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Let G be a finite group. An element g ∈ G is called a vanishing element in G if there
exists an irreducible character χ of G such that χ(g) = 0. The size of a conjugacy
class of G containing a vanishing element is called a vanishing conjugacy class size of
G. In this paper, we give an affirmative answer to the problem raised by Bianchi,
Camina, Lewis and Pacifici about the solvability of finite groups with exactly one
vanishing conjugacy class size.

Keywords: Conjugacy class sizes; irreducible characters; vanishing elements

2020 Mathematics subject classification: 20E45; 20C15; 20D05

1. Introduction

Throughout this paper, G is a finite group, Z(G) is the centre of G and Fit(G) is
the fitting subgroup of G. For x, y ∈ G, xy = y−1xy. For a ∈ G, o(a) is the order of
a, clG(a) is the conjugacy class in G containing a and CG(a) denotes the centralizer
of a in G. Let Irr(G) denote the set of the irreducible characters of G. For a normal
subgroup N of G and θ ∈ Irr(N), let IG(θ) denote the inertia group of θ in G and
let Irr(G|θ) be the set of the irreducible constituents of the induced character θG.
An element g ∈ G is called vanishing in G if there is a character χ ∈ Irr(G) such
that χ(g) = 0, otherwise, g is non-vanishing in G. We denote by Van(G) the set
of the vanishing elements of G. The size of a conjugacy class of G containing a
vanishing element is called a vanishing conjugacy class size of G.

For a prime p, the set of Sylow p-subgroups of G is denoted by Sylp(G). Let
π(G) be the set of prime divisors of |G|. For a prime r and natural numbers a
and b, |a|r is the r-part of a, |a|r′ = a/|a|r and, gcd(a, b) and lcm(a, b) are the
greatest common divisor and the lowest common multiple of a and b, respectively.
For integers a and n with |a| > 1 and n � 1, the primitive prime divisor of an − 1
is a prime l such that l | (an − 1) and l � (ai − 1), for 1 � i < n. Put Zn(a) = {l :
l is a primitive prime divisor of an − 1} ∪ {2m}, where if either n = 1 and a ≡
1 (mod 4) or n = 2 and a ≡ −1 (mod 4), then m = 1. Otherwise, m = 0. Note
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that Zn(a) �= {1}, unless (a, n) ∈ {(2, 1), (2, 6), (−2, 2), (−2, 3), (3, 1), (−3, 2)},
by [8].

In [2], Bianchi, Camina, Lewis and Pacifici classify the finite super-solvable groups
with one vanishing conjugacy class size and put forward a problem on the solvability
of the groups with one vanishing conjugacy class size. In this paper, we prove that:

Theorem 1.1. If G is a finite group with exactly one vanishing conjugacy class
size, then G is solvable.

In this paper, we say that G satisfies (∗) when all vanishing conjugacy classes of
G have equal sizes.

2. Some useful lemmas and propositions

For convenience, this section is organized in the following four subsections.

2.1. On the order of elements and Hall subgroups of some finite groups

Lemma 2.1. Let l � 7 be an integer and S be a finite non-abelian simple group.

(i) Then, there are at least two prime numbers r and t such that l/2 � r < t � l.

(ii) If r and t are as in (i), then Altl and Syml contains no element of order tr.

(iii) For the triple (S, t, r) given in tables I and II, S contains no element of order
tr.

(iv) S contains no nilpotent Hall 2′-subgroup. Moreover, if S is isomorphic to
Suz,Co3 or Altl, then S contains no nilpotent Hall (π(S) − {2, 3})-subgroup.

Proof. (i) and (iii) follow from [15, lemma 1] and [17], respectively and (ii)
is straightforward. Working towards a contradiction, let H be a nilpotent 2-
complement of S. Let t ∈ π(S) − {2}, T ∈ Sylt(H) and 1 �= x ∈ Z(T ). Then,
|clS(x)| is a power of 2, contradicting Burnside’s theorem [11, 15.2]. Obviously,
Altl contains no nilpotent Hall (π(S) − {2, 3})-subgroup and also, by [4], Suz and
Co3 contain no nilpotent Hall (π(S) − {2, 3})-subgroup. So, (iv) follows. �

Lemma 2.2 [16, 8.2.8]. For a prime p, let P be a p-group and Q be a p′-group.
If P ×Q acts on a p-group G such that CG(P ) � CG(Q), then Q acts trivially
on G.

2.2. The conjugacy classes and centralizers of elements

Lemma 2.3. Let N be a normal subgroup of G, t ∈ π(G) and x, y ∈ G.

(i) If gcd(o(x), o(y)) = 1 and xy = yx, then CG(xy) = CG(x) ∩ CG(y) � CG(x).

(ii) |CG(x)|t divides |N |t|CG/N (xN)|t and |clG/N (xN)| divides |clG(x)|.
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Table 1. Orders of some vanishing elements in finite simple groups of lie type (q = pk)

|Out(S)| S r m t

gcd(n, q − 1) · k · 2 PSLn(q)
n � 3
(n, q) �= (3, 2)
(3, 4), (6, 2)

p p(qn−2 − 1)/gcd(n, q − 1) t ∈ Znk(p)

gcd(2, q − 1) · k PSL2(q)
4 | (q − 1)
q �= 5

r ∈ Z1k(p) (q − 1)/2 t ∈ Z2k(p)

gcd(2, q − 1) · k PSL2(q)
4 | (q + 1)

r ∈ Z2k(p) (q + 1)/2 t ∈ Z1k(p)

k PSL2(2
k)

2k − 1 is not prime
r ∈ Z1k(2) 2k − 1 t ∈ Z2k(2)

k PSL2(2
k)

2k − 1 is prime
and k �= 2

r ∈ Z2k(2) 2k + 1 t ∈ Z1k(2)

2 PSL6(2) 2 2(24 − 1) 31
3 · 2 · 2 PSL3(4) 2 4 7

gcd(n, q + 1) · 2k PSUn(q)
n � 3
(n, q) �= (3, 2)

p p(qn−2 − (−1)n−2)/gcd(n, q + 1) t ∈ Znk(−p)

n � 3 or 2 � q:
gcd(2, q − 1) · k
otherwise: 2k

Bn(q), Cn(q)
n � 2
(n, q) �= (3, 2)
(2, 2)

p p(qn−1 + 1)/gcd(2, q − 1) t ∈ Z2nk(p)
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Table 1. Continued

|Out(S)| S r m t

1 B3(2) ∼= C3(2) 2 2(22 + 1) 7

n = 4:
gcd(2, q − 1)2 · k · 6
n > 4, even:
gcd(2, q − 1)2 · k · 2
n > 4, odd:
gcd(4, qn − 1) · k · 2

Dn(q)
n � 4
(n, q) �= (4, 2)

p p(qn−2 + 1)/gcd(4, qn − 1) t ∈ Z2(n−1)k(p)

6 D4(2) 2 2(22 + 1) 7

gcd(4, qn + 1) · k · 2 2Dn(q)
n � 4

p p(qn−2 + 1)/gcd(4, qn + 1) t ∈ Z2nk(p)

p �= 3: k
p = 3: 2k

G2(q)
q �= 2

p p(q + 1) t ∈ Z6k(p)

gcd(2, q) · k F4(q) p p(q + 1) t ∈ Z12k(p)
gcd(3, q − 1) · k · 2 E6(q) p p(q + 1) t ∈ Z12k(p)

gcd(3, q + 1) · k · 2 2E6(q) p p(q + 1) t ∈ Z18k(p)
gcd(2, q − 1) · k E7(q) p p(q + 1) t ∈ Z18k(p)
k E8(q) p p(q + 1) t ∈ Z30k(p)

3k 3D4(q) p p(q + 1) t ∈ Z12k(p)

2n + 1 2B2(2
2n+1)

n � 1
2 4 t ∈ Z2(2n+1)(2)

2n + 1 2G2(3
2n+1)

n � 1
3 6 t ∈ Z6(2n+1)(3)

2n + 1 2F4(2
2n+1)

n � 1
2 2(22n+1 − 1) t ∈ Z12(2n+1)(2)

2 2F4(2)′ 2 4 13
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Table 2. Orders of some vanishing elements in some finite simple groups

|Out(S)| S r m t |Out(S)| S r m t

1 M11 2 6 11 2 M12 3 6 11
1 J1 2 6 19 2 M22 3 6 11
1 M23 2 6 23 2 J2 5 15 7
2 J3 2 6 19 2 HS 5 15 11
1 McL 2 6 11 1 Ru 5 15 29
2 He 2 6 17 1 Co1 5 15 23
2 O′N 2 6 31 1 M24 5 15 23
1 Co2 2 6 23 1 BM 5 15 47
2 Fi22 2 6 13 2 Suz 7 21 13
2 HN 2 6 19 1 Co3 7 21 23
1 Ly 2 6 67
1 Th 2 6 31
1 Fi23 2 6 23
1 J4 2 6 43
2 Fi′24 2 6 29
1 M = F1 2 6 71

(iii) If gcd(o(xN), o(yN)) = 1 and N �= yN ∈ CG/N (xN), then there exist
x1, y1 ∈ G such that xN = x1N, o(xN) = o(x1), yN = y1N, o(yN) = o(y1)
and y1 ∈ CG(x1).

(iv) Let ∅ �= π ⊆ π(N). If 2 �∈ π and for every π-element x ∈ N − Z(N),
|clG(x)| = m, for some integer m, then N has nilpotent Hall π-subgroups.

(v) Let A and M be subgroups of G. If N � M and gcd(|A|, |N |) = 1, then
CM/N (AN/N) = CM (A)N/N and |CM (A)| = |CN (A)||CM/N (AN/N)|.

(vi) Let A be a t′-group of automorphisms of an abelian t-group T . Then, T =
CT (A) × [T, A].

Proof. The proof of (i) is straightforward. For proving (ii), let T1 ∈ Sylt(CG(x)).
Then, T1N/N � CG(x)N/N � CG/N (xN). Thus, |T1/(T1 ∩N)| | |CG/N (xN)|. So,
|CG(x)|t = |T1| divides |N |t|CG/N (xN)|t. The remaining claim of (ii) is straightfor-
ward. Also, (iii) and (iv) are taken from [1, lemma 2.5(iv) and theorem 1.1]. Finally,
(v) and (vi) follow from [3, lemma 2.7] and [9, lemma 5.2.3]. �

The following corollary follows immediately from lemma 2.3(v).

Corollary 2.4. Let {1} = L0 � L1 � · · · � Lt = L be a chief series of a finite
group L such that Lt−1 is a p-group, for some prime p. If B is a subgroup of L such
that p � |B|, then |CL(B)| = |CL1(B)||CL2/L1(BL1/L1)| · · · |CLt/Lt−1(BLt−1/Lt−1)|.

Lemma 2.5. Let p ∈ π(G) and let N be a Hall p′-subgroup of Fit(G). If for every
x ∈ G− Fit(G), |clG(x)| = m, for some positive integer m, then for every x ∈ G−
Fit(G), |clG/N (xN)|p = |m|p.
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Proof. Let x ∈ G− Fit(G) and P be a p-subgroup of G such that PN/N ∈
Sylp(CG/N (xN)). Then, xN ∈ CG/N (PN/N). By lemma 2.3(v), CG/N (PN/N) =
CG(P )N/N. So, x = yn, for some y ∈ CG(P ) and n ∈ N . As, N � Fit(G) and
x �∈ Fit(G), y �∈ Fit(G). Hence, |clG(y)| = m. Since P � CG(y), |m|p = |clG(y)|p �
|G|p/|P |. So, |clG/N (xN)|p = |G/N |p/|CG/N (xN)|p = |G/N |p/|PN/N | = |G|p/|P | �
|m|p. By lemma 2.3(ii), |clG/N (xN)|p � |m|p. Hence, |clG/N (xN)|p = |m|p. �

Lemma 2.6. Suppose that N �G is a p-group, for some prime p and G/N is a
non-abelian simple group such that the order of the Schur multiplier of G/N is
not divisible by p. Let {1} = M0 � M1 � · · · � Mt = N � G be a chief series of
G. If Mi/Mi−1 � Z(G/Mi−1), for every i ∈ {1, . . . , t}, then G = N × L, for some
subgroup L of G.

