For every y € T — (T N N, 2°®)/7),
let C, = Cr(Ca(y)). If z€ T — (TN N, 2°®/7) then there exist an element n €
T NN and an integer @ such that 1 < o < o(Z) and z = nz®. Taking into account
the facts that every element of (Z) whose order divides r lies in (z°®)/7) and
% =z ¢ (2°@/) | we get that o(Z){r and the assumption yields that z € G,y,.
Hence, T — (T NN, 2°@)/™) C G,,. Thus, for every u, v € T — (T NN, 2°@/),
|Cq(u)| = |Cg(v)]. If there exists an element w € (C,, N C,) — ((T'N N, z°®)/7)),
then Cg(u), Cg(v) < Cg(w). On the other hand, w € T — (T N N, z°(®)/7). Hence,
w € Gp,. S0, |Ca(w)| = |Cq(u)| =|Cq(v)|. Therefore, Ce(u) = Cq(w) = Cg(v).
Consequently, C,, = C,. Now, we claim that 7" is abelian. If not, then for every y €
T — (T NN, z°@/") O, # T, because Cy < Z(Cg(y)) is abelian. This yields that 7'
is partitioned relative to (TN N, z°@)/7). Since P < T NN, T/(T NN, z°®)/7) <
(z(T' N N, z°®)/™)) which is abelian. Consequently, 7'/(T N N, z°®)/7) is abelian.
Also, z € Ng(P) and hence, T < Ng(P). Thus, a Sylow p-subgroup of T' is nor-
mal in 7. By lemma 2.9, T/(T NN, z°®)/") is an elementary abelian p-group.
This forces o(Z)/r to be prime, a contradiction. Therefore, T is abelian. Thus,
P is abelian and z € Cg(P), as desired in (i). Now let n # 1. Set Ty = (P, 2/)
and H = (z/, N). Since T = &', substituting = with 2z’ in the above argument
shows that T3 is abelian. Also, T} contains a Sylow p-subgroup of H. Hence, the
Sylow p-subgroups of H are abelian. On the other hand, x = 2'n for some n € N.
Thus, H = (x, N). Note that p | o(Z). Let x, be the p-part of x. Then, Cq(z,)
contains a Sylow p-subgroup of N. By our assumption, z, x, € G,, and since,
Ca(z) < Cg(xy), we have Cg(z) = Cg(zp). Therefore, Cg(z) contains a Sylow
p-subgroup of N. So, (i) follows. By (i), there exists a P € Syl,(N) such that
T = (P, z) is abelian. Hence, T' < Cg(x). Therefore, |T'|, = |N|plo(Z)|, | |Ca(z)],
as desired in (ii). O

2.4. Vanishing and non-vanishing elements
A x € Irr(G) is said to have g-defect zero for some prime ¢, if ¢ 1 |G|/x(1).

LEMMA 2.11 [10, corollary 2]. Let G be non-abelian simple and q € w(G). Then, G
has an irreducible character of q-defect zero unless one of the following holds:

(a) the prime q is 2 and G is isomorphic to My, Maa, May, Jo, HS, Ru, Coy or
BM.

(b) q € {2, 3} and G is isomorphic to Suz, Cogz or Alt,, for somen > 7.
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LEMMA 2.12. Let N be a normal subgroup of G and p € w(N). Suppose that N =
S1 X -+ xSy, where every S; is isomorphic to the non-abelian simple group S.

(a) If S has an irreducible character of p-defect zero, then every element of N of
order divisible by p is a vanishing element of G.

(b) Let the triple (S, r, t) be as in lemma 2.1(i), and tables I and II. If u € {t, r},
then for every x € N with u | o(z), z € Van(QG).

Proof. By our assumption, every S; has an irreducible character 0; of p-defect zero,
because S; = S. Thus, 01 x --- x 0; € Irr(N) is of p-defect zero. So, (a) follows from
[7, lemma 2.7]. Also, (b) can be concluded from lemma 2.11 and (a). O

In lemma 2.13, we have brought some known results:

LEMMA 2.13. Let M and N be normal subgroups of G, g € G and let p be a
prime.

(i
(ii

) [5] If g € Fit(G) is non-vanishing in G, then ged(6, o(gFit(G))) # 1.
)

(iii) [7, proposition 2.5] If M N N = {1}, then (Van(G) N M)N C Van(G).
)

[7, lemma 2.1] If gN € Van(G/N), then gN C Van(G).

(iv) [7, lemma 2.4] Let M < N < G such that ged(|M|, IN/M|) =1 and M is

nilpotent. If Cy (M) < M and N/M is abelian, then N — M C Van(G).

(v) [7,lemma 5.1] If N # {1} is a p-group and G/N = Alt7, then there are dis-
tinct primes q1, q2 € w(Alt7) — {p} and g;-elements ;N € Van(G/N) such
that Cn(x1), Cn(x2) # {1}.

(vi) [14, lemma 2.3] Let x be a non-vanishing element in G. Then, x fizes some
member of each orbit of the action of G on Irr(N).

Now, we follow the ideas in the proof of [5, theorem A] to prove a new fact about
non-vanishing elements of a group lying in its normal solvable subgroup:

PROPOSITION 2.14. Let N # {1} be a normal solvable subgroup of G and, let x € N
be non-vanishing in G. If o(zFit(G)) is odd in G/Fit(G), then x € Fit(G).

Proof. The proof is by induction on |G|. For every non-trivial normal subgroup
M of G, NM/M is normal in G/M and since NM/M = N/(NNM), NM/M is
solvable. By induction, for every {1} # M <G, we get that zM € Fit(G/M). Now
as mentioned in the proof of [5, theorem A], one of the following cases occurs:

Case 1. Let M; # M> be minimal normal subgroups of G. Then, the function
¢:G— G=G/M x G/M,, defined by ¢(g) = (gM1, gM>) for g € G, is an injec-

tive homomorphism. By induction, ¢(z) € Fit(G/M;) x Fit(G/Mz) = Fit(QG). So,

o(x) € ¢(G) NFit(G) < Fit(¢(G)). Since ¢ induces an isomorphism between G and
#(G), we get that z € Fit(G), as wanted.
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Case 2. Assume that G has the unique minimal normal subgroup M. By our
assumption on N, M < N. Hence, M < Fit(G). Let ®(G) denote the Frattini
subgroup of G. If ®(G) # {1}, then z®(G) € Fit(G/®(G)), by induction. How-
ever, Fit(G/®(G)) = Fit(G)/®(G). So, xz € Fit(G), as wanted. Now let &(G) = {1}
and z ¢ M. By [12, III, lemma 4.4], M has a complement as H in G, because
M <G is abelian. Since Cy(M) < G, the uniqueness of M forces Cy (M) = {1}.
So, Cq(M) = M. Let V be the group of the irreducible characters of M. We can
check that V is a faithful and irreducible G/M-module. On the other hand, by
lemma 2.13(vi), xM fixes some element of each orbit of G/M on V and by induc-
tion, *M € Fit(G/M). So, [14, theorem 4.2] forces 2> € M. Since M < Fit(G),
22 € Fit(G). However, o(zFit(G)) is odd. Hence, = € Fit(G), as desired. O

LEMMA 2.15. Let N <G be a p-group, for some prime p and G/N be non-
abelian simple. If M is a minimal normal subgroup of G such that M < N and
X € Irr(M) — {1m}, then (i) M < Z(N) and (ii) if Ic(x) = G, then M < Z(G).

Proof. Since M I N and N is a p-group, {1} # M NZ(N)<G. As M is a min-
imal normal subgroup of G, M N Z(N) = M. So, (i) follows. If Is(x) = G, then
it is easy to see that M is a cyclic group of order p. By (i), M < Z(N). There-
fore, % ~G/Ca(M)=Ng(M)/Ca(M) < Aut(M) is cyclic. Hence, G/N =
Ca(M)/N. Consequently, Ca(M) =G, so M < Z(G), as wanted in (ii). O

PROPOSITION 2.16. Let N be a normal subgroup of G which is a T-group and G /N =
Alty. If M is a minimal normal subgroup of G such that M < N and M £ Z(G),
then for every x € G — N of order 3 or 6, x € Van(G).

Proof. Let P € Syl.(G) and 13y = Ay, ..., A be the representatives of the action of
P on Irr(M). If O; is the P-orbit of A, then 1+ X!_,|O0;|\;(1)? = SxereanA(1)? =
M| =7 0. Thus, there exists an ¢ > 1 such that 71|0;| =[P : Ip(A\;)]. There-
fore, |O;] =1 and hence P < Ig(A;). On the other hand, M < Z(N), by lemma
2.15(1). So, N < Ig(\;). This yields that {N}# PN/N < Ic(\)/N < G/N =
Alt7. Lemma 2.15(ii) shows that Ig(\;)/N < G/N = Alt7. Note that the only max-
imal subgroup of Alt; whose order is divisible by 7 is isomorphic to PSLo(7). This
signifies that

I (A;)/N is isomorphic to a subgroup of PSLs(7). (2.1)

So, I(Ai)/N does not contain any element of order 6 and neither does Ig(\;). It
follows from lemma 2.13(vi) that every element of G of order 6 is vanishing in G.