Proof. Let i be the smallest number such that 0 � i � t and G/Mi = N/Mi ×
M/Mi, for some subgroup Mi � M �G. Then, M/Mi

∼= G/N . Working towards
a contradiction, let i > 0. Then, (M/Mi−1)′ �� Mi/Mi−1, because M/Mi is non-
abelian. So, {Mi/Mi−1} �= (M/Mi−1)

′Mi/Mi−1
Mi/Mi−1

� M/Mi−1
Mi/Mi−1

∼= M/Mi
∼= G/N. Thus,

(M/Mi−1)
′Mi/Mi−1

Mi/Mi−1
= M/Mi−1

Mi/Mi−1
. Since Mi/Mi−1 is a minimal normal subgroup

of G/Mi−1, (M/Mi−1)′ ∩Mi/Mi−1 = Mi/Mi−1 or {Mi−1}. Therefore, either
(M/Mi−1)′ = M/Mi−1 or M/Mi−1 = (M/Mi−1)′ ×Mi/Mi−1. In the former case,
since Mi/Mi−1 � Z(M/Mi−1) and M/Mi

∼= G/N , we get that |Mi/Mi−1| divides
the order of the Schur multiplier of G/N , a contradiction, because Mi/Mi−1 is
a p-group. In the latter case, regarding M/Mi−1 ∩N/Mi−1 = Mi/Mi−1, we have
(M/Mi−1)′ ∩N/Mi−1 = (M/Mi−1)′ ∩Mi/Mi−1 = {Mi−1}. Also, (M/Mi−1)′ ∼=
G/N , hence |G/Mi−1| = |G/N ||N/Mi−1| = |(M/Mi−1)′||N/Mi−1|. Consequently,
G/Mi−1 = (M/Mi−1)′ ×N/Mi−1, a contradiction with minimality of i. Therefore,
i = 0. Now, the lemma follows. �

Lemma 2.7. Let N be a normal 3-subgroup of G such that G/N ∼= Alt5. If P ∈
Syl2(G) and M is a minimal normal subgroup of G such that M � N , then:

(i) P = {1, x, y, xy} such that o(x) = o(y) = o(xy) = 2;

(ii) M � Z(N) and M is an elementary abelian 3-group. Also, either M � Z(G)
or M = CM (P ) × CT (x) × CT (y) × CT (xy), where T = [P, M ];

(iii) NG(P ) contains a 3-element σ such that σ �∈ N, xσ = y, yσ = xy and (xy)σ =
x. In particular, CT (x)σ = CT (y), CT (y)σ = CT (xy) and CT (xy)σ = CT (x);

(iv) for every t ∈ P − {1}, u ∈ P − {1, t} and 1 �= n ∈ CT (t), we have nu = n2.

Proof. (i) follows immediately from the facts that P = P/(P ∩N) ∼= PN/N ∈
Syl2(G/N) and G/N ∼= Alt5. Since N is a 3-group and M �N , Z(N) ∩M �=
{1}. Hence, we get from minimality of M that M ∩ Z(N) = M . Consequently,
M � Z(N). Now, let M �� Z(G). Since M �G, P acts on M . By lemma 2.3(vi),
M = CM (P ) × T , where T = [M, P ]. If T = {1}, then M = CM (P ). So N, P �
CG(M). Therefore, {N} �= PN/N � CG(M)/N � G/N ∼= Alt5. By simplicity of
G/N , CG(M) = G, a contradiction with M �� Z(G). This guarantees that T �= {1}.
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We observe that P acts on T by conjugation and CT (x) × CT (y) × CT (xy) � T .
Taking into account the fact that gcd(|P |, |T |) = 1, Maschke’s theorem yields
the existence of a P -invariant subgroup T1 of T such that T = CT (x) × CT (y) ×
CT (xy) × T1. If T1 �= {1}, then since (CT (x) × CT (y) × CT (xy)) ∩ T1 = {1}, we get
that P acts fixed point freely on T1. Hence, P is cyclic, a contradiction. This shows
that T1 = {1} and M = CM (P ) × CT (x) × CT (y) × CT (xy), as needed in (ii).

Since G/N ∼= Alt5 and PN/N ∈ Syl2(G/N), we get that NG(P )N/N =
NG/N (PN/N) is a non-abelian group of order 12. Thus, NG(P ) contains a 3-
element σ such that σ �∈ N ∪ CG(P ). Hence, σ permutes the elements of P − {1}.
Without loss of generality, we can assume that xσ = y, yσ = xy and (xy)σ = x. As
σ ∈ NG(P ), we can see T σ = T . Hence, (iii) follows.

Finally, suppose that t ∈ P − {1} and u ∈ P − {1, t}. Let 1 �= n ∈ CT (t). Note
that nu ∈ CT u(tu) = CT (t) and regarding o(u) = 2, (nun)u = nun. Thus, nun ∈
CT (t) ∩ CT (u) = CT (P ) = CM (P ) ∩ T = {1}. This gives nun = 1. Since T � M ,
o(n) = 3. It follows that nu = n2, as desired in (iv). �

Proposition 2.8. Suppose that N is a normal subgroup of G which is a 3-group and
G/N ∼= Alt5. Let P ∈ Syl2(G), x5 ∈ G−N be of order 5 and let {1} = M0 � M1 �
· · · � Mt = N � G be a chief series of G. If for every y ∈ G−N, |clG(y)|3 = 3e,
for some positive integer e, then for every 1 �= x ∈ P , there is an 1 � i � t such
that Mi/Mi−1 �� Z(G/Mi−1) and |CMi/Mi−1(x5Mi−1)| � |CMi/Mi−1(xMi−1)|.

Proof. Set A = {1 � i � t : |CMi/Mi−1(x5Mi−1)| � |CMi/Mi−1(x2Mi−1)|}, for some
1 �= x2 ∈ P . Since G/N ∼= Alt5, |CG/N (x5N)|3 = |CG/N (x2N)|3 = 1. So, corollary
2.4 yields that A �= ∅. Working towards a contradiction, let for every i ∈
A, Mi/Mi−1 � Z(G/Mi−1), which gives that CMi/Mi−1(x5Mi−1) = Mi/Mi−1 =
CMi/Mi−1(x2Mi−1). If there exists an integer i ∈ {1, . . . , t}−A, then |CMi/Mi−1

(x5Mi−1)| < |CMi/Mi−1(x2Mi−1)|. Hence, corollary 2.4 forces |CG(x5)|3 < |CG(x2)|3,
a contradiction. Therefore, A = {1, . . . , t}. So, for every i ∈ {1, . . . , t}, Mi/Mi−1 �
Z(G/Mi−1). By lemma 2.6, G = M ×N , where M ∼= Alt5. Let x3 ∈M be of order
3. Then, x3 ∈ G−N and 3e = |clG(x3)|3 = 1. Hence, |clG(x5)|3 = 1. By lemma
2.3(v), 3 | |CG/N (x5N)|, a contradiction, because G/N ∼= Alt5. Thus, there is an
i ∈ A such that Mi/Mi−1 �� Z(G/Mi−1), as wanted. �

2.3. The conjugacy class sizes of elements outside a normal subgroup

Let N �G and G = N ∪ (∪iHi), where Hi < G are subgroups satisfying Hi ∩
Hj ⊆ N when i �= j. Then, G is said to be partitioned relative to N (see [13,
definition 1]).

Lemma 2.9 [13, proposition 4]. Suppose that N �G, G is partitioned relative to N
and G/N is abelian. Let p be a prime divisor of [G : N ] and a Sylow p-subgroup of
G be normal in G. Then, G/N is an elementary abelian p-group.

Now, we prove proposition 2.10 which is a key tool in the proof of theorem A.

Proposition 2.10. For an integer m > 1, let Gm = {g ∈ G : |clG(g)| = m}. Let N
be a normal subgroup of G and G = G/N . Suppose that x is the image of an element
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x of G in G and r is a divisor of o(x̄) such that o(x̄)/r is not prime. If for every
ȳ ∈ 〈x̄〉 with o(ȳ) � r, y ∈ Gm, then for every prime divisor p of o(x̄)/r, we have:

(i) the Sylow p-subgroups of N are abelian and CG(x) contains a Sylow
p-subgroup of N ;

(ii) |N |p|o(x̄)|p | |CG(x)|.

Proof. Let p be a prime divisor of o(x̄)/r and P ∈ Sylp(N). By the Frattini argu-
ment, G = NNG(P ). Thus, x = nx′, for some n ∈ N and x′ ∈ NG(P ). First suppose
that n = 1. Then, x ∈ NG(P ). Set T = 〈P, x〉. For every y ∈ T − 〈T ∩N, xo(x̄)/r〉,
let Cy = CT (CG(y)). If z ∈ T − 〈T ∩N, xo(x̄)/r〉, then there exist an element n ∈
T ∩N and an integer α such that 1 � α < o(x̄) and z = nxα. Taking into account
the facts that every element of 〈x̄〉 whose order divides r lies in 〈x̄o(x̄)/r〉 and
x̄α = z̄ �∈ 〈x̄o(x̄)/r〉, we get that o(x̄α) � r and the assumption yields that z ∈ Gm.
Hence, T − 〈T ∩N, xo(x̄)/r〉 ⊆ Gm. Thus, for every u, v ∈ T − 〈T ∩N, xo(x̄)/r〉,
|CG(u)| = |CG(v)|. If there exists an element w ∈ (Cu ∩ Cv) − (〈T ∩N, xo(x̄)/r〉),
then CG(u), CG(v) � CG(w). On the other hand, w ∈ T − 〈T ∩N, xo(x̄)/r〉. Hence,
w ∈ Gm. So, |CG(w)| = |CG(u)| = |CG(v)|. Therefore, CG(u) = CG(w) = CG(v).
Consequently, Cu = Cv. Now, we claim that T is abelian. If not, then for every y ∈
T − 〈T ∩N, xo(x̄)/r〉, Cy �= T , because Cy � Z(CG(y)) is abelian. This yields that T
is partitioned relative to 〈T ∩N, xo(x̄)/r〉. Since P � T ∩N , T/〈T ∩N, xo(x̄)/r〉 �
〈x〈T ∩N, xo(x̄)/r〉〉, which is abelian. Consequently, T/〈T ∩N, xo(x̄)/r〉 is abelian.
Also, x ∈ NG(P ) and hence, T � NG(P ). Thus, a Sylow p-subgroup of T is nor-
mal in T . By lemma 2.9, T/〈T ∩N, xo(x̄)/r〉 is an elementary abelian p-group.
This forces o(x̄)/r to be prime, a contradiction. Therefore, T is abelian. Thus,
P is abelian and x ∈ CG(P ), as desired in (i). Now let n �= 1. Set T1 = 〈P, x′〉
and H = 〈x′, N〉. Since x̄ = x̄′, substituting x with x′ in the above argument
shows that T1 is abelian. Also, T1 contains a Sylow p-subgroup of H. Hence, the
Sylow p-subgroups of H are abelian. On the other hand, x = x′n for some n ∈ N .
Thus, H = 〈x, N〉. Note that p | o(x̄). Let xp be the p-part of x. Then, CG(xp)
contains a Sylow p-subgroup of N . By our assumption, x, xp ∈ Gm and since,
CG(x) � CG(xp), we have CG(x) = CG(xp). Therefore, CG(x) contains a Sylow
p-subgroup of N . So, (i) follows. By (i), there exists a P ∈ Sylp(N) such that
T = 〈P, x〉 is abelian. Hence, T � CG(x). Therefore, |T |p = |N |p|o(x̄)|p | |CG(x)|,
as desired in (ii). �

2.4. Vanishing and non-vanishing elements

A χ ∈ Irr(G) is said to have q-defect zero for some prime q, if q � |G|/χ(1).

Lemma 2.11 [10, corollary 2]. Let G be non-abelian simple and q ∈ π(G). Then, G
has an irreducible character of q-defect zero unless one of the following holds:

(a) the prime q is 2 and G is isomorphic to M12, M22, M24, J2, HS, Ru, Co1 or
BM.

(b) q ∈ {2, 3} and G is isomorphic to Suz, Co3 or Altn for some n � 7.
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Lemma 2.12. Let N be a normal subgroup of G and p ∈ π(N). Suppose that N ∼=
S1 × · · · × Sl, where every Si is isomorphic to the non-abelian simple group S.

(a) If S has an irreducible character of p-defect zero, then every element of N of
order divisible by p is a vanishing element of G.

(b) Let the triple (S, r, t) be as in lemma 2.1(i), and tables I and II. If u ∈ {t, r},
then for every x ∈ N with u | o(x), x ∈ Van(G).

Proof. By our assumption, every Si has an irreducible character θi of p-defect zero,
because Si

∼= S. Thus, θ1 × · · · × θl ∈ Irr(N) is of p-defect zero. So, (a) follows from
[7, lemma 2.7]. Also, (b) can be concluded from lemma 2.11 and (a). �

In lemma 2.13, we have brought some known results:

Lemma 2.13. Let M and N be normal subgroups of G, g ∈ G and let p be a
prime.

(i) [5] If g �∈ Fit(G) is non-vanishing in G, then gcd(6, o(gFit(G))) �= 1.

(ii) [7, lemma 2.1] If gN ∈ Van(G/N), then gN ⊆ Van(G).

(iii) [7, proposition 2.5] If M ∩N = {1}, then (Van(G) ∩M)N ⊆ Van(G).

(iv) [7, lemma 2.4] Let M � N � G such that gcd(|M |, |N/M |) = 1 and M is
nilpotent. If CN (M) � M and N/M is abelian, then N −M ⊆ Van(G).

(v) [7, lemma 5.1] If N �= {1} is a p-group and G/N ∼= Alt7, then there are dis-
tinct primes q1, q2 ∈ π(Alt7) − {p} and qi-elements xiN ∈ Van(G/N) such
that CN (x1), CN (x2) �= {1}.

(vi) [14, lemma 2.3] Let x be a non-vanishing element in G. Then, x fixes some
member of each orbit of the action of G on Irr(N).

Now, we follow the ideas in the proof of [5, theorem A] to prove a new fact about
non-vanishing elements of a group lying in its normal solvable subgroup:

Proposition 2.14. Let N �= {1} be a normal solvable subgroup of G and, let x ∈ N
be non-vanishing in G. If o(xFit(G)) is odd in G/Fit(G), then x ∈ Fit(G).

Proof. The proof is by induction on |G|. For every non-trivial normal subgroup
M of G, NM/M is normal in G/M and since NM/M ∼= N/(N ∩M), NM/M is
solvable. By induction, for every {1} �= M �G, we get that xM ∈ Fit(G/M). Now
as mentioned in the proof of [5, theorem A], one of the following cases occurs:

Case 1. Let M1 �= M2 be minimal normal subgroups of G. Then, the function
φ : G→ Ĝ = G/M1 ×G/M2, defined by φ(g) = (gM1, gM2) for g ∈ G, is an injec-
tive homomorphism. By induction, φ(x) ∈ Fit(G/M1) × Fit(G/M2) = Fit(Ĝ). So,
φ(x) ∈ φ(G) ∩ Fit(Ĝ) � Fit(φ(G)). Since φ induces an isomorphism between G and
φ(G), we get that x ∈ Fit(G), as wanted.
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Case 2. Assume that G has the unique minimal normal subgroup M . By our
assumption on N , M � N . Hence, M � Fit(G). Let Φ(G) denote the Frattini
subgroup of G. If Φ(G) �= {1}, then xΦ(G) ∈ Fit(G/Φ(G)), by induction. How-
ever, Fit(G/Φ(G)) = Fit(G)/Φ(G). So, x ∈ Fit(G), as wanted. Now let Φ(G) = {1}
and x �∈M . By [12, III, lemma 4.4], M has a complement as H in G, because
M �G is abelian. Since CH(M) �G, the uniqueness of M forces CH(M) = {1}.
So, CG(M) = M . Let V be the group of the irreducible characters of M . We can
check that V is a faithful and irreducible G/M -module. On the other hand, by
lemma 2.13(vi), xM fixes some element of each orbit of G/M on V and by induc-
tion, xM ∈ Fit(G/M). So, [14, theorem 4.2] forces x2 ∈M . Since M � Fit(G),
x2 ∈ Fit(G). However, o(xFit(G)) is odd. Hence, x ∈ Fit(G), as desired. �

Lemma 2.15. Let N �G be a p-group, for some prime p and G/N be non-
abelian simple. If M is a minimal normal subgroup of G such that M � N and
χ ∈ Irr(M) − {1M}, then (i) M � Z(N) and (ii) if IG(χ) = G, then M � Z(G).

Proof. Since M �N and N is a p-group, {1} �= M ∩ Z(N) �G. As M is a min-
imal normal subgroup of G, M ∩ Z(N) = M . So, (i) follows. If IG(χ) = G, then
it is easy to see that M is a cyclic group of order p. By (i), M � Z(N). There-
fore, G/N

CG(M)/N
∼= G/CG(M) = NG(M)/CG(M) � Aut(M) is cyclic. Hence, G/N =

CG(M)/N . Consequently, CG(M) = G, so M � Z(G), as wanted in (ii). �

Proposition 2.16. Let N be a normal subgroup of G which is a 7-group and G/N ∼=
Alt7. If M is a minimal normal subgroup of G such that M � N and M �� Z(G),
then for every x ∈ G−N of order 3 or 6, x ∈ Van(G).

Proof. Let P ∈ Syl7(G) and 1M = λ1, . . . , λt be the representatives of the action of
P on Irr(M). If Oi is the P -orbit of λi, then 1 + Σt

i=2|Oi|λi(1)2 = Σλ∈Irr(M)λ(1)2 =
|M | ≡7 0. Thus, there exists an i > 1 such that 7 � |Oi| = [P : IP (λi)]. There-
fore, |Oi| = 1 and hence P � IG(λi). On the other hand, M � Z(N), by lemma
2.15(i). So, N � IG(λi). This yields that {N} �= PN/N � IG(λi)/N � G/N ∼=
Alt7. Lemma 2.15(ii) shows that IG(λi)/N < G/N ∼= Alt7. Note that the only max-
imal subgroup of Alt7 whose order is divisible by 7 is isomorphic to PSL2(7). This
signifies that

IG(λi)/N is isomorphic to a subgroup of PSL2(7). (2.1)

So, IG(λi)/N does not contain any element of order 6 and neither does IG(λi). It
follows from lemma 2.13(vi) that every element of G of order 6 is vanishing in G.

Now, let φ be a group isomorphism from G/N to Alt7. It is known that Alt7 con-
tains exactly two conjugacy classes containing 3-elements. Let φ(x3N) and φ(y3N)
be the representatives of these classes, for some x3N, y3N ∈ G/N of orders 3. Since
N is a 7-group, we can assume that o(x3) = o(y3) = 3. By [4], we can assume
that φ(x3N) ∈ Van(Alt7), φ(x3N) normalizes some Sylow 7-subgroup of Alt7 and
φ(y3N) does not normalize any Sylow 7-subgroup of Alt7. So,

x3N ∈ Van(G/N), (2.2)

x3N normalizes some Sylow 7-subgroup of G/N and y3N does not normalize any
Sylow 7-subgroup of G/N . By (2.1), IG(λi)/N is isomorphic to a subgroup of

https://doi.org/10.1017/prm.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.4


354 N. Ahanjideh

PSL2(7). However, PSL2(7) has only one conjugacy class containing 3-elements
and every element of this class normalizes some Sylow 7-subgroup of PSL2(7). Note
that a Sylow 7-subgroup of IG(λi)/N is a Sylow 7-subgroup of G/N . This shows
that no conjugate of y3N lies in IG(λi)/N and if IG(λi)/N contains a 3-element uN ,
then uN ∈ clG/N (x3N). This yields that no conjugate of y3 lies in IG(λi). Thus,
for every 3-element w ∈ G, either wN ∈ clG/N (x3N) or no conjugate of w lies in
IG(λi). In the former case, (2.2) and lemma 2.13(ii) show that w ∈ Van(G). In the
latter case, w ∈ Van(G), by lemma 2.13(vi). Now, the proposition follows. �

Proposition 2.17. Suppose that N is a normal 3-subgroup of G such that G/N ∼=
Alt5. Let Q ∈ Syl5(G) and M be a minimal normal subgroup of G such that M � N .
If M �� Z(G), then one of the following holds:

(i) there exist an element 1 �= n ∈ CM (Q) and a character ψ ∈ Irr(G) such that
ψ(n) = 0;

(ii) NG(Q) contains a non-trivial 2-element x such that |CM (Q)| < |CM (x)|.
Proof. Since |Q| = 5, there is an element x5 ∈ G−N such that o(x5) = 5 and Q =
〈x5〉. Also, regarding G/N ∼= Alt5, we get that NG/N (QN/N) = NG(Q)N/N is a
dihedral group of order 10. Thus, NG(Q) contains an element x such that o(x) = 2
and x �∈ N ∪ CG(Q). Let P ∈ Syl2(G) such that x ∈ P . By lemma 2.7 (i,iii), P =
{1, x, y, xy} such that o(y) = o(xy) = 2 and there is a 3-element σ ∈ NG(P ) −N
such that xσ = y, yσ = xy, (xy)σ = x. Put Ḡ = G/N and for every H � G and
g ∈ G, let H̄ = HN/N and ḡ denote the image of g in Ḡ. As Ḡ ∼= Alt5, we observe
that

Ḡ = 〈x̄5〉NḠ(P̄ ) = 〈x̄5〉P̄ 〈σ̄〉. (2.3)

Since Ḡ ∼= Alt5, (2 5)(3 4) ∈ NAlt5(〈(1 2 3 4 5)〉), U = 〈(2 5)(3 4), (2 3)(4 5)〉 ∈
Syl2(Alt5) and (2 3 4) ∈ NAlt5(U), there exists a group isomorphism φ from
Ḡ to Alt5 which sends x̄5 to (1 2 3 4 5), x̄ to (2 5)(3 4), ȳ to (2 3)(4 5)
and σ̄ to (2 3 4). Let ū ∈ 〈x̄5〉P̄ . If o(ū) = t ∈ {2, 3, 5}, then o(φ(ū)) =
t. So, considering the t-elements of Alt5 lying in φ(〈x̄5〉P̄ ) shows that if
t = 2, then φ(ū) ∈ NAlt5(〈(1 2 3 4 5)〉) − 〈(1 2 3 4 5)〉 = Nφ(Ḡ)(〈φ(x̄5)〉) −
〈φ(x̄5)〉 or φ(ū) ∈ {(2 3)(4 5), (2 4)(3 5)} = {φ(ȳ), φ(x̄ȳ)}, if t = 3, then φ(ū) ∈
{(1 2 4), (1 5 3), (1 3 2), (1 4 5)} and if t = 5, then φ(ū) ∈ 〈(1 2 3 4 5)〉 = 〈φ(x̄5)〉 or
φ(ū) ∈ {(1 3 4 2 5), (1 4 3 5 2), (1 2 5 4 3), (1 5 2 3 4)}. Thus, if t = 3, then φ(ū−1) ∈
{(1 4 2) = φ(x̄3

5x̄σ̄
2), (1 3 5) = φ(x̄2

5ȳσ̄
2), (1 2 3) = φ(x̄5ȳσ̄), (1 5 4) = φ(x̄4

5σ̄)}.
Hence, ū−1 ∈ {x̄3

5x̄σ̄
2, x̄2

5ȳσ̄
2, x̄5ȳσ̄, x̄

4
5σ̄}. Consequently, ū−1 �∈ 〈x̄5〉P̄ . Similarly, if

t = 5, then either ū−1 �∈ 〈x̄5〉P̄ or ū ∈ 〈x̄5〉. In addition, we get that

if ū, ū−1 ∈ 〈x̄5〉P̄ , then either o(ū) = 5 and ū ∈ 〈x̄5〉 (2.4)

or o(ū) = 2 and ū ∈ {x̄i
5x̄, ȳ, x̄ȳ : 1 � i � 5}.