Now, let ¢ be a group isomorphism from G/N to Alty. It is known that Alt; con-
tains exactly two conjugacy classes containing 3-elements. Let ¢(z3N) and ¢(ysN)
be the representatives of these classes, for some x3N, ys N € G/N of orders 3. Since
N is a 7-group, we can assume that o(x3) = o(ys) = 3. By [4], we can assume
that ¢(zgN) € Van(Alty), ¢(z3N) normalizes some Sylow 7-subgroup of Altz and
@(y3N) does not normalize any Sylow 7-subgroup of Alt7. So,

x3N € Van(G/N), (2.2)

3N normalizes some Sylow 7-subgroup of G/N and y3N does not normalize any
Sylow 7-subgroup of G/N. By (2.1), Ig(\;)/N is isomorphic to a subgroup of
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PSLy(7). However, PSLy(7) has only one conjugacy class containing 3-elements
and every element of this class normalizes some Sylow 7-subgroup of PS Ly (7). Note
that a Sylow 7-subgroup of I()\;)/N is a Sylow 7-subgroup of G/N. This shows
that no conjugate of ys N lies in I (\;)/N and if Iz (\;)/N contains a 3-element uN,
then ulN € clg/n(w3N). This yields that no conjugate of y3 lies in Ig(A;). Thus,
for every 3-element w € G, either wN € clg/n(23N) or no conjugate of w lies in
I (). In the former case, (2.2) and lemma 2.13(ii) show that w € Van(G). In the
latter case, w € Van(G), by lemma 2.13(vi). Now, the proposition follows. O

PROPOSITION 2.17. Suppose that N is a normal 3-subgroup of G such that G/N =
Alts. Let Q € Syl;(G) and M be a minimal normal subgroup of G such that M < N.
If M £ Z(G), then one of the following holds:

(i) there exist an element 1 # n € Cp(Q) and a character ¢ € Irr(G) such that
P(n) =0;

(ii) Ng(Q) contains a non-trivial 2-element x such that |Ca (Q)] < |Car(2)].

Proof. Since |@Q| = 5, there is an element x5 € G — N such that 0(3:5) =5and Q =
(r5). Also, regarding G/N = Alts, we get that Ng/ny(QN/N) = Ng(Q)N/N is a
dihedral group of order 10. Thus, N¢(Q) contains an element = such that o(z) = 2
and x € NUCq(Q). Let P € Sle(G) such that x € P. By lemma 2.7 (i,iii), P =
{1, z, y, zy} such that o(y) = o(zy) = 2 and there is a 3-element o0 € Ng(P) — N
such that 27 =y, y° =2y, (ry)” =2z. Put G = G/N and for every H < G and
g €G,let H= HN/N and g denote the image of g in G. As G = Alts, we observe
that

G = (25)Ng(P) = (75)P(0). (2.3)

Since G 2 Alts, (2 5)(3 4) € Nay, (((1 23 45))), U=1((25)(3 4), (23)(45))¢€
Syly(Alts) and (2 3 4) € Ny, (U), there exists a group isomorphism ¢ from
G to Alts which sends 75 to (1 2 3 4 5), 7 to (2 5)(3 4), § to (2 3)(4 5)
and & to (2 3 4). Let we (z5)P. If o(u)=te€ {2, 3,5}, then o(¢(a)) =
t. So, counsidering the t-elements of Alts lying in ¢((Z5)P) shows that if
t =2, then ¢(u) € Nai;(((1 2 3 4 5))) = ((1 2 3 4 5)) = Ny (¢(75))) —
(0(Z5)) or ¢(u) € {(2 3)(4 5), (2 4)(3 5)} = {¢(), ¢(xy)}, if ¢ =3, then ¢(u) €
{(124), (153), (132),(145)} and if t =5, then ¢(a) € (1234 5)) = ($(z5)) or
p(u) € {(13425),(14352), (12543), (15234)} Thus, if t = 3, then ¢p(u~ 1) €
{(1 4 2) =¢(ziz0?), (13 5) = ¢(2355°), (1 2 3) = ¢(5y0), (1 5 4) = $(250)}.
Hence, u~ ! € {23762, 22552, 2590, T2 }. Consequently, =1 & (Z5)P. Similarly, if
t =5, then either 1 ¢ <x5>P or @ € (Z5). In addition, we get that

if @,a ' € (Z5)P, then either o(@) =5 and @ € (Z5) (2.4)

oro(i) =2 and u € {7z, 5,7y : 1 <i <5}

M = CM(P) X CT(x) X CT(y) X C’T(xy)
Cr(x)” =Cr(y), Cr(y)” = Cr(zy), Cr(ry)” = Cr(z), (2.6)
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where T = [M, P|. If Cr(x)={1}, then (2.6) shows that Cr(y) = Cr(zy) =
{1}. Thus, M = Cpn(P). So, P < Cqg(M). However, N < Cg(M), by lemma
2.15(i). Hence, {1} # P < Cq(M)/N < G/N = ¢~ (Alts). Therefore, Co(M) = G,
because G/N is simple. Consequently, M < Z(G), a contradiction. Thus, Cr(z) #
{1}. By our assumption, M is an elementary abelian 3-group, so is C(x). Hence,
there exist subgroups Ay, ..., A; of Cp(x) such that |[4;] =--- =|A;| =3 and

Cr(x)=A; x---x A, Cr(y)=DBy x--x By, Cr(ay) =Cp x - x C, (2.7)
where B; = A7 and C; = AZ", for every 1 < i < t, by (2.6). Let n € M. By (2.5),
n = ningoNgng, (2.8)
where n; € Cp(P), ny € Cp(x), n3 € Cp(y) and ny € Cp(zy). Also, by (2.7),
for every j € {2,3,4}, n; =nj1...nj, (2.9)

where for every 1 < i < t, ng; € A;, n3; € B; and ny; € C;.
If Car(xs) = {1}, then |Cp(x)] = |Cr(z)| > 1 =|Chr(xs)|. So, (ii) follows. Next,
let 1 # n € Cp(ws). For every 1 < i< 5, (2.8) and lemma 2.7(iii,iv) yield that

ns = n; Nt = ninening; Rty = ninansns; nTsTY = ninanang; (2.10)
N7 = nningng; n*7 = ng(nf)7ng (n3)7; 07 = ng (n3)7 (n3)" (ns);
Y = nfng (n3)7(n3)%; 0% = ng g ng ng’s nE = m(n3)” (n)7 (n2)”

2 2

nY = ny(ng)” (n3)7 (n3)7 3 N = ny(n)” (na)”

(n2)".

Let check one of the above equalities in details. For instance, nTEeYe =
(z5zyo) ~n(ztayo) = ((zy) = ((25)~'nag)ey)” = ((2y)~ 'nay)” = (nandning)”

=ngng(n3)°(n3)°. Similarly, we can check the other ones. Note that
for every i € {2,3,4}, n? =nfnd...nY, (2.11)
by (2.7). We continue the proof in the following cases:

Case 1. Assume that no = ng = ng = 1. Then, n = n; € Cp/(P). Regarding the
facts that n € Cp(xs) and M < Z(N), we have P, (x5), N < G¢g(n). Therefore,
P, (Z5) < Cg(n)/N < G/N = ¢~ 1(Alts). Since the only subgroup of Alts whose
order is divisible by 20 is Alts, we get that Cg(n)/N = G/N. Thus, Ce(n) = G.
Consequently, n € Z(G). Therefore, M = (n) < Z(G), a contradiction.