On the other hand, by lemma 2.7(ii,iii),

M = CM (P ) × CT (x) × CT (y) × CT (xy), (2.5)

CT (x)σ = CT (y), CT (y)σ = CT (xy), CT (xy)σ = CT (x), (2.6)
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where T = [M, P ]. If CT (x) = {1}, then (2.6) shows that CT (y) = CT (xy) =
{1}. Thus, M = CM (P ). So, P � CG(M). However, N � CG(M), by lemma
2.15(i). Hence, {1̄} �= P̄ � CG(M)/N �G/N = φ−1(Alt5). Therefore, CG(M) = G,
because G/N is simple. Consequently, M � Z(G), a contradiction. Thus, CT (x) �=
{1}. By our assumption, M is an elementary abelian 3-group, so is CT (x). Hence,
there exist subgroups A1, . . . , At of CT (x) such that |A1| = · · · = |At| = 3 and

CT (x) = A1 × · · · ×At, CT (y) = B1 × · · · ×Bt, CT (xy) = C1 × · · · × Ct, (2.7)

where Bi = Aσ
i and Ci = Aσ2

i , for every 1 � i � t, by (2.6). Let n ∈M . By (2.5),

n = n1n2n3n4, (2.8)

where n1 ∈ CM (P ), n2 ∈ CT (x), n3 ∈ CT (y) and n4 ∈ CT (xy). Also, by (2.7),

for every j ∈ {2, 3, 4}, nj = nj1 . . . njt, (2.9)

where for every 1 � i � t, n2i ∈ Ai, n3i ∈ Bi and n4i ∈ Ci.
If CM (x5) = {1}, then |CM (x)| � |CT (x)| > 1 = |CM (x5)|. So, (ii) follows. Next,

let 1 �= n ∈ CM (x5). For every 1 � i � 5, (2.8) and lemma 2.7(iii,iv) yield that

nxi
5 = n; nxi

5x = n1n2n
2
3n

2
4; n

xi
5y = n1n

2
2n3n

2
4; n

xi
5xy = n1n

2
2n

2
3n4; (2.10)

nxi
5σ = nσ

1n
σ
4n

σ
2n

σ
3 ; nxi

5xσ = nσ
1 (n2

4)
σnσ

2 (n2
3)

σ; nxi
5yσ = nσ

1 (n2
4)

σ(n2
2)

σ(n3)σ;

nxi
5xyσ = nσ

1n
σ
4 (n2

2)
σ(n2

3)
σ; nxi

5σ2
= nσ2

1 nσ2

3 nσ2

4 nσ2

2 ; nxi
5xσ2

= n1(n2
3)

σ2
(n2

4)
σ2

(n2)σ2
;

nxi
5yσ2

= n1(n3)σ2
(n2

4)
σ2

(n2
2)

σ2
; nxi

5xyσ2
= n1(n2

3)
σ2

(n4)σ2
(n2

2)
σ2
.

Let check one of the above equalities in details. For instance, nxi
5xyσ =

(xi
5xyσ)−1n(xi

5xyσ) = ((xy)−1((xi
5)

−1nxi
5)xy)

σ = ((xy)−1nxy)σ = (n1n
2
2n

2
3n4)σ

= nσ
1n

σ
4 (n2

2)
σ(n2

3)
σ. Similarly, we can check the other ones. Note that

for every i ∈ {2, 3, 4}, nσ
i = nσ

i1n
σ
i2 . . . n

σ
it, (2.11)

by (2.7). We continue the proof in the following cases:

Case 1. Assume that n2 = n3 = n4 = 1. Then, n = n1 ∈ CM (P ). Regarding the
facts that n ∈ CM (x5) and M � Z(N), we have P, 〈x5〉, N � GG(n). Therefore,
P̄ , 〈x̄5〉 � CG(n)/N � G/N = φ−1(Alt5). Since the only subgroup of Alt5 whose
order is divisible by 20 is Alt5, we get that CG(n)/N = G/N . Thus, CG(n) = G.
Consequently, n ∈ Z(G). Therefore, M = 〈n〉 � Z(G), a contradiction.

Case 2. Assume that n2i �= 1, for some 1 � i � t. Without loss of generality, let
i = 1. Since x ∈ NG(〈x5〉) and n ∈ CM (x5), we have nx ∈ CM (〈x5〉)x = CM (〈x5〉) =
CM (x5). By lemma 2.7(iv), nx

3 = n2
3 and nx

4 = n2
4. Thus, (nx)31 = n2

31 and (nx)41 =
n2

41. Also, nx
2 = n2, because n2 ∈ CT (x). Hence, (nnx)21 = (n21)2 �= 1, (nnx)31 =

n31(n31)2 = 1 and (nnx)41 = n41(n41)2 = 1, because M is an elementary abelian
3-group and n21, n31, n41 ∈M . As 1 �= nnx ∈ CM (x5), by substituting n with nnx,
we can assume that n31 = n41 = 1. Set χ = 1CM (P ) × 1CT (x) × (θ3 × 1B2 × · · · ×
1Bt

) × (θ4 × 1C2 × · · · × 1Ct
), where θ3 ∈ Irr(B1) − {1B1}, θ4 ∈ Irr(C1) − {1C1}
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and θ4(mσ) = θ3(m2), for every m ∈ B1. Then, 1M �= χ ∈ Irr(M). As M � Z(N),
N � IG(χ). Let u ∈ IG(χ) −N . Then ū ∈ Ḡ. By (2.3), ū = x̄i

5x̄
j ȳkσ̄l, for some

non-negative integers i, j, k and l. Working towards a contradiction, let l �= 0.
Since o(φ(σ̄)) = 3, o(σ̄) = 3 and hence, we can assume that l ∈ {1, 2}. Also,
j, k ∈ {0, 1}. Regarding u ∈ IG(χ), u−1 ∈ IG(χ). Therefore, χu−1

(n) = χ(n). Also,
n ∈M � Z(N). By (2.10), χu−1

(n) = χ(u−1nu) = χ(σ−l(n1n
2k

2 n2j

3 n
2|j−k|
4 )σl), so

χu−1
(n) =

{
χ(nσ

1 (n2|j−k|
4 )σ(n2k

2 )σ(n2j

3 )σ), if l = 1
χ(nσ2

1 (n2j

3 )σ2
(n2|j−k|

4 )σ2
(n2k

2 )σ2
), if l = 2

. (2.12)

It follows that either l = 1 and χu−1
(n) = θ3((n2k

21)σ)θ4((n2j

31)
σ) or l = 2

and χu−1
(n) = θ3((n2|j−k|

41 )σ2
)θ4((n2k

21)σ2
). Since n31 = n41 = 1, n21 �= 1 and

θ4((n2k

21)σ2
) = θ3(((n2k

21)σ)2), we have χu−1
(n) = θ3((n2k

21)σ)l �= 1. However, χ(n) =
θ3(n31)θ4(n41) = 1, a contradiction. This forces ū ∈ 〈x̄5〉P̄ . Consequently,

IG(χ)/N ⊆ 〈x̄5〉P̄ . (2.13)

Also, for 1 �= γ ∈ B1 and 1 �= β ∈ C1, χxy(γ) = χx(γ) = χ(γ2) = θ3(γ2) �= θ3(γ) =
χ(γ) and χy(β) = χ(β2) = θ4(β2) �= θ4(β) = χ(β). Therefore,

x, y, xy �∈ IG(χ). (2.14)

Now, assume that u ∈ IG(χ). Then, ū, ū−1 ∈ IG(χ)/N . So, in view of (2.4), (2.13)
and (2.14), one of the following sub-cases holds:

Sub-case a. Assume that o(ū) = 2. If 4 or 5 | |IG(χ)/N |, then taking
the elements mentioned in (2.4) into account, we conclude that IG(χ)/N =
P̄ or IG(χ)/N = NḠ(〈x̄5〉) = 〈x̄5〉〈x̄〉, contradicting (2.14). Thus, |IG(χ)/N | =
o(ū) = 2 and ū ∈ {x̄i

5x̄ : 1 � i � 5}. So, B = {(xj
5y

lσk)−1 : 1 � j � 5, 0 � l �
1 and 0 � k � 2} is a transversal set of IG(χ) in G. Hence, for every
ψ ∈ Irr(G|χ), ψ(n) = eΣg∈Bχ(ng−1

) = eΣ5
i=1[χ(n(xi

5)) + χ(n(xi
5σ)) + χ(n(xi

5σ2))] +
eΣ5

i=1[χ(n(xi
5y)) + χ(n(xi

5yσ)) + χ(n(xi
5yσ2))], for some positive integer e. By (2.10),

ψ(n) = eΣ5
i=1[χ(n) + χ(nσ

1n
σ
4n

σ
2n

σ
3 ) + χ(nσ2

1 nσ2

3 nσ2

4 nσ2

2 )] + eΣ5
i=1[χ(n1n

2
2n3n

2
4) +

χ(n1(n2
4)

σ(n2
2)

σnσ
3 ) + χ(n1n

σ2

3 (n2
4)

σ2
(n2

2)
σ2

)]. Thus, ψ(n) = eΣ5
i=1[1 + θ3((n21)σ)θ4

((n31)σ) + θ3((n41)σ2
)θ4((n21)σ2

)] + eΣ5
i=1[θ3(n31)θ4(n2

41) + θ3((n2
21)

σ)θ4((n31)σ) +
θ3((n2

41)
σ2

)θ4((n2
21)

σ2
)] = 5e[2(1 + θ3((n21)σ) + θ3(((n21)σ)2))]. Note that n21 �= 1.

Therefore, θ3((n21)σ) �= 1 is a primitive 3rd root of unitary. Hence,

θ3((n21)σ)2 + θ3((n21)σ) + 1 = 0 (2.15)

It follows that ψ(n) = 0, as wanted in (i).