Case 2. Assume that ng; # 1, for some 1 <4 < ¢. Without loss of generality, let
i = 1.Since z € Ng({x5)) and n € Cpr(w5), we have n” € Cpr((25))* = Cpr((xs5)) =
Cun(xs). By lemma 2.7(iv), n§ = n3 and n = nj. Thus, (n%)3; = n3, and (n%)4 =
n2,. Also, n¥ = ngy, because ny € Cr(x). Hence, (nn®)a; = (na1)? # 1, (nn®)3; =
nz1(n31)? =1 and (nn®)41 = n41(n41)? = 1, because M is an elementary abelian
3-group and na, 131, na1 € M. As 1 # nn® € Cy(x5), by substituting n with nn®,
we can assume that nz; =ng = 1. Set x = 1o, (p) X Loy (o) X (03 X 1, X --- X
1p,) x (04 x 1c, X - X 1¢,), where 63 € Irr(B1) — {1p,}, 04 € Irr(Ch) — {1¢,}
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and 04(m?) = 03(m?), for every m € By. Then, 1) # x € Irr(M). As M < Z(N),
N < Ig(x). Let u€ Ig(x) — N. Then u € G. By (2.3), u = ziz/y*5!, for some
non-negative integers i, j, k and [. Working towards a contradiction, let [ # 0.
Since o(¢(d)) =3, o(g) =3 and hence, we can assume that [ € {1, 2}. Also,

4, k € {0, 1}. Regarding u € Ig(x), u=* € Ig(x). Therefore, X“ﬂ(n) = x(n). Also,
n e M < Z(N). By (2.10), x*" ' (n) = x(u"nu) = x(e~ (n1n2 n2' n2"")ol), so

iy = DX (03 03)7 (1)), ifl=1
X (n)—{ Tz(ngg) 2(71421“ k\) (n%k) 2)7 19 (2.12)

It follows that either =1 and X 71(n)293((n§]{)”)94((n§i)”) or =2
and x* ' (n) = 05((n2) "7 )04((n2)°"). Since ng =na =1 ny#1 and

0a((n33)7) = B5((n2})7)?), wo have X (n) = y((n2})7)! # 1. However, x(n) =
03(n31)04(n41) = 1, a contradiction. This forces @ € (Z5)P. Consequently,

Ic(x)/N C (z5)P. (2.13)

Also, for 1# v € By and 1 # 3 € C1, x™(7) = x"(7) = x(7v*) = 05(v%) # 05(7) =
¥(2) and XV(9) = x(52) = 0n(8) # 0a(5) = x(3). Therefore,

Now, assume that u € Ig(x). Then, @, u~! € Ig(x)/N. So, in view of (2.4), (2.13)
and (2.14), one of the following sub-cases holds:

Sub-case a. Assume that o(u)=2. If 4 or 5||Ig(x)/N|, then taking
the elements mentioned in (2.4) into account, we conclude that Ig(x)/N =
P or Ig(x)/N = Nz((Ts) = (T5)(Z), contradicting (2.14). Thus, |Ig(x)/N|=
o(@)=2 and @e{ziz:1<i<5}. So, B={(zly'e")1:1<j<50<I<
1 and 0<k <2} is a transversal set of Ig(x) in G. Hence, for every
Y € Trr(Gly), $(n) = eXgenx(n? ) = eX [x(n") + x(n(59)) + x(n(#577))] +
eE?Zl[x(n(f”iy)) + x(n(=5¥9)) 4 x(n (f”iyc’z))] for some positive integer e. By (2.10),
P(n) = eXp_ 1 x(n )JFX(n1”4”2713)2Jr X(”l ng'ngng’)] + eni[x(nn3ngn?) +
X(n1(n7)7(n3)7ng) + x(mang ()7 (n3)” )] Thus, v(n) = €7, [1+03((n21)7)04
((n31)” )+93((”41)”) 1((n21)7)] + €371 [03(n31)04(n) + 03((n31)7)0a ((n31)7) +
03((n31)7" )64 E(n%;” )] = 5e[2(1 + 03((n21)7) + 03(((n21)7)%))]. Note that noy # 1.

Therefore, 03((n21)7) # 1 is a primitive 3rd root of unitary. Hence,

03((n21)7)* + 03((n21)7) +1=0 (2.15)

It follows that ¥ (n) = 0, as wanted in (i).

Sub-case b. Assume that Ig(x)/N < (Zs). So, either Ig(x)/N = (Z5) or
Ia(x) = N. If Ic(x)/N = (Z5), let b=1 and if Ig(x) =N, let b=5. So, B =
{(ziadybol)™r:0<i<b—1,j,ke{0,1},1€{0,1,2}} is a transversal set of
Ia(x) in G. Hence for every ¢ € Irr(Glx), ¢(n) = edegxg(n) = exi7} [X(nxg) +
X(n757) £ x(n77)] ST 4 x(n57) + x(n7ee )] + eBId[x(n) +
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X(n757) X (7)) 4 €SP [X(n57Y) + X (075787 ) + x(n"5*v7")], for some posi-
tive integer e. By (2.10) and (2.15), we can check at once that i(n) = 4be[l +
03(ng,) + 03(ng;)?] = 0, as wanted in (i).

Case 3. Assume that no = 1 and there exists an 1 < ¢ < ¢ such that n3; # 1 and
ng; = 1. Without loss of generality, let « = 1 and set x = 1CM(p) X (0 X 14, X -+ %
1At) X 1CT(y) X (94 X 1lo, X -+ % ].ct), where 05 € II‘I‘(Al) — {1A1}v 0, € II‘I‘(Cl) -
{1¢,} and 64(m°”) = 62(m?), for every m € A;. Also, if ny =1 and there exists
an 1 < ¢ <t such that ny; # 1 and ng; = 1, then without loss of generality, let i =
L and set x = 1o, (p) X (02 X 14, X ---x 14,) X (03 X 1p, X -+ X 1B,) X 1oy (ay),
where 03 € Irr(Ay) — {14,}, 03 € Irr(By) — {15, } and 03(m?) = 0(m?), for every
m € Aj. Then, 15 # x € Irr(M) and arguing by analogy as Case 2 shows that for
every 1 € Irr(G|x), ¥(n) = 0, as wanted in (i).

Case 4. Assume that Cp(25) does not contain any element satisfying cases 1-3.
Let a, 5 € Cp(xs). By (2.8), a = aqasazay and = 31620384, where oy, 31 €
Cym(P), ag, B € Cr(x), as, B3 € Cr(y) and a4, B4 € Cr(xy) are uniquely deter-
mined. (2.9) shows that for every j € {2, 3, 4}, a; = oj1 ...y and 5; = Bj1... Bjs,
where for every 1 <1 <t, ag;, Bo; € A;, a4, B3 € B; and Qui, B € C;. By our
assumption, as = B2 =1, ag, O3, ag, B4 # 1 and for every 1 <7< t, ag; #1 if
and only if ay; # 1. Also, /831 ;é 1 if and only if 8y #1. If as; =03 #1 and
=3 7£ 1, for some 1< i<t, then (afB)s; = asifBsi =ad; #1 and (afB)u
014154z a3, = 1. However, 045 € C'M(ch,) So, aff satisfies the assumption of case
3, a contradiction. This shows that for an element « € Cys(x5) and an integer
1<i<t,if ag; # 1, then ay; # 1 and

for every 8 € Cnr(s), (B34, Bai) € {(1,1), (@i, aaq), (agivaii)}' (2.16)

Now, working towards a contradiction, let oy # 1. Then since € Ng((z5)), a® €
Cun(7s5)® = Cpr(z5). By lemma 2.7(iv), a® = ajaza3ai. Thus, aa = aZa3aial.
Note that ag =1 and o(asz) = o(ay) = 3. Therefore, 1 # aa® = a? € Cp(P). On
the other hand, a, a® € Cyr(w5). So, 1 # a®a = a2 € Cpr(w5) N Crr(P), which is
a contradiction with case 1. This shows that for every a € Chr(wzs), a; = 1. Tt
follows from (2.16) that |Chs(ws)| < |Cr(y)]. If Car(P) # {1}, then we get that
(Cat (w5)] < [Cut (P)ICr ()| = Cor (P)ICr ()| = |Caa ()], s0 (i) follows. Next,
let Cp(P)={1}. Then, T =M = Cpy(z) x Cpy(y) x Crr(zy) and |Cps(zs)| <
[Cr(y)] = [Cum ()| = |Car(2)], by (2.16). If |Crs(xs)| < |Cas(x)], then (ii) follows.
Otherwise, |Cps(25)] = [Car(x)]. If |Cpr ()| = 3, then |M| = 27 and |[M, (z5)]] = 9.
However, (x5) acts fixed point freely on [M, (x5)]. So, 5 | |[M, (z5)]| — 1 = 8, which
is impossible. This forces |Cps(z)| > 9. Consequently, ¢ > 2 (¢ was fixed in (2.7)).
Since |Cyr(xs5)| = |Cp(z)| = |Car(y)|, we get from (2.16) that for every 1 < i< ¢
and m € B;, there exists an element o € Cp(w5) such that az; = m. So, for 1 #n €
Chr(z5), we can assume that nsp, nga # 1. Consequently, ng1, ng42 # 1. As was men-
tioned above, ny = 1. Set x = 1¢,, () X (03 x 05 x 1, x -+- x 1p,) X (04 x 6 x
1oy X - X 1¢,), where 63 € Irr(B1) — {15, }, 05 € Irr(B2) — {1B,}, 04 € Irr(Cy) —
{l¢,} and 0} € Irr(Cy) — {1c,} such that 64(ns2) = 03(nz1)? and O)(ns) =
64(n41)?. Moreover, suppose that 04(n41) = 03(n31). Then, 157 # x € Irr(M). Note
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that n3; and ngs are generators of By and Bs, respectively. Also, ng; and ngo are
generators of C7 and Cy, respectively.