Sub-case b. Assume that IG(χ)/N � 〈x̄5〉. So, either IG(χ)/N = 〈x̄5〉 or
IG(χ) = N . If IG(χ)/N = 〈x̄5〉, let b = 1 and if IG(χ) = N , let b = 5. So, B =
{(xi

5x
jykσl)−1 : 0 � i � b− 1, j, k ∈ {0, 1}, l ∈ {0, 1, 2}} is a transversal set of

IG(χ) in G. Hence, for every ψ ∈ Irr(G|χ), ψ(n) = eΣg∈Bχg(n) = eΣb−1
i=0 [χ(nxi

5) +
χ(nxi

5σ) + χ(nxi
5σ2

)] + eΣb−1
i=0 [χ(nxi

5x) + χ(nxi
5xσ) + χ(nxi

5xσ2
)] + eΣb−1

i=0 [χ(nxi
5y) +
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χ(nxi
5yσ) + χ(nxi

5yσ2
)] + eΣb−1

i=0 [χ(nxi
5xy) + χ(nxi

5xyσ) + χ(nxi
5xyσ2

)], for some posi-
tive integer e. By (2.10) and (2.15), we can check at once that ψ(n) = 4be[1 +
θ3(nσ

21) + θ3(nσ
21)

2] = 0, as wanted in (i).

Case 3. Assume that n2 = 1 and there exists an 1 � i � t such that n3i �= 1 and
n4i = 1. Without loss of generality, let i = 1 and set χ = 1CM (P ) × (θ2 × 1A2 × · · · ×
1At

) × 1CT (y) × (θ4 × 1C2 × · · · × 1Ct
), where θ2 ∈ Irr(A1) − {1A1}, θ4 ∈ Irr(C1) −

{1C1} and θ4(mσ2
) = θ2(m2), for every m ∈ A1. Also, if n2 = 1 and there exists

an 1 � i � t such that n4i �= 1 and n3i = 1, then without loss of generality, let i =
1 and set χ = 1CM (P ) × (θ2 × 1A2 × · · · × 1At

) × (θ3 × 1B2 × · · · × 1Bt
) × 1CT (xy),

where θ2 ∈ Irr(A1) − {1A1}, θ3 ∈ Irr(B1) − {1B1} and θ3(mσ) = θ2(m2), for every
m ∈ A1. Then, 1M �= χ ∈ Irr(M) and arguing by analogy as Case 2 shows that for
every ψ ∈ Irr(G|χ), ψ(n) = 0, as wanted in (i).

Case 4. Assume that CM (x5) does not contain any element satisfying cases 1–3.
Let α, β ∈ CM (x5). By (2.8), α = α1α2α3α4 and β = β1β2β3β4, where α1, β1 ∈
CM (P ), α2, β2 ∈ CT (x), α3, β3 ∈ CT (y) and α4, β4 ∈ CT (xy) are uniquely deter-
mined. (2.9) shows that for every j ∈ {2, 3, 4}, αj = αj1 . . . αjt and βj = βj1 . . . βjt,
where for every 1 � i � t, α2i, β2i ∈ Ai, α3i, β3i ∈ Bi and α4i, β4i ∈ Ci. By our
assumption, α2 = β2 = 1, α3, β3, α4, β4 �= 1 and for every 1 � i � t, α3i �= 1 if
and only if α4i �= 1. Also, β3i �= 1 if and only if β4i �= 1. If α3i = β3i �= 1 and
α4i = β2

4i �= 1, for some 1 � i � t, then (αβ)3i = α3iβ3i = α2
3i �= 1 and (αβ)4i =

α4iβ4i = α3
4i = 1. However, αβ ∈ CM (x5). So, αβ satisfies the assumption of case

3, a contradiction. This shows that for an element α ∈ CM (x5) and an integer
1 � i � t, if α3i �= 1, then α4i �= 1 and

for every β ∈ CM (x5), (β3i, β4i) ∈ {(1, 1), (α3i, α4i), (α2
3i, α

2
4i)}. (2.16)

Now, working towards a contradiction, let α1 �= 1. Then, since x ∈ NG(〈x5〉), αx ∈
CM (x5)x = CM (x5). By lemma 2.7(iv), αx = α1α2α

2
3α

2
4. Thus, ααx = α2

1α
2
2α

3
3α

3
4.

Note that α2 = 1 and o(α3) = o(α4) = 3. Therefore, 1 �= ααx = α2
1 ∈ CM (P ). On

the other hand, α, αx ∈ CM (x5). So, 1 �= αxα = α2
1 ∈ CM (x5) ∩ CM (P ), which is

a contradiction with case 1. This shows that for every α ∈ CM (x5), α1 = 1. It
follows from (2.16) that |CM (x5)| � |CT (y)|. If CM (P ) �= {1}, then we get that
|CM (x5)| < |CM (P )||CT (y)| = |CM (P )||CT (x)| = |CM (x)|, so (ii) follows. Next,
let CM (P ) = {1}. Then, T = M = CM (x) × CM (y) × CM (xy) and |CM (x5)| �
|CT (y)| = |CM (y)| = |CM (x)|, by (2.16). If |CM (x5)| < |CM (x)|, then (ii) follows.
Otherwise, |CM (x5)| = |CM (x)|. If |CM (x)| = 3, then |M | = 27 and |[M, 〈x5〉]| = 9.
However, 〈x5〉 acts fixed point freely on [M, 〈x5〉]. So, 5 | |[M, 〈x5〉]| − 1 = 8, which
is impossible. This forces |CM (x)| � 9. Consequently, t � 2 (t was fixed in (2.7)).
Since |CM (x5)| = |CM (x)| = |CM (y)|, we get from (2.16) that for every 1 � i � t
and m ∈ Bi, there exists an element α ∈ CM (x5) such that α3i = m. So, for 1 �= n ∈
CM (x5), we can assume that n31, n32 �= 1. Consequently, n41, n42 �= 1. As was men-
tioned above, n2 = 1. Set χ = 1CM (x) × (θ3 × θ′3 × 1B3 × · · · × 1Bt

) × (θ4 × θ′4 ×
1C3 × · · · × 1Ct

), where θ3 ∈ Irr(B1) − {1B1}, θ′3 ∈ Irr(B2) − {1B2}, θ4 ∈ Irr(C1) −
{1C1} and θ′4 ∈ Irr(C2) − {1C2} such that θ′3(n32) = θ3(n31)2 and θ′4(n42) =
θ4(n41)2. Moreover, suppose that θ4(n41) = θ3(n31). Then, 1M �= χ ∈ Irr(M). Note
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that n31 and n32 are generators of B1 and B2, respectively. Also, n41 and n42 are
generators of C1 and C2, respectively.

In the following, we first assume that (nσ
31, n

σ
32) = (n41, n42) or (nσ

31, n
σ
32) =

(n2
41, n

2
42). If (nσ

31, n
σ
32) = (n41, n42), let u = 1 and otherwise let u = 2. We note

that N � IG(χ). By (2.10), we can check that for every g ∈ G, χ(ng) = 1, for
instance, χ(nxi

5xσ2
) = χ((n2

3)
σ2

(n2
4)

σ2
nσ2

2 ) = [θ3((n2
41)

σ2
)θ′3((n

2
42)

σ2
)][θ4(1)θ′4(1)] =

θ3(n31)6u = 1. So, for every ψ ∈ Irr(G|χ), ψ(n) = ψ(1). Therefore, 1 �= n ∈ kerψ ∩
M . Thus, {1} �= M ∩ kerψ �G. Since M is a minimal normal subgroup of G,
M ∩ kerψ = M . Therefore, ψM = ψ(1)1M , a contradiction.

Next, suppose that (nσ
31, n

σ
32) ∈ {(n41, n

2
42), (n2

41, n42)}. If u = xi
5x

jykσlh ∈
IG(χ), where h ∈ N , i ∈ {1, . . . , 5}, j, k ∈ {0, 1} and l ∈ {1, 2}, then u−1 ∈ IG(χ)
and we get from (2.12) that if l = 1, then χu−1

(n) ∈ {(θ4(n41)2)2
j

, (θ4(n41))2
j}

and if l = 2, then χu−1
(n) ∈ {(θ3(n31)2)2

|j−k|
, (θ3(n31))2

|j−k|}. Hence, χu−1
(n) �=

1. However, χ(n) = 1, a contradiction. Consequently, ū ∈ 〈x̄5〉P̄ . Therefore,
IG(χ)/N ⊆ 〈x̄5〉P̄ . Let β = n41 ∈ C1 − {1}. By lemma 2.7(iv), χ(β) = θ4(n41),
χx−1

(β) = χ(βx) = χ(β2) = θ4(n41)2 and χy−1
(β) = χ(βy) = χ(β2) = θ4(n41)2.

Since n41 �= 1, θ4(n41)2 �= θ4(n41). Consequently, χx−1
, χy−1 �= χ. Hence, x, y �∈

IG(χ). By (2.16) and since |CM (y)| = |CM (x5)|, we can assume that there
exists an element α ∈ CM (x5) such that α2 = 1, α31 = n31 �= 1 and for every
j ∈ {2, . . . , t}, α3j = 1. Then, (2.16) guarantees that α41 = n41 �= 1 and for
every j ∈ {2, . . . , t}, α4j = 1. However, χ(α) = θ3(α31)θ4(α41) = θ3(n31)θ4(n41) =
θ3(n31)2 and χ(xi

5x)−1
(α) = χ(αxi

5x) = χ(α2α
2
3α

2
4) = θ3(α2

31)θ4(α
2
41) = θ3(n31)4 =

θ3(n31). Since θ3(n31) �= 1, χ(xi
5x)−1

(α) �= χ(α). This shows that xi
5x �∈ IG(χ).

Taking the elements mentioned in (2.4) into account, we conclude that
IG(χ)/N � 〈x̄5〉. So, either IG(χ)/N = 〈x̄5〉 or IG(χ) = N . If IG(χ)/N = 〈x̄5〉,
let b = 1 and if IG(χ) = N , let b = 5. So, B = {(xi

5x
jykσl)−1 : 0 � i � b−

1, j, k ∈ {0, 1}, l ∈ {0, 1, 2}} is a transversal set of IG(χ) in G. Hence, for
every ψ ∈ Irr(G|χ), ψ(n) = eΣg∈Bχg(n) = eΣb−1

i=0 [χ(nxi
5) + χ(nxi

5σ) + χ(nxi
5σ2

)] +
eΣb−1

i=0 [χ(nxi
5x) + χ(nxi

5xσ) + χ(nxi
5xσ2

)] + eΣb−1
i=0 [χ(nxi

5y) + χ(nxi
5yσ) + χ(nxi

5yσ2
)] +

eΣb−1
i=0 [χ(nxi

5xy) + χ(nxi
5xyσ) + χ(nxi

5xyσ2
)], for some positive integer e. We note

that χ(n2n3n4) = χ(n2n
2
3n

2
4) = χ(n2

2n3n
2
4) = χ(n2

2n
2
3n4) = 1. Thus, if (nσ

31, n
σ
32) =

(n41, n
2
42), then by (2.10), ψ(n) = eΣb−1

i=0 [1 + θ3(n31)2 + θ3(n31)2] + eΣb−1
i=0 [1 +

θ3(n31) + θ3(n31)] + eΣb−1
i=0 [1 + θ3(n31) + θ3(n31)2] + eΣb−1

i=0 [1 + θ3(n31)2 + θ3(n31)]
= 4be(1 + θ3(n31) + θ3(n31)2). Also, if (nσ

31, n
σ
32) = (n2

41, n42), then similarly
ψ(n) = 4be(1 + θ3(n31) + θ3(n31)2). However, n31 �= 1. So, o(θ3(n31)) = 3. There-
fore, 1 �= θ3(n31) is a primitive third root of unitary. It follows that (θ3(n31))2 +
θ3(n31) + 1 = 0. Thus, we get that ψ(n) = 4be(1 + θ3(n31) + θ3(n31)2) = 0, as
desired in (i). Now, the proof is complete. �

3. Proof of theorem a

Now, we are going to prove theorem A. Working towards a contradiction, suppose
that G is non-solvable. Let M be the maximal normal solvable subgroup of G
and let N/M be a minimal normal subgroup of G/M . Then, Fit(G) = Fit(M)
and N/M = S1/M × · · · × St/M such that S1/M, . . . , St/M are isomorphic to a
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fixed non-abelian simple group S. Let α be the size of vanishing classes of G. Set
Gα = {g ∈ G : |clG(g)| = α}. By (∗), Van(G) ⊆ Gα. We are going to complete the
proof in the following steps:

Step 1. t = 1.