In the following, we first assume that (ng;, ng,) = (41, naz) or (ng;, ngy) =
(31, n35). If (ngy, ny) = (n41, naz), let u =1 and otherwise let u = 2. We note
that N < Ig(x). By (2.10), we can check that for every g € G, x(n?) =1, for
instance, x(n"3*7") = x((n3)"" (n3)7 ng") = [03((n3,)7)05((n32)7 ) [04(1)04(1)] =
03(n31)%" = 1. So, for every ¥ € Irr(G|x), ¥(n) = 1(1). Therefore, 1 # n € kery) N
M. Thus, {1} # M Nkeryp) IG. Since M is a minimal normal subgroup of G,
M Nkery = M. Therefore, )5 = (1)1, a contradiction.

Next, suppose that (ng;, ngy) € {(na1, ny), (n2, na2)}. If u=aiziykolh €
Ig(x), where h € N, i€ {1,...,5},j, k€ {0, 1} and [ € {1, 2}, then u™! € I(x)
and we get from (2.12) that if I =1, then y* (n) € {(64(n41)®)?, (04(na1))?’}
and if 1 =2, then x*  (n) € {(05(n31)2)2" "', (05(n31))?"""'}. Hence, x* ' (n) #
1. However, x(n)=1, a contradiction. Consequently, % € (Z5)P. Therefore,
Ic(x)/N € (Z5)P. Let 8 =n4q € Cy —{1}. By lemma 2.7(iv), x(8) = 04(na1),
X (B) = X(8) = X(8) = ba(nar)® and XY (8) = X(8Y) = X(8°) = ba(nar)?.
Since nqy # 1, 04(n41)? # 04(na1). Consequently, x* ', x¥ = # x. Hence, z, y ¢
Ic(x). By (2.16) and since |Cp(y)| = |Cam(xs)|, we can assume that there
exists an element « € Cjr(z5) such that as =1, az; =mn3; # 1 and for every
je{2,...,t}, as; =1. Then, (2.16) guarantees that oy =mn4 #1 and for
GVGI'yj € {2, ey t}, Qg5 = 1. HOWGVGI‘, X(Oé) = 93(0[31)94(0[41) = 93(’&31)94(7141) =
03(n31)? and X597 (o) = x(a®5*) = x(aza3ad) = O5(a3,)04(a3) = O3(ns1)* =
03(ng1). Since 03(ng1) # 1, X(‘”é‘”)fl(a) # x(a). This shows that ziz & Io(Y).
Taking the elements mentioned in (2.4) into account, we conclude that
I(x)/N < (Z5). So, either Ic(x)/N = (25) or Ia(x) = N. If Ia(x)/N = (2s),
let b=1 and if Ig(x) =N, let b=5. So, B={(ztxiykc)~1:0<i<b-
1,7, ke€{0,1},1€{0,1,2}} is a transversal set of Ig(y) in G. Hence, for
every 4 € Iir(Gly), $(n) = eSyenx?(n) = e5 [x(n") +x(n"57) + x(n75)] +
eZ0Zg X (n™57) 4+ x(n7577) 4+ x(n7577)] + eI [X(n"5) 4 x(n5Y7) 4+ x(n597)] +
eV [ (n®5%Y) 4 x(n®5%7) + x(n¥7v°")], for some positive integer e. We note
that x(nangns) = x(nanin?) = x(n3nsni) = x(nininy) = 1. Thus, if (ngy, ngy) =
(na1, nfy), then by (2.10), o(n) = eI 5[L+03(ns1)” + 03(n31)%] + eXio[1 +
03(n31) + 03(n31)] + €S g [L+ 03(ns1) + 03(na1)?] + eSU2) [+ O3(ns1)? + O3(ns1)]
= 4be(1 + 03(n31) + 03(ngz1)?). Also, if (ng;, ny) = (n3, naa), then similarly
p(n) = 4be(1 + 03(n31) + O3(n31)?). However, nz; # 1. So, o(f3(n31)) = 3. There-
fore, 1 # 05(n31) is a primitive third root of unitary. It follows that (63(nz1))? +
03(nz1) +1=0. Thus, we get that (n) = 4be(1+ 03(n31) + 03(n3z1)?) =0, as
desired in (i). Now, the proof is complete. O

3. Proof of theorem a

Now, we are going to prove theorem A. Working towards a contradiction, suppose
that G is non-solvable. Let M be the maximal normal solvable subgroup of G
and let N/M be a minimal normal subgroup of G/M. Then, Fit(G) = Fit(M)
and N/M = S1/M x ---x S5;/M such that S1/M, ..., S;/M are isomorphic to a
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fixed non-abelian simple group S. Let « be the size of vanishing classes of G. Set
Go={g€G:ldg(g)| = a}. By (%), Van(G) C G,. We are going to complete the
proof in the following steps:

Step 1.t =1.

Proof. Working towards a contradiction, let ¢ # 1. Let m C m(S) such that if S
is one of the groups mentioned in lemma 2.11(b), then m = {2, 3} and other-
wise, m; = {2}. Fix m = 7(S) — m1. Let p, ¢ € © be distinct. Suppose that i, j €
{1, ..., t} and i # j. Then, for every non-trivial p-element zM € S;/M and g¢-
element yM € S;/M, M, yM, zyM € Van(G/M), by lemmas 2.11 and 2.12(a).
Thus, «M, yM, xyM C Van(G) C G, by lemma 2.13(ii). So, for every m € M,
proposition 2.10 shows that Cg(xym) contains a Sylow p-subgroup and a Sylow
g-subgroup of M, which are abelian. Let P € Syl,(Fit(G)) and Q € Syl (Fit(G)).
Since Fit(G) < M, we get that

P,Q < Cg(xym), for every m € M. (3.1)

Thus, P, Q < Z(M). Let Fy be a Hall w-subgroup of Fit(G). Since p is an arbi-
trary element of m, we get that Fy < Z(M). By lemma 2.3(iii), there exist a
p-element 1 € N — M, a g-element y; € N — M and my, m}, m"” € M such that
Ty = Y121, amy = 1, ym) =y and zym” = x1y;. Lemma 2.3(i) and (3.1) yield
that P, Q < Cg(zym”) = Cg(z1y1) = Ca(r1) N Ca(y1). So P, Q < Ca(x), Ca(y),
because P, Q@ < Z(M), xm; =z and ym) = y;. However, p, ¢ €7 and i, j €
{1, ..., t} are arbitrary. Thus, for every r € m and every r-element z € N — M,
Fy < Cg(z). Hence, lemma 2.3(i) forces the m-elements of N — M to centralize Fp.
Next, let zM be a mi-element of S;/M. By lemma 2.3(iii), there exist a g-element
ys € N — M, a my-element 27 € N — M and u, ' € M such that zu = z1, yu’ = ys
and Y221 = z1y2. By lemmas 2.11, 2.12(a) and 2.13(ii), z1y2, y2 € Van(G) C G,.
Therefore, Cg(y2) = Ca(y221) < Ca(z1), by lemma 2.3(i). Consequently, Fy <
Ca(z1). However, Fop < Z(M) and zu = 2. So, Fy < Cg(z). Since i € {1, ..., t}
is arbitrary, we have that m-elements of N — M centralize Fy. Thus, Fy < Z(N).
On the other hand, every m-element w € N — Fit(G) is vanishing in G, by lemma
2.12(a) and proposition 2.14. Therefore, |clg(w)| = a. It follows from lemma 2.3(iv)
that N contains a nilpotent Hall w-subgroup, so does N/M, contradicting lemma
2.1(iv). 0

Step 2. Cg/p(N/M) = {M}.

Proof. Working towards a contradiction, let Cg/p(N/M) # {M} and let C/M
be a minimal normal subgroup of G/M such that C/M < Cq/p(N/M). By step
1, N/M and C/M are isomorphic to the simple groups S; and Sy, respec-
tively. Let p € w(S1) —m and p # q € w(S2) — me, where for ¢ € {1, 2}, if S; is
one of the groups mentioned in lemma 2.11(b), then m; = {2, 3} and otherwise,
m = {2}. If m Umy = {2, 3}, then without loss of generality, we can assume that
m ={2,3}. Set m=n(N/M)—m. Let M #xzM € N/M be a p-element and
M # yM € C/M be a g-element. Then, lemmas 2.11, 2.12(a) and 2.13(ii) guaran-
tee that M, yM, xyM C Van(G) C G,. Thus, for every m € M, proposition 2.10
shows that C(zym) contains an abelian Sylow p-subgroup and an abelian Sylow
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g-subgroup of M. Let P € Syl,(Fit(G)) and @ € Syl (Fit(G)). Since Fit(G) < M,
we get, that

P,Q < Cg(axym), for every m € M. (3.2)

Thus, P, Q@ < Z(M). Let Fy be a Hall m-subgroup of Fit(G). Since p is an arbitrary
element of 7, we get that Fy < Z(M). By lemma 2.3(iii), there exist a p-element
x1 € N—M, a g-element y; € C — M and my, m}, m"” € M such that zyy; =
Y171, My = 1, ymy = y; and xym” = x1y;. Hence, lemma 2.3(i) and (3.2) give
that P, Q < Cg(axym”) = Ca(z1y1) = Co(x1) N Ca(y1). So P, Q < Ca(y), Ca(x),
because P, Q < Z(M), xmy = x1 and ym) = y;. Since p € 7 is arbitrary, we get
that Fy < Cg(y). Consequently, Fy < Ca(y1). However, x1y1, x1, y1 € Van(G) C
Gqo. Thus, |Ca(z1)] = |Ca(ziy1)| = |Ca(y1)|. Tt follows from lemma 2.3(i) that
Fy < Ca(y1) = Ca(x1yr) = Ca(z). Since Fy < Z(M) and xmy = 1, we get that
Fy < Cg(x). Regarding the fact that p € 7 is arbitrary, we conclude that the 7-
elements of N — M centralize Fy. Now, let M # zM be a n’-element of N/M.
Without loss of generality, we can assume that ¢ & 7(S1) — 7. By lemmas 2.11,

forces to exist a g-element yo € C' — M, a w’-element 21 € N — M and u, v’ € M
such that yo21 = 212, 2u = 21 and yu’ = yo. Then, yo, Y221 € Van(G) C G,,. Thus
|Ca(y221)| = |Cq(y2)|. So, lemma 2.3(i) guarantees that Cg(y2) = Ca(yaz1) <
Ca(z1). As, Fy < Ca(y), Z(M) and yu' =y, we have Fy < Cg(y2) < Ca(z1).
However, zu = z; and Fy < Z(M). Hence, Fy < Cg(z). This forces Fy < Z(N).
On the other hand, every m-element w € N — Fit(G) is vanishing in G, by lemmas
2.11, 2.12(a) and 2.13(ii), and proposition 2.14. Therefore, |clg(w)| = a. So, lemma
2.3(iv) yields that N contains a nilpotent Hall w-subgroup, so does N/M. This is
a contradiction with lemma 2.1(iv). O

Step 3. G/M = Alts or Alty.

Proof. By steps 1 and 2, N/M = S is non-abelian simple and G/M < Aut(N/M).
Fix N = N/M and G = G/M. For = € G, let Z be the image of z in G.

a. Let S 2 Alts, Moo and let either (S, r, m, t) be as in tables I and IT or S &
Alt;, where 8 < 1 < 10, and (r, m, t) = (5, 15, 7). Then, N contains an element z of
order m. By lemmas 2.11 and 2.12(a), for every 1 < i < m, #' € Van(G). If S = Alt,,
where 8 <1< 10, then we apply [4] for the previous conclusion. Consequently,
z* € Van(G), by lemma 2.13(ii). Since Van(G) C G, m is a composite number
and r | m, proposition 2.10(ii) shows that |M|,|o(Z)|, | |Ca(z)|. So, for every z €
Van(G), |[M|.|o(Z)|, | |Cc(2)|. On the other hand, Van(G) contains an element 3
of order ¢, by lemma 2.12(b). Lemma 2.13(ii) guarantees that y € Van(G). Hence,
|M]|,|o(z)|, | |Cq(y)|. Thus, lemma 2.3(ii) forces 7 | |Cz(7)|. Therefore, G contains
an element z of order rt. By lemma 2.12(b), for every 1 <i < tr, ' € Van(G).
Consequently, |M|¢|o(Z)|: | |Ca(z)], by lemma 2.13(ii) and proposition 2.10(ii). It
follows from (x) that |M|o(Z)|: | |Cq(x)]. In view of lemma 2.3(ii), t | |Ca(Z)].
However, t 1 |Out(S)|. So, t | |Cx(Z)], contradicting lemma 2.1(iii).

b. Assume that S = Alt;, where [ > 11. Suppose that m = 35 and r and ¢ are
as in lemma 2.1(i). Then, N contains an element Z of order m. By lemmas 2.11
and 2.12(a), for every 1 < i < m, z° € Van(G). Lemma 2.13(ii) yields 2 € Van(G).
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Since Van(G) C G, m is a composite number and 7 | m, proposition 2.10(ii) shows
that |M|7]o(Z)|7 | |Ca(x)|. So, for every z € Van(G), |M|7|o(Z)|7 | |Ca(z)]. On the
other hand, Van(G) contains an element ¢ of order ¢, by lemma 2.12(b). Lemma
2.13(ii) forces y € Van(G). Hence, |M|7|o(Z)|7 | |Ca(y)|. Lemma 2.3(ii) implies that
7||Ca(7)|. Therefore, G contains an element z of order 7¢t. By lemma 2.12(b),
for every 1 <i < 7t, 2' € Van(G). So, |[M|:|o(2)|: | |Cc(2)], by lemma 2.13(ii) and
proposition 2.10(ii). Thus, |M|¢|o(2)|¢ | |Cq(u)]|, for every u € Van(G). Also, lemma
2.12(b) forces Van(G) N N to contain an element w of order r. Hence, t | |Cq ()],
by lemmas 2.3(ii) and 2.13(ii). However, ¢ { |Out(S)]. So, t | |C'x(w)|, contradicting
lemma 2.1(ii).

c. Let S = Mys or Altyy, m =8 and let ¢ = 11. [4] implies that N contains an
element 7 of order m such that for every 1 <i <4, ' € Van(G). Consequently,
z' € Van(Q), by lemma 2.13(ii). So, proposition 2.10(ii) shows that 2|M|s | |Cq(z)|.
Hence, () forces 2| M|y | |Ca(2)|, for every z € Van(G). On the other hand, Van(G)
contains an element g of order ¢, by lemma 2.12(b). By lemma 2.13(ii), y € Van(G)
and hence, 2|M|z | |Ca(y)|. Thus, lemma 2.3(ii) implies that 2 | |Ca(g)|. This shows
that Aut(S) contains an element of order 2t = 22, which is a contradiction, by
considering [4].

The above cases show that N/M = Alts or Alty. By step 2, Cq/ar(N/M) = {M}.
Thus, G/M < Aut(N/M). Working towards a contradiction, let G/M # N/M.
Then, G/M = Sym, or Syms. If G = Sym,, let (r, ¢, d) = (5, 7, 10) and if G =
Syms, let (r, ¢, d) = (3, 5, 6). [4] guarantees that Van(G) contains an element Z
of order d such that for every 1 <i < d, # € Van(G). Since Van(G) C G, d is a
composite number and r | d, proposition 2.10(ii) shows that |M|,|o(Z)], | |Ca(z)|.
So for every z € Van(G), |M|,|o(Z)|, | |Cc(z)|. On the other hand, Van(G) contains
an element g of order ¢, by lemma 2.12(b). Lemma 2.13(ii) yields that y € Van(G).
Hence, |M|.|o(Z)|. | |Ca(y)|- Thus, lemma 2.3(ii) forces r | |Cq(y)|. Therefore, G
contains an element z of order rt, which is a contradiction, regarding the orders of
elements of G. This shows that G/M = N/M. Thus, G/M = Alts or Alt;. O

Step 4. 7(M/Fit(G)) C {2}.
Proof. By step 3, G/M = Alts or Alt;. It is worth mentioning that by [4],
Van(Alts) = Alts — {1} and {g € Alt7 : o(g) € {5,7}} C Van(Altr). (3.3)

Fix Fy = {1} and for 1 <i < n, let F;/F;_y =Fit(G/F;_1) such that F, = M.
Let P € Syl,(M). Working towards a contradiction, suppose that 7(M/Fy) Z {2}.
Then, one of the following cases occurs:

Case 1. Let w(F,/F,—1) = {2}. Since by our assumption 7w(M/Fy) Z {2}, we
have n > 3 and obviously, w(F,,_1/F,_2) # {2}. Set W = (PN F,,_1)F,,_2. Then,
W <G, (W} # F,_1/W <G/W is nilpotent and {W} # Z/W 9 G/W, where
F, 1< Zand Z/F,_1=Z(M/F,_1). Also, Z/F,,_1 < M/F,_; is a 2-group and
ged(|F1/W|, 2) = 1. Let C/W = Cypw (Fny/W). If W # yW € C/W, then for
every W # oW € F,,_1/W, there is an element w € W such that

y tazyF,_ o = zwF,_,. (3.4)
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We can assume that xF,, 5 is a 2’-element. Since W/ F,,_5 is a 2-group, o(wF,_3)

is a power of 2. Also, wF,_o, xF,_9 € F,,_1/F,_o and F,_1/F,_2 is nilpo-

tent. So, zwF, o =wzF,_2. By (34), o(xF,_2) =lem(o(zF,_2), o(wF,_2)).