Proof. Working towards a contradiction, let t �= 1. Let π1 ⊆ π(S) such that if S
is one of the groups mentioned in lemma 2.11(b), then π1 = {2, 3} and other-
wise, π1 = {2}. Fix π = π(S) − π1. Let p, q ∈ π be distinct. Suppose that i, j ∈
{1, . . . , t} and i �= j. Then, for every non-trivial p-element xM ∈ Si/M and q-
element yM ∈ Sj/M , xM, yM, xyM ∈ Van(G/M), by lemmas 2.11 and 2.12(a).
Thus, xM, yM, xyM ⊆ Van(G) ⊆ Gα, by lemma 2.13(ii). So, for every m ∈M ,
proposition 2.10 shows that CG(xym) contains a Sylow p-subgroup and a Sylow
q-subgroup of M , which are abelian. Let P ∈ Sylp(Fit(G)) and Q ∈ Sylq(Fit(G)).
Since Fit(G) � M , we get that

P,Q � CG(xym), for every m ∈M. (3.1)

Thus, P, Q � Z(M). Let F0 be a Hall π-subgroup of Fit(G). Since p is an arbi-
trary element of π, we get that F0 � Z(M). By lemma 2.3(iii), there exist a
p-element x1 ∈ N −M , a q-element y1 ∈ N −M and m1, m

′
1, m

′′ ∈M such that
x1y1 = y1x1, xm1 = x1, ym′

1 = y1 and xym′′ = x1y1. Lemma 2.3(i) and (3.1) yield
that P, Q � CG(xym′′) = CG(x1y1) = CG(x1) ∩ CG(y1). So P, Q � CG(x), CG(y),
because P, Q � Z(M), xm1 = x1 and ym′

1 = y1. However, p, q ∈ π and i, j ∈
{1, . . . , t} are arbitrary. Thus, for every r ∈ π and every r-element z ∈ N −M ,
F0 � CG(z). Hence, lemma 2.3(i) forces the π-elements of N −M to centralize F0.
Next, let zM be a π1-element of Si/M . By lemma 2.3(iii), there exist a q-element
y2 ∈ N −M , a π1-element z1 ∈ N −M and u, u′ ∈M such that zu = z1, yu′ = y2
and y2z1 = z1y2. By lemmas 2.11, 2.12(a) and 2.13(ii), z1y2, y2 ∈ Van(G) ⊆ Gα.
Therefore, CG(y2) = CG(y2z1) � CG(z1), by lemma 2.3(i). Consequently, F0 �
CG(z1). However, F0 � Z(M) and zu = z1. So, F0 � CG(z). Since i ∈ {1, . . . , t}
is arbitrary, we have that π1-elements of N −M centralize F0. Thus, F0 � Z(N).
On the other hand, every π-element w ∈ N − Fit(G) is vanishing in G, by lemma
2.12(a) and proposition 2.14. Therefore, |clG(w)| = α. It follows from lemma 2.3(iv)
that N contains a nilpotent Hall π-subgroup, so does N/M , contradicting lemma
2.1(iv). �

Step 2. CG/M (N/M) = {M}.
Proof. Working towards a contradiction, let CG/M (N/M) �= {M} and let C/M
be a minimal normal subgroup of G/M such that C/M � CG/M (N/M). By step
1, N/M and C/M are isomorphic to the simple groups S1 and S2, respec-
tively. Let p ∈ π(S1) − π1 and p �= q ∈ π(S2) − π2, where for i ∈ {1, 2}, if Si is
one of the groups mentioned in lemma 2.11(b), then πi = {2, 3} and otherwise,
πi = {2}. If π1 ∪ π2 = {2, 3}, then without loss of generality, we can assume that
π1 = {2, 3}. Set π = π(N/M) − π1. Let M �= xM ∈ N/M be a p-element and
M �= yM ∈ C/M be a q-element. Then, lemmas 2.11, 2.12(a) and 2.13(ii) guaran-
tee that xM, yM, xyM ⊆ Van(G) ⊆ Gα. Thus, for every m ∈M , proposition 2.10
shows that CG(xym) contains an abelian Sylow p-subgroup and an abelian Sylow

https://doi.org/10.1017/prm.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.4


360 N. Ahanjideh

q-subgroup of M . Let P ∈ Sylp(Fit(G)) and Q ∈ Sylq(Fit(G)). Since Fit(G) � M ,
we get that

P,Q � CG(xym), for every m ∈M. (3.2)

Thus, P, Q � Z(M). Let F0 be a Hall π-subgroup of Fit(G). Since p is an arbitrary
element of π, we get that F0 � Z(M). By lemma 2.3(iii), there exist a p-element
x1 ∈ N −M , a q-element y1 ∈ C −M and m1, m

′
1, m

′′ ∈M such that x1y1 =
y1x1, xm1 = x1, ym′

1 = y1 and xym′′ = x1y1. Hence, lemma 2.3(i) and (3.2) give
that P, Q � CG(xym′′) = CG(x1y1) = CG(x1) ∩ CG(y1). So P, Q � CG(y), CG(x),
because P, Q � Z(M), xm1 = x1 and ym′

1 = y1. Since p ∈ π is arbitrary, we get
that F0 � CG(y). Consequently, F0 � CG(y1). However, x1y1, x1, y1 ∈ Van(G) ⊆
Gα. Thus, |CG(x1)| = |CG(x1y1)| = |CG(y1)|. It follows from lemma 2.3(i) that
F0 � CG(y1) = CG(x1y1) = CG(x1). Since F0 � Z(M) and xm1 = x1, we get that
F0 � CG(x). Regarding the fact that p ∈ π is arbitrary, we conclude that the π-
elements of N −M centralize F0. Now, let M �= zM be a π′-element of N/M .
Without loss of generality, we can assume that q �∈ π(S1) − π. By lemmas 2.11,
2.12(a) and 2.13(ii,iii), yM, yzM ⊆ Van(G). On the other hand, lemma 2.3(iii)
forces to exist a q-element y2 ∈ C −M , a π′-element z1 ∈ N −M and u, u′ ∈M
such that y2z1 = z1y2, zu = z1 and yu′ = y2. Then, y2, y2z1 ∈ Van(G) ⊆ Gα. Thus
|CG(y2z1)| = |CG(y2)|. So, lemma 2.3(i) guarantees that CG(y2) = CG(y2z1) �
CG(z1). As, F0 � CG(y), Z(M) and yu′ = y2, we have F0 � CG(y2) � CG(z1).
However, zu = z1 and F0 � Z(M). Hence, F0 � CG(z). This forces F0 � Z(N).
On the other hand, every π-element w ∈ N − Fit(G) is vanishing in G, by lemmas
2.11, 2.12(a) and 2.13(ii), and proposition 2.14. Therefore, |clG(w)| = α. So, lemma
2.3(iv) yields that N contains a nilpotent Hall π-subgroup, so does N/M . This is
a contradiction with lemma 2.1(iv). �

Step 3. G/M ∼= Alt5 or Alt7.

Proof. By steps 1 and 2, N/M ∼= S is non-abelian simple and G/M � Aut(N/M).
Fix N̄ = N/M and Ḡ = G/M . For x ∈ G, let x̄ be the image of x in Ḡ.

a. Let S �∼= Alt5, M22 and let either (S, r, m, t) be as in tables I and II or S ∼=
Altl, where 8 � l � 10, and (r, m, t) = (5, 15, 7). Then, N̄ contains an element x̄ of
orderm. By lemmas 2.11 and 2.12(a), for every 1 � i < m, x̄i ∈ Van(Ḡ). If S ∼= Altl,
where 8 � l � 10, then we apply [4] for the previous conclusion. Consequently,
xi ∈ Van(G), by lemma 2.13(ii). Since Van(G) ⊆ Gα, m is a composite number
and r | m, proposition 2.10(ii) shows that |M |r|o(x̄)|r | |CG(x)|. So, for every z ∈
Van(G), |M |r|o(x̄)|r | |CG(z)|. On the other hand, Van(Ḡ) contains an element ȳ
of order t, by lemma 2.12(b). Lemma 2.13(ii) guarantees that y ∈ Van(G). Hence,
|M |r|o(x̄)|r | |CG(y)|. Thus, lemma 2.3(ii) forces r | |CḠ(ȳ)|. Therefore, Ḡ contains
an element z̄ of order rt. By lemma 2.12(b), for every 1 � i < tr, z̄i ∈ Van(Ḡ).
Consequently, |M |t|o(z̄)|t | |CG(z)|, by lemma 2.13(ii) and proposition 2.10(ii). It
follows from (∗) that |M |t|o(z̄)|t | |CG(x)|. In view of lemma 2.3(ii), t | |CḠ(x̄)|.
However, t � |Out(S)|. So, t | |CN̄ (x̄)|, contradicting lemma 2.1(iii).

b. Assume that S ∼= Altl, where l > 11. Suppose that m = 35 and r and t are
as in lemma 2.1(i). Then, N̄ contains an element x̄ of order m. By lemmas 2.11
and 2.12(a), for every 1 � i < m, x̄i ∈ Van(Ḡ). Lemma 2.13(ii) yields xi ∈ Van(G).
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Since Van(G) ⊆ Gα, m is a composite number and 7 | m, proposition 2.10(ii) shows
that |M |7|o(x̄)|7 | |CG(x)|. So, for every z ∈ Van(G), |M |7|o(x̄)|7 | |CG(z)|. On the
other hand, Van(Ḡ) contains an element ȳ of order t, by lemma 2.12(b). Lemma
2.13(ii) forces y ∈ Van(G). Hence, |M |7|o(x̄)|7 | |CG(y)|. Lemma 2.3(ii) implies that
7 | |CḠ(ȳ)|. Therefore, Ḡ contains an element z̄ of order 7t. By lemma 2.12(b),
for every 1 � i < 7t, z̄i ∈ Van(Ḡ). So, |M |t|o(z̄)|t | |CG(z)|, by lemma 2.13(ii) and
proposition 2.10(ii). Thus, |M |t|o(z̄)|t | |CG(u)|, for every u ∈ Van(G). Also, lemma
2.12(b) forces Van(Ḡ) ∩ N̄ to contain an element w̄ of order r. Hence, t | |CḠ(w̄)|,
by lemmas 2.3(ii) and 2.13(ii). However, t � |Out(S)|. So, t | |CN̄ (w̄)|, contradicting
lemma 2.1(ii).

c. Let S ∼= M22 or Alt11, m = 8 and let t = 11. [4] implies that N̄ contains an
element x̄ of order m such that for every 1 � i < 4, x̄i ∈ Van(Ḡ). Consequently,
xi ∈ Van(G), by lemma 2.13(ii). So, proposition 2.10(ii) shows that 2|M |2 | |CG(x)|.
Hence, (∗) forces 2|M |2 | |CG(z)|, for every z ∈ Van(G). On the other hand, Van(Ḡ)
contains an element ȳ of order t, by lemma 2.12(b). By lemma 2.13(ii), y ∈ Van(G)
and hence, 2|M |2 | |CG(y)|. Thus, lemma 2.3(ii) implies that 2 | |CḠ(ȳ)|. This shows
that Aut(S) contains an element of order 2t = 22, which is a contradiction, by
considering [4].