Thus, wk, o= F, 2. Consequently, yF, ¢ Cq/p,_,(xF,_2). So, yF, »¢€

Ca/r, (O (Fn-1/F,_2)). However, C/F,, _o < Z/F, 5. Therefore, Oy (C/F, _2) <
O (Fy—1/F,—2) is nilpotent. Thus, C/F,_o9 = O2(C/F,_2) X O (C/F,,_2) is

nilpotent. Hence, C/F, o < Fit(G/F,_2) = F,,_1/F,—2. So, Czw(F,_1/W) =

C/W < F,,_1/W. By lemma 2.13(ii,iv), Z— F,_1 C Van(G). Now, let s¢€

w(Fp—1/Fn—2) — {2}. Then, (PNZ)/(PNF,_1) acts on a Sylow s-subgroup of

F,_1/F,_2, by conjugation and one of the following sub-cases occurs:

a. Let the action of (PN Z)/(P N F,_1) on a Sylow s-subgroup of F,,_1/F,_»
be fixed point freely. Then, (PN Z)/(PNFu_1) 2 (PNZ2)F,_1/Fh_1=Z/F,_1 s
a cyclic 2-group, because Z/F,,_ is abelian. Hence, Z/F,,_; contains a subgroup
(21F,—1) of order 2, which is normal in G/F,, ;. Obviously, Cq/p,_, ({(z1F-1)) =
G/F,—1. Thus, there is an element xF, | € Cg/p,_,((21F,—1)) of order 5, so
o(xz1F,—1) = 10. By lemma 2.13(i,ii) and since Z — F,,_; C Van(G), 21, x, 21 €
Van(G) C G,. Hence, proposition 2.10 shows that |F,_1|s|o(xz1Fn—1)|5 |
|Ca(z21)|. So, for every h € Van(G), 5|F,—1|5 | |Ca(h)|. If G/M =2 Alts, let p =3
and otherwise, let p = 7. Suppose that y is a p-element of G — M. By (3.3) and
lemma 2.13(ii), y € Van(G). Thus, 5|F,_1|5 | |Ca(y)|. Since n(M/F,_1) = {2},
lemma 2.3(ii) forces 5 | |Cq/ar(yM)|, which is impossible.

b. Assume that there exist a 2-element z € (ZN P) — F,_; and an s-element
y € F,_1— F,_o such that yF,,_o € Cg/Fn_Q(an,g). We can assume by lemma
2.3(iii) that z € Cg(y), and by proposition 2.14, y € Van(G). As stated before,
Z — F,—1 € Van(G), so z, zy € Van(G). Thus, zy satisfies the assumption of propo-
sition 2.10. Let H,,_1/F,,_2 be a Hall s’-subgroup of F,_1/F,,_5. Then, H,,_1 G
and proposition 2.10 shows that |Hy,_1|slo(yzHp—1)|s | |Ca(yz)|. It follows that
for every h € Van(G), s|Hy—1|s | |Ca(h)|. If G/M = Alts, let r € {3, 5} — {s} and
p€e€{3,5}—{r} and if G/M = Alt7, let r € {5, 7} — {s} and p e {5, 7} — {r}.
Let w be an r-element of G — M. By (3.3) and lemma 2.13(ii), wM C Van(G).
Thus s|H,—1]s | |Ca(w)]. So, there exists an s-element w’ € G — H,_; such that
w'Hy,_1 € Cqp, _, (wH,_1). However, |Cq/p(wM)| = r. Hence, w' € M — H,,_;.
Then, w, w’, ww’ € Van(G), by proposition 2.14 and lemma 2.13(ii). So, propo-
sition 2.10 shows that r|H,_1]|, | |Ca(ww’)|. Consequently, for every h € Van(G),
r|Hp—1lr | |Cq(h)|. Assume that v is a p-element of G — M. By (3.3) and lemma
2.13(ii), v € Van(G). Thus, r|Hp, 1] | |Ca(v)]. Note that 7(M/H,,—1) = {2, s}. By
lemma 2.3(ii), r | |Cq/ar(vM)], which is impossible.

Case 2. Let 2 # s € n(F,,/F,,—1). Assume that S/F,,_; € Syl (M/F,,_1), L/F,_1
is a Hall s’-subgroup of M/F,,_1 and H/F,,_1 = Z(S/F,_1). First, let G/M = Alts
and p = 2. Then, G/M acts on H/F,,_. This action is not fixed point freely, because
the Sylow 2-subgroups of G/M are abelian and non-cyclic. Thus, there exists
a 2-element M # xM € G/M such that Cyp,  (2Fn—1) # {Fn1}. Let F 1 #
yFn-1 € Cyp,_,(xF,_1). Since s # 2, (3.3), lemma 2.13(ii) and proposition 2.14
force x, y, vy € Van(G). So, xy satisfies the assumption of proposition 2.10. Next,
let G/M = Alt;. By lemma 2.13(v), Van(G/M) contains a p-element zM such
that Cpyyp (L) # {L} and p € 7(G/M) — {2, s}. Let L # yL € Cpr/r(zL). We can
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assume that o(y) is a power of s. Then, z, y, zy € Van(G), by lemma 2.13(ii) and
proposition 2.14. Consequently, zy satisfies the assumption of proposition 2.10.
In both cases, proposition 2.10 shows that |L|,|o(xyL)|, | |Ca(zy)|. So, for every
h € Van(G), p|L|, | |Ca(h)|. Let 2M € G/M be of order r, where if G/M = Alts,
r =5 and otherwise, r € {5, 7} — {p}. By (3.3) and lemma 2.13(ii), z € Van(G).
Thus, p|L|, | [Ca(2)|. As, pt |M/L|, lemma 2.3(ii) yields p | |Cq/n(2M)|, which is
impossible.

These contradictions show that 7(M/Fit(G)) C {2}. O

Step 5. 7(G/M) — {2} C n(Fit(G)).

Proof. By steps 3 and 4, w(M/Fit(G)) C {2} and G/M = Alts or Alt;. Let
p € m(G/M) — {2}. Then, there are the elements zM, yM € Van(G/M) such
that |G/ (xM)|, = |G/M|, and pt|Cq/p(yM)|. By lemma 2.13(ii), z,y €
Van(G). So, (x), corollary 2.4 and lemma 2.3(ii) force p | |Cq(z)| and |Cq(z)|, =
ICa()lp | |IM]|Can(yM)|, = |Fit(G)|,, because p # 2. Therefore, p | |Fit(G)|, as
desired. O

Step 6. M = Fit(G).

Proof. By steps 3 and 4, w(M/Fit(G)) C {2} and G/M = Alts or Alt;. Work-
ing towards a contradiction, suppose that M # Fit(G). Let P € Syly(M). Set
P, = PNFit(G) and assume that Z/Fit(G) is the maximal normal abelian sub-
group of G/Fit(G) such that Z < M. Then, P; € Syly(Fit(G)), Z(M/Fit(G)) <
Z/Fit(G) and Z/Fit(G) is a 2-group. By step 5, m(G/M) — {2} C 7(Fit(G)). Hence,
Fit(G)/P; is a non-trivial Hall 2’-subgroup of M/P; that is nilpotent and nor-
mal in G/Py. If 2P € Cyp/p, (Fit(G)/P1), then [z, Fit(G)] C P1. So, for every
2'-element f € Fit(G), there exists an element g € P; such that xfx=!f~! =
g. Hence, wfox~! = gf. However, Fit(G) is nilpotent and P; < Fit(G). There-
fore, o(f) = lem(o(f), o(g)). This forces g = 1. Thus, 2 € Cp (O« (Fit(G))). Since
M/Fit(G) is a 2-group, we have x = x1x9 = xox1 such that x; € M is a 2-element
and x5 € Fit(G) is a 2'-element. Let Q1 € Syl,(Car (O (Fit(G))) such that x; €
Q@1. Then, P, < Q1 and Q1Fit(G) = Q1 x O« (Fit(G)) is a nilpotent subgroup of
G. However, Q1Fit(G)/Fit(G) = Cy (O (Fit(G))Fit(G) /Fit(G) < G/Fit(G). Con-
sequently, Q1 x Oz (Fit(G)) = Q1Fit(G) < G. Therefore, Fit(G) = Oy (Fit(G)) x
P, < O« (Fit(G)) x @1 < Fit(G). This yields that Oy (Fit(G)) x Q1 = Fit(G), so
@1 = P;. Thus, x1 € Py. As = z129 and x5 € Fit(G), we get 2 € Fit(G). Thus,

Cuyp, (Fit(G)/Pr) < Fit(G)/Pr. (3.5)
Hence, Cz,p, (Fit(G)/Py) < Fit(G)/Py. By lemma 2.13(iv,ii).
7Z — Fit(G) C Van(G). (3.6)

In the following, we first assume that G/M = Alt; and Z = M. We observe that
G/M acts on Z/Fit(G), by conjugation. Hence, there are an odd prime ¢, a g¢-
element yM € Van(G/M) and an element Fit(G) # 2Fit(G) € Z/Fit(G) such that
yFit(G) € Cq/piv(e) (2Fit(G)), by lemma 2.13(v). Therefore, z, y, xy € Van(G). So,
proposition 2.10 shows that |Fit(G)|q|o(zyFit(G))lq | |Ca(zy)|. It follows that for
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every h € Van(G), q|Fit(G)l, | |Ca(h)|. Let p € {5, 7} — {q}. Suppose that z is a
p-clement of G — M. By lemma 2.13(i), z € Van(G). Thus, ¢|Fit(G)|, | |Ca(2)].
Regarding 7(M/Fit(G)) = {2}, we get that q | |Cq/ar(2M)[, which is impossible.

Now, let G/M = Alts, Z=M and a Sylow 2-subgroup of G/Fit(G) is
abelian. Then, for every 2-element zp € G — Z, 22Fit(G) € Cq/pir(c)(Z/Fit(G)).
Set C/Fit(G) = Cqriy(q)(Z/Fit(G)). So, xzp € C — Z. Therefore, Z # 227 €
C/Z QGJ)Z = G/M = Alts. This forces C/Z = G/Z, consequently, C' = G. Thus,
Carive) (Z/Fit(GQ)) = G/Fit(G). Hence, G/Fit(G) contains an element zFit(G)
of order 6 such that 2 € G — M and 2® € Z — Fit(G). Since M # zM, z*M €
G/M = Alts, M, 22 M € Van(G/M). By lemma 2.13(ii), 2%, z € Van(G). Also,
(3.6) shows that 2® € Van(G). So, proposition 2.10 shows that 3|Fit(G)|s | |Ca(x)|.
Regarding [G : Fit(G)]; = 3, we get that that |G|s | |Cq(x)|. Hence, |clg(z)]s = 1.
Since x € Van(G), () forces 3 not to divide the vanishing conjugacy class sizes
of G. It follows from [6, theorem A] that G has a normal 3-complement, which is
impossible.

Then, suppose that M # Z, Z/Fit(G) is an elementary abelian 2-group and
G/M = Alts or Alt;. Assume that L/Z is a chief factor of G such that L < M.
If o(uFit(G)) = 2, for every uFit(G) € L/Fit(G), then L/Fit(G) is abelian, contra-
dicting our assumption on Z. So, L/Fit(G) contains an element uFit(G) of order 4.
Since Z/Fit(G) and L/Z are elementary abelian 2-groups, u € L — Z and Fit(G) #

u’Fit(G) € Z/Fit(G). In the following, set G = G/P; and, for every H < G and
r€G,let H=HP /P, and # be the image of z in G. Since |F1t( )| is odd, we can
assume that o(@) = 4 and 4% € Z — Fit(G). Let {1} No<---< N, =Fit(G) < G
be a normal series of G such that for every 1 <i <t, N;/N;_1 is a chief factor of
G. Suppose that i is the smallest number such that 0<i<tand

u’N; € Cyy/w, (Fit(G)/N;). (3.7)
By (3.5), ¢ # 0. Working towards a contradiction, let
ﬂ2Ni,1 € CZ\Z/J\_/i_l(Ni/Nifl)- (38)

Assume that nN;_; € Fit(G)/N,_; is arbitrary. If 7 € N;, then (3.8) forces nN; | €
Chi/n, (@ Ni_1). Next, let n & N;. By (3.7), [0, @*] € N;. So, there is an ele-
ment m € N; such that [n, 2] m. Thus, 7(a?)n lNZ 1 = mu?N;_1. By (3.8),
musN,_1 = @>mN;_;. Slnce @2N;_q is a 2-element and mN,_; € Flt( )/Ni_1,
which is a 2/-group, we get that mN,_; = N;_;. Consequently, aN;_; €
Cyi/n, ,(@*Ni_1), for every aN;_, € Fit(G)/N;_1. Therefore, Fit(G)/N;_1 <
Cxi/n; . (@*N;i—1). Hence, ﬂ2Ni,1ECM/NFl(Ffit(G)/NZ—,l), contradicting our
assumption on 7. So,

QZNi_l ¢ OM/Ni,l(Ni/Ni—l)' (3.9)

Since {N;_1} # Z(Fit(G)/Ni—1) N N;i/N;—y S G/N;_1 and N;/N;_ is a chief fac-
tor of G, Z(Fit(G)/N;_1) N N;/N;_1 = N;/N;_1. So, N;/N;_1 < Z(Fit(G)/N;_1).
Therefore, Fit(G)/N;_1 < CZ/Ni,l(N /N;_1). As Z/Flt( ) is abelian, we get that
(Z/Ni,l)C@/NFI(NZ-/NZ-,l)/C(;/NPl(Ni/Ni,l) is abelian. Hence, [7, the proof of
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lemma 2.3] yields the existence of a character A € Irr(N;/N;_1) such that
IZ/Ni—l()\) :CZ/Ni,l(Ni/Nifl)- (310)

If there exists an element gN;_; € G/N;_; such that wIN;_; € Ig N, ,(A), then
(7._1,2)@]\71-,1 S IZ/NF1()‘)' Thus, since by (3.10), IZ/NFl()‘) = CZ/Ni,l(Ni/Nifl) <
G/N;_1, we get that (@?)N;_, € CZ/Ni_l(Ni/Ni—l), which is a contradiction with

(3.9). This shows that no conjugate of zzzNi_l and no conjugate of uN;_1 fix A. So,
lemma 2.13(vi) implies that aN;_1, 4> N;_; € Van(G/N;_1) and by lemma 2.13(ii),

u,u? € Van(G). (3.11)

Also, if Z/Fit(G) is not an elementary abelian 2-group, then there exists an
element u € Z — Fit(G) such that o(uFit(G)) = 4. So, (3.6) shows that

u,u? € Van(G). (3.12)

Next, suppose that G/M = Alts, Z = M and a Sylow 2-subgroup of G/Fit(G)
is not abelian. Then, there exists a 2-element uw € G — Z = G — M such that
o(uFit(G)) = 4 and Fit(G) # v?Fit(G) € Z/Fit(G). Since uM € G/M = Alt;, we
have uM € Van(G/M). We conclude from lemma 2.13(ii) and (3.6) that

u,u? € Van(G). (3.13)

Nevertheless, if Z # M or G/M = Alts, Z =M and a Sylow 2-subgroup of
G/Fit(G) is not abelian, then (x), (3.11), (3.12) and (3.13) yield that there is
an element u € Van(G) such that u? € Van(G), o(uFit(G)) =4 and |clg(u)| =
|cl(u?)|. Hence, proposition 2.10 shows that 4|Fit(G)|2 | |[C(u)|. Consequently,
4|Fit(G)]2 | |Ca(w)], for every w € Van(G). If 25 € G — Fit(G) is a 5-element, then
M # x5 M is a 5-element of G/M. However, G/M = Alts or Alt;. Thus, x5M €
Van(G/M). By lemma 2.13(ii), 25 M C Van(G). Therefore, 4|Fit(G)|z2 | |Ca(xs)].
As, |Cg/n(xsM)]2 = 1, 25 M contains a {2, 5}-element y such that o(yFit(G)) =
10, y5 € x5 M and yo € M — Fit(G), where y2 and y5 are the 2-part and the 5-part
of y, respectively. As mentioned above, y5, y € Van(G) and yo € M — Fit(G). Thus,
(Ca(y)] = [Ca(ys)). By lemma 2.3(),

Ca(ys) = Ca(y) < Ca(y2)- (3.14)