The above cases show that N/M ∼= Alt5 or Alt7. By step 2, CG/M (N/M) = {M}.
Thus, G/M � Aut(N/M). Working towards a contradiction, let G/M �= N/M .
Then, G/M ∼= Sym7 or Sym5. If Ḡ ∼= Sym7, let (r, t, d) = (5, 7, 10) and if Ḡ ∼=
Sym5, let (r, t, d) = (3, 5, 6). [4] guarantees that Van(Ḡ) contains an element x̄
of order d such that for every 1 � i < d, x̄i ∈ Van(Ḡ). Since Van(G) ⊆ Gα, d is a
composite number and r | d, proposition 2.10(ii) shows that |M |r|o(x̄)|r | |CG(x)|.
So for every z ∈ Van(G), |M |r|o(x̄)|r | |CG(z)|. On the other hand, Van(Ḡ) contains
an element ȳ of order t, by lemma 2.12(b). Lemma 2.13(ii) yields that y ∈ Van(G).
Hence, |M |r|o(x̄)|r | |CG(y)|. Thus, lemma 2.3(ii) forces r | |CḠ(ȳ)|. Therefore, Ḡ
contains an element z̄ of order rt, which is a contradiction, regarding the orders of
elements of Ḡ. This shows that G/M = N/M . Thus, G/M ∼= Alt5 or Alt7. �

Step 4. π(M/Fit(G)) ⊆ {2}.

Proof. By step 3, G/M ∼= Alt5 or Alt7. It is worth mentioning that by [4],

Van(Alt5) = Alt5 − {1} and {g ∈ Alt7 : o(g) ∈ {5, 7}} ⊆ Van(Alt7). (3.3)

Fix F0 = {1} and for 1 � i � n, let Fi/Fi−1 = Fit(G/Fi−1) such that Fn = M .
Let P ∈ Syl2(M). Working towards a contradiction, suppose that π(M/F1) �⊆ {2}.
Then, one of the following cases occurs:

Case 1. Let π(Fn/Fn−1) = {2}. Since by our assumption π(M/F1) �⊆ {2}, we
have n � 3 and obviously, π(Fn−1/Fn−2) �= {2}. Set W = (P ∩ Fn−1)Fn−2. Then,
W � G, {W} �= Fn−1/W � G/W is nilpotent and {W} �= Z/W � G/W , where
Fn−1 � Z and Z/Fn−1 = Z(M/Fn−1). Also, Z/Fn−1 � M/Fn−1 is a 2-group and
gcd(|Fn−1/W |, 2) = 1. Let C/W = CZ/W (Fn−1/W ). If W �= yW ∈ C/W , then for
every W �= xW ∈ Fn−1/W , there is an element w ∈W such that

y−1xyFn−2 = xwFn−2. (3.4)
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We can assume that xFn−2 is a 2′-element. Since W/Fn−2 is a 2-group, o(wFn−2)
is a power of 2. Also, wFn−2, xFn−2 ∈ Fn−1/Fn−2 and Fn−1/Fn−2 is nilpo-
tent. So, xwFn−2 = wxFn−2. By (3.4), o(xFn−2) = lcm(o(xFn−2), o(wFn−2)).
Thus, wFn−2 = Fn−2. Consequently, yFn−2 ∈ CG/Fn−2(xFn−2). So, yFn−2 ∈
CG/Fn−2(O2′(Fn−1/Fn−2)). However, C/Fn−2 � Z/Fn−2. Therefore,O2′(C/Fn−2) �
O2′(Fn−1/Fn−2) is nilpotent. Thus, C/Fn−2 = O2(C/Fn−2) ×O2′(C/Fn−2) is
nilpotent. Hence, C/Fn−2 � Fit(G/Fn−2) = Fn−1/Fn−2. So, CZ/W (Fn−1/W ) =
C/W � Fn−1/W . By lemma 2.13(ii,iv), Z − Fn−1 ⊆ Van(G). Now, let s ∈
π(Fn−1/Fn−2) − {2}. Then, (P ∩ Z)/(P ∩ Fn−1) acts on a Sylow s-subgroup of
Fn−1/Fn−2, by conjugation and one of the following sub-cases occurs:

a. Let the action of (P ∩ Z)/(P ∩ Fn−1) on a Sylow s-subgroup of Fn−1/Fn−2

be fixed point freely. Then, (P ∩ Z)/(P ∩ Fn−1) ∼= (P ∩ Z)Fn−1/Fn−1 = Z/Fn−1 is
a cyclic 2-group, because Z/Fn−1 is abelian. Hence, Z/Fn−1 contains a subgroup
〈z1Fn−1〉 of order 2, which is normal in G/Fn−1. Obviously, CG/Fn−1(〈z1Fn−1〉) =
G/Fn−1. Thus, there is an element xFn−1 ∈ CG/Fn−1(〈z1Fn−1〉) of order 5, so
o(xz1Fn−1) = 10. By lemma 2.13(i,ii) and since Z − Fn−1 ⊆ Van(G), z1, x, xz1 ∈
Van(G) ⊆ Gα. Hence, proposition 2.10 shows that |Fn−1|5|o(xz1Fn−1)|5 |
|CG(xz1)|. So, for every h ∈ Van(G), 5|Fn−1|5 | |CG(h)|. If G/M ∼= Alt5, let p = 3
and otherwise, let p = 7. Suppose that y is a p-element of G−M . By (3.3) and
lemma 2.13(ii), y ∈ Van(G). Thus, 5|Fn−1|5 | |CG(y)|. Since π(M/Fn−1) = {2},
lemma 2.3(ii) forces 5 | |CG/M (yM)|, which is impossible.

b. Assume that there exist a 2-element z ∈ (Z ∩ P ) − Fn−1 and an s-element
y ∈ Fn−1 − Fn−2 such that yFn−2 ∈ CG/Fn−2(zFn−2). We can assume by lemma
2.3(iii) that z ∈ CG(y), and by proposition 2.14, y ∈ Van(G). As stated before,
Z − Fn−1 ⊆ Van(G), so z, zy ∈ Van(G). Thus, zy satisfies the assumption of propo-
sition 2.10. Let Hn−1/Fn−2 be a Hall s′-subgroup of Fn−1/Fn−2. Then, Hn−1 �G
and proposition 2.10 shows that |Hn−1|s|o(yzHn−1)|s | |CG(yz)|. It follows that
for every h ∈ Van(G), s|Hn−1|s | |CG(h)|. If G/M ∼= Alt5, let r ∈ {3, 5} − {s} and
p ∈ {3, 5} − {r} and if G/M ∼= Alt7, let r ∈ {5, 7} − {s} and p ∈ {5, 7} − {r}.
Let w be an r-element of G−M . By (3.3) and lemma 2.13(ii), wM ⊆ Van(G).
Thus s|Hn−1|s | |CG(w)|. So, there exists an s-element w′ ∈ G−Hn−1 such that
w′Hn−1 ∈ CG/Hn−1(wHn−1). However, |CG/M (wM)| = r. Hence, w′ ∈M −Hn−1.
Then, w, w′, ww′ ∈ Van(G), by proposition 2.14 and lemma 2.13(ii). So, propo-
sition 2.10 shows that r|Hn−1|r | |CG(ww′)|. Consequently, for every h ∈ Van(G),
r|Hn−1|r | |CG(h)|. Assume that v is a p-element of G−M . By (3.3) and lemma
2.13(ii), v ∈ Van(G). Thus, r|Hn−1|r | |CG(v)|. Note that π(M/Hn−1) = {2, s}. By
lemma 2.3(ii), r | |CG/M (vM)|, which is impossible.

Case 2. Let 2 �= s ∈ π(Fn/Fn−1). Assume that S/Fn−1 ∈ Syls(M/Fn−1), L/Fn−1

is a Hall s′-subgroup of M/Fn−1 and H/Fn−1 = Z(S/Fn−1). First, let G/M ∼= Alt5
and p = 2. Then,G/M acts onH/Fn−1. This action is not fixed point freely, because
the Sylow 2-subgroups of G/M are abelian and non-cyclic. Thus, there exists
a 2-element M �= xM ∈ G/M such that CH/Fn−1(xFn−1) �= {Fn−1}. Let Fn−1 �=
yFn−1 ∈ CH/Fn−1(xFn−1). Since s �= 2, (3.3), lemma 2.13(ii) and proposition 2.14
force x, y, xy ∈ Van(G). So, xy satisfies the assumption of proposition 2.10. Next,
let G/M ∼= Alt7. By lemma 2.13(v), Van(G/M) contains a p-element xM such
that CM/L(xL) �= {L} and p ∈ π(G/M) − {2, s}. Let L �= yL ∈ CM/L(xL). We can
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assume that o(y) is a power of s. Then, x, y, xy ∈ Van(G), by lemma 2.13(ii) and
proposition 2.14. Consequently, xy satisfies the assumption of proposition 2.10.
In both cases, proposition 2.10 shows that |L|p|o(xyL)|p | |CG(xy)|. So, for every
h ∈ Van(G), p|L|p | |CG(h)|. Let zM ∈ G/M be of order r, where if G/M ∼= Alt5,
r = 5 and otherwise, r ∈ {5, 7} − {p}. By (3.3) and lemma 2.13(ii), z ∈ Van(G).
Thus, p|L|p | |CG(z)|. As, p � |M/L|, lemma 2.3(ii) yields p | |CG/M (zM)|, which is
impossible.

These contradictions show that π(M/Fit(G)) ⊆ {2}. �

Step 5. π(G/M) − {2} ⊆ π(Fit(G)).

Proof. By steps 3 and 4, π(M/Fit(G)) ⊆ {2} and G/M ∼= Alt5 or Alt7. Let
p ∈ π(G/M) − {2}. Then, there are the elements xM, yM ∈ Van(G/M) such
that |GG/M (xM)|p = |G/M |p and p � |CG/M (yM)|. By lemma 2.13(ii), x, y ∈
Van(G). So, (∗), corollary 2.4 and lemma 2.3(ii) force p | |CG(x)| and |CG(x)|p =
|CG(y)|p | |M |p|CG/M (yM)|p = |Fit(G)|p, because p �= 2. Therefore, p | |Fit(G)|, as
desired. �

Step 6. M = Fit(G).