On the other hand, if Ps € Syl;(Fit(G)), then since 5 € w(Fit(G)), Ps # {1}
and (y) = (y2) x {y5) acts on Ps, by conjugation. By (3.14), Cp.(y5) < Cp. (y2).
Tt follows from lemma 2.2 that yo € Cq(Ps). Fix A := Cg(Ps). Then, 1+# ys €
(A—=Fit(G))N M. Hence, Fit(G) < (APsNM)<dG. Thus, {Fit(G)} # (APsN
M) /Fit(G) < G/Fit(GQ). Let B/Fit(G) be a minimal normal subgroup of G/Fit(G)
such that B < (APs N M). Then, B/Fit(G) is abelian. By (3.5) and lemma 2.13(iv),

B — Fit(G) C Van(Q). (3.15)

Obviously, there exists an element g € BN A such that g ¢ Fit(G). Since g € B -
Fit(G), we get from (3.15) and lemma 2.13(ii) that g € Van(G). However, g € A =
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Cg(Ps) and [G : P55 = 5. Tt follows that |clg(g)]5 < 5. So, |clg(w)|s < 5, for every
w € Van(G). Let 29 € G — M be a p-element, where if G/M = Alts, then p =2
and otherwise, p = 7. Then, zoM € Van(G/M). By lemma 2.13(ii), z2 € Van(G).
So, |Ps| | [Cg(x2)|. We have |clg/a(22M)|5 = 1 and M/Fit(G) is a 2-group. Thus,
corollary 2.4 forces Ps < Cg(x2). Therefore, xo € C(Ps). This yields that M #
xoM € Cq(Ps)M/M < G/M = Alts or Alt;. Since G/M is simple, Cq(Ps)M /M =
G /M. Consequently, C(Ps)M = G. Thus, Cg(Ps) contains a 5-element x5 such
that x5 € M. So, M # x5 M € G/M. Tt follows that 25 M € Van(G/M). By lemma
2.13(ii), x5 € Van(G). Also, Ps(x5) < Ca(xs). So, 51 |clg(xs)|. Hence, () forces 5
not to divide the vanishing conjugacy class sizes of G. It follows from [6, theorem
A] that G has a normal 5-complement, which is impossible.

This shows that M = Fit(G), as wanted. O

Step 7. We get the final contradiction.

Proof. By step 6, G/Fit(G) = Alts or Alty. First, let G/Fit(G) = Alts. Then,
for every x € G —Fit(G), Fit(G) # 2Fit(G) € G/Fit(G) = Alts. So, zFit(G) €
Van(G/Fit(G)). By lemma 2.13(ii), « € Van(G). By step 5, 3, 5 € m(Fit(G)). Let
E be a Hall 3/-subgroup of Fit(G). Set G = G/F and, for every H < G and z € G,
let H = HE/FE and 7 be the image of x in G. Then, Fit(G) is a 3-group and lemma
2.5 shows that for every 1 # # € G — Fit(G), |els(2)]3 = 3, for some positive inte-
ger e. Let 5 € G — Fit(G) be of order 5 and let {1} = My < M; < --- < M, =
F:lt(GN) < G be a chief series of G. By proposition 2.8, there is an 1 < ¢ < ¢ such that
Mi/Mi—l 7<\ Z(G/Mz_1) and |CMi/Mi71(i‘5Mi_1)‘ > ‘CMi/]\;[i,l('i‘Mi—l)‘7 for some
2-element M;_; #+ FM;_, € NG/M,;,l(@E)Mi*l»' Hence, proposition 2.17 implies
the existence of a non-trivial element AM;_; € Ct, i, (Z5M;_1) and a character
Y € Trr(G/M;_y) such that o (aM;_1) = 0. So, aM,;_; € Van(G/M;_;). By lemma
2.13(ii), n € nM;_; C Van(G). Since 31 |E| and M; is a 3-group, we can assume
that n is a 3-element. Thus, E < Cg(n), because n € Fit(G), E < Fit(G) is a 3'-
group and Fit(G) is nilpotent. We note that |G/E|5 = |G/Fit(G)|5 = |Alts|s = 5.
Therefore, |clg(n)|s < |G/E|s = 5. Hence,

lcla(w)|s < 5, for every w € Van(G). (3.16)

Let w3 € G —Fit(G) be a 3-element. Then, |Cq/piya)(23Fit(G))[s =1. By
(3.16) and corollary 2.4, |Criy)(z3)]s = |[Fit(G)[s. So, Ps < Crit(g)(r3), where
P5 € Syl;(Fit(G)). Thus, z3 € PsCq(Ps) — Fit(G). This yields that {Fit(G)} #
P;Cq(Ps)/Fit(G) < G/Fit(G). However, G/Fit(G) = Alts is simple. Therefore,
PsCq(P5)/Fit(G) = G/Fit(G). Hence, PsCs(Ps) = G. This guarantees the exis-
tence of a 5-element y; € Cq(Ps) — Fit(G). Then, ys € Van(G). Also, Ps(ys) <
Ca(ys). This signifies that 5|Ps| | |Ca(ys)|- Taking into account the fact that
[G: Ps]s =5, we get that |G|s | |Cq(ys)|. Therefore, 51 |clg(ys)|. So, () forces
5 not to divide any vanishing conjugacy class size of G. It follows from [6, theorem
A] that G has a normal 5-complement, which is impossible.

Next, let G/Fit(G) = Alt7. By step 5, 3, 5, 7 € w(Fit(G)). Let F be a Hall 7'-
subgroup of Fit(G). Set G = G/F and, for every H <G and z € G, let H =

HF/F and z be the image of x in G. Then, Fit(G) <G is a 7-group and
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G/Fit(G) = G/Fit(G) = Alty. Suppose that {1} = Ng < --- < N; = Fit(G) < G is
a chief series of G. Assume that for every i € {1, ..., t}, N;/N;—1 < Z(G/N;_1).
By lemma 2.6, G = L x Fit(G), where L = Alt;. Let € L — F be a 7-element.
Then, Fit(G)(z) < Ca(z). However, [G : Fit(G)]; = 7. Thus, |G| | |Ca(Z)|. Since
ged(|F], 7) =1 and z is a T-element, we get from lemma 2.3(v) that Cx(Z) =
Ca(x)F/F = Cq(x)/Cr(x). Thus, |G|7 = |G|7||Cq(z)|. Therefore, 71 |clg(x)|.
However, 1 # 7 € L is a 7-element and L = Alt;. Hence, Z € Van(G). By lemma
2.13(ii), = € Van(@). So, 7 does not divide the vanishing conjugacy class sizes
of G. Hence, [6, theorem A] implies that G has a normal 7-complement, which
is impossible. This guarantees the existence of an element i € {1, ..., ¢t} such
that N;/N;_1 € Z(G/N;_1). Let y € G be a {2, 3}-element such that gFit(G) €
G/Fit(G) is of order 6. Let yo and y3 be the 2-part and the 3-part of y, respec-
tively. Then, yo & Fit(G) and o(y3Fit(G)) = 3. It follows from proposition 2.16
that gNi—la ggNi_l S Van(é/]vi_l). By lemma 213(11), Y, Ys € Van(G) Thus,
(Ca)] = [Calys)], by (). By lemma 2.3(),

Ca(ys) = Ca(y) < Caly2)- (3.17)

Also, 3| |[Fit(G)]. So, (y) = (y3) X (y2) acts on Ps, where {1} # P; € Syl;(Fit(G)).
By (3.17), Cp,(y3) < Cp,(y2). It follows from lemma 2.2 that y2 € Cg(Ps). Then,
y2 € Cq(Ps) — Fit(G). This yields that Fit(GQ) # y2Fit(G) € Cq(Ps)Ps/Fit(G) <
G/Fit(G) = Alt;. Since G/Fit(G) is simple, Cq(P3)P3/Fit(G) = G/Fit(G). Con-
sequently, G = C(P3)Ps. Thus, C¢(Ps) contains a 3-element x3 such that x3 &
Fit(G). By proposition 2.16, 3N;_1 € Van(G/N;_1). It follows from lemma 2.13(ii)
that z3 € Van(G). Also, P3(z3) < Cg(x3). So, |clg(z3)]s < 3. Hence, () forces 32
not to divide the vanishing conjugacy class sizes of G. Let x5 € G — Fit(G) be a
5-element. Since G/Fit(G) = Alty, 25Fit(G) € Van(G/Fit(G)). By lemma 2.13(ii),
x5 € Van(G). Thus, 321 |clg(xs)|. However, [G : Fit(G)]3 = 32. So, corollary 2.4
forces 3 | |Cq/rit(q) (v5Fit(G))], which is impossible, because G//Fit(G) = Alty.
The above steps show that G is solvable. Now, the proof of theorem A is complete.
]
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