Proof. By steps 3 and 4, π(M/Fit(G)) ⊆ {2} and G/M ∼= Alt5 or Alt7. Work-
ing towards a contradiction, suppose that M �= Fit(G). Let P ∈ Syl2(M). Set
P1 = P ∩ Fit(G) and assume that Z/Fit(G) is the maximal normal abelian sub-
group of G/Fit(G) such that Z � M . Then, P1 ∈ Syl2(Fit(G)), Z(M/Fit(G)) �
Z/Fit(G) and Z/Fit(G) is a 2-group. By step 5, π(G/M) − {2} ⊆ π(Fit(G)). Hence,
Fit(G)/P1 is a non-trivial Hall 2′-subgroup of M/P1 that is nilpotent and nor-
mal in G/P1. If xP1 ∈ CM/P1(Fit(G)/P1), then [x, Fit(G)] ⊆ P1. So, for every
2′-element f ∈ Fit(G), there exists an element g ∈ P1 such that xfx−1f−1 =
g. Hence, xfx−1 = gf . However, Fit(G) is nilpotent and P1 � Fit(G). There-
fore, o(f) = lcm(o(f), o(g)). This forces g = 1. Thus, x ∈ CM (O2′(Fit(G))). Since
M/Fit(G) is a 2-group, we have x = x1x2 = x2x1 such that x1 ∈M is a 2-element
and x2 ∈ Fit(G) is a 2′-element. Let Q1 ∈ Syl2(CM (O2′(Fit(G))) such that x1 ∈
Q1. Then, P1 � Q1 and Q1Fit(G) = Q1 ×O2′(Fit(G)) is a nilpotent subgroup of
G. However, Q1Fit(G)/Fit(G) = CM (O2′(Fit(G))Fit(G)/Fit(G) �G/Fit(G). Con-
sequently, Q1 ×O2′(Fit(G)) = Q1Fit(G) �G. Therefore, Fit(G) = O2′(Fit(G)) ×
P1 � O2′(Fit(G)) ×Q1 � Fit(G). This yields that O2′(Fit(G)) ×Q1 = Fit(G), so
Q1 = P1. Thus, x1 ∈ P1. As x = x1x2 and x2 ∈ Fit(G), we get x ∈ Fit(G). Thus,

CM/P1(Fit(G)/P1) � Fit(G)/P1. (3.5)

Hence, CZ/P1(Fit(G)/P1) � Fit(G)/P1. By lemma 2.13(iv,ii).

Z − Fit(G) ⊆ Van(G). (3.6)

In the following, we first assume that G/M ∼= Alt7 and Z = M . We observe that
G/M acts on Z/Fit(G), by conjugation. Hence, there are an odd prime q, a q-
element yM ∈ Van(G/M) and an element Fit(G) �= xFit(G) ∈ Z/Fit(G) such that
yFit(G) ∈ CG/Fit(G)(xFit(G)), by lemma 2.13(v). Therefore, x, y, xy ∈ Van(G). So,
proposition 2.10 shows that |Fit(G)|q|o(xyFit(G))|q | |CG(xy)|. It follows that for
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every h ∈ Van(G), q|Fit(G)|q | |CG(h)|. Let p ∈ {5, 7} − {q}. Suppose that z is a
p-element of G−M . By lemma 2.13(i), z ∈ Van(G). Thus, q|Fit(G)|q | |CG(z)|.
Regarding π(M/Fit(G)) = {2}, we get that q | |CG/M (zM)|, which is impossible.

Now, let G/M ∼= Alt5, Z = M and a Sylow 2-subgroup of G/Fit(G) is
abelian. Then, for every 2-element x2 ∈ G− Z, x2Fit(G) ∈ CG/Fit(G)(Z/Fit(G)).
Set C/Fit(G) = CG/Fit(G)(Z/Fit(G)). So, x2 ∈ C − Z. Therefore, Z �= x2Z ∈
C/Z � G/Z = G/M ∼= Alt5. This forces C/Z = G/Z, consequently, C = G. Thus,
CG/Fit(G)(Z/Fit(G)) = G/Fit(G). Hence, G/Fit(G) contains an element xFit(G)
of order 6 such that x2 ∈ G−M and x3 ∈ Z − Fit(G). Since M �= xM, x2M ∈
G/M ∼= Alt5, xM, x2M ∈ Van(G/M). By lemma 2.13(ii), x2, x ∈ Van(G). Also,
(3.6) shows that x3 ∈ Van(G). So, proposition 2.10 shows that 3|Fit(G)|3 | |CG(x)|.
Regarding [G : Fit(G)]3 = 3, we get that that |G|3 | |CG(x)|. Hence, |clG(x)|3 = 1.
Since x ∈ Van(G), (∗) forces 3 not to divide the vanishing conjugacy class sizes
of G. It follows from [6, theorem A] that G has a normal 3-complement, which is
impossible.

Then, suppose that M �= Z, Z/Fit(G) is an elementary abelian 2-group and
G/M ∼= Alt5 or Alt7. Assume that L/Z is a chief factor of G such that L � M .
If o(uFit(G)) = 2, for every uFit(G) ∈ L/Fit(G), then L/Fit(G) is abelian, contra-
dicting our assumption on Z. So, L/Fit(G) contains an element uFit(G) of order 4.
Since Z/Fit(G) and L/Z are elementary abelian 2-groups, u ∈ L− Z and Fit(G) �=
u2Fit(G) ∈ Z/Fit(G). In the following, set Ḡ = G/P1 and, for every H � G and
x ∈ G, let H̄ = HP1/P1 and x̄ be the image of x in Ḡ. Since |F̄it(G)| is odd, we can
assume that o(ū) = 4 and ū2 ∈ Z̄ − F̄it(G). Let {1̄} = N̄0 � · · · � N̄t = F̄it(G) � Ḡ
be a normal series of Ḡ such that for every 1 � i � t, N̄i/N̄i−1 is a chief factor of
Ḡ. Suppose that i is the smallest number such that 0 � i � t and

ū2N̄i ∈ CM̄/N̄i
(F̄it(G)/N̄i). (3.7)

By (3.5), i �= 0. Working towards a contradiction, let

ū2N̄i−1 ∈ CM̄/N̄i−1
(N̄i/N̄i−1). (3.8)

Assume that n̄N̄i−1 ∈ F̄it(G)/N̄i−1 is arbitrary. If n̄ ∈ N̄i, then (3.8) forces n̄N̄i−1 ∈
CM̄/N̄i−1

(ū2N̄i−1). Next, let n̄ �∈ N̄i. By (3.7), [n̄, ū2] ∈ N̄i. So, there is an ele-
ment m̄ ∈ N̄i such that [n̄, ū2] = m̄. Thus, n̄(ū2)n̄−1N̄i−1 = m̄ū2N̄i−1. By (3.8),
m̄ū2N̄i−1 = ū2m̄N̄i−1. Since ū2N̄i−1 is a 2-element and m̄N̄i−1 ∈ F̄it(G)/N̄i−1,
which is a 2′-group, we get that m̄N̄i−1 = N̄i−1. Consequently, n̄N̄i−1 ∈
CM̄/N̄i−1

(ū2N̄i−1), for every n̄N̄i−1 ∈ F̄it(G)/N̄i−1. Therefore, F̄it(G)/N̄i−1 �
CM̄/N̄i−1

(ū2N̄i−1). Hence, ū2N̄i−1 ∈ CM̄/N̄i−1
(F̄it(G)/N̄i−1), contradicting our

assumption on i. So,

ū2N̄i−1 �∈ CM̄/N̄i−1
(N̄i/N̄i−1). (3.9)

Since {N̄i−1} �= Z(F̄it(G)/N̄i−1) ∩ N̄i/N̄i−1 � Ḡ/N̄i−1 and N̄i/N̄i−1 is a chief fac-
tor of Ḡ, Z(F̄it(G)/N̄i−1) ∩ N̄i/N̄i−1 = N̄i/N̄i−1. So, N̄i/N̄i−1 � Z(F̄it(G)/N̄i−1).
Therefore, F̄it(G)/N̄i−1 � CZ̄/N̄i−1

(N̄i/N̄i−1). As Z/Fit(G) is abelian, we get that
(Z̄/N̄i−1)CḠ/N̄i−1

(N̄i/N̄i−1)/CḠ/N̄i−1
(N̄i/N̄i−1) is abelian. Hence, [7, the proof of
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lemma 2.3] yields the existence of a character λ ∈ Irr(N̄i/N̄i−1) such that

IZ̄/N̄i−1
(λ) = CZ̄/N̄i−1

(N̄i/N̄i−1). (3.10)

If there exists an element ḡN̄i−1 ∈ Ḡ/N̄i−1 such that ūḡN̄i−1 ∈ IḠ/N̄i−1
(λ), then

(ū2)ḡN̄i−1 ∈ IZ̄/N̄i−1
(λ). Thus, since by (3.10), IZ̄/N̄i−1

(λ) = CZ̄/N̄i−1
(N̄i/N̄i−1) �

Ḡ/N̄i−1, we get that (ū2)N̄i−1 ∈ CZ̄/N̄i−1
(N̄i/N̄i−1), which is a contradiction with

(3.9). This shows that no conjugate of ū2N̄i−1 and no conjugate of ūN̄i−1 fix λ. So,
lemma 2.13(vi) implies that ūN̄i−1, ū

2N̄i−1 ∈ Van(Ḡ/N̄i−1) and by lemma 2.13(ii),

u, u2 ∈ Van(G). (3.11)

Also, if Z/Fit(G) is not an elementary abelian 2-group, then there exists an
element u ∈ Z − Fit(G) such that o(uFit(G)) = 4. So, (3.6) shows that

u, u2 ∈ Van(G). (3.12)

Next, suppose that G/M ∼= Alt5, Z = M and a Sylow 2-subgroup of G/Fit(G)
is not abelian. Then, there exists a 2-element u ∈ G− Z = G−M such that
o(uFit(G)) = 4 and Fit(G) �= u2Fit(G) ∈ Z/Fit(G). Since uM ∈ G/M ∼= Alt5, we
have uM ∈ Van(G/M). We conclude from lemma 2.13(ii) and (3.6) that

u, u2 ∈ Van(G). (3.13)

Nevertheless, if Z �= M or G/M ∼= Alt5, Z = M and a Sylow 2-subgroup of
G/Fit(G) is not abelian, then (∗), (3.11), (3.12) and (3.13) yield that there is
an element u ∈ Van(G) such that u2 ∈ Van(G), o(uFit(G)) = 4 and |clG(u)| =
|clG(u2)|. Hence, proposition 2.10 shows that 4|Fit(G)|2 | |CG(u)|. Consequently,
4|Fit(G)|2 | |CG(w)|, for every w ∈ Van(G). If x5 ∈ G− Fit(G) is a 5-element, then
M �= x5M is a 5-element of G/M . However, G/M ∼= Alt5 or Alt7. Thus, x5M ∈
Van(G/M). By lemma 2.13(ii), x5M ⊆ Van(G). Therefore, 4|Fit(G)|2 | |CG(x5)|.
As, |CG/M (x5M)|2 = 1, x5M contains a {2, 5}-element y such that o(yFit(G)) =
10, y5 ∈ x5M and y2 ∈M − Fit(G), where y2 and y5 are the 2-part and the 5-part
of y, respectively. As mentioned above, y5, y ∈ Van(G) and y2 ∈M − Fit(G). Thus,
|CG(y)| = |CG(y5)|. By lemma 2.3(i),

CG(y5) = CG(y) � CG(y2). (3.14)

On the other hand, if P5 ∈ Syl5(Fit(G)), then since 5 ∈ π(Fit(G)), P5 �= {1}
and 〈y〉 = 〈y2〉 × 〈y5〉 acts on P5, by conjugation. By (3.14), CP5(y5) � CP5(y2).
It follows from lemma 2.2 that y2 ∈ CG(P5). Fix A := CG(P5). Then, 1 �= y2 ∈
(A− Fit(G)) ∩M . Hence, Fit(G) < (AP5 ∩M) � G. Thus, {Fit(G)} �= (AP5 ∩
M)/Fit(G) � G/Fit(G). Let B/Fit(G) be a minimal normal subgroup of G/Fit(G)
such that B � (AP5 ∩M). Then, B̄/F̄it(G) is abelian. By (3.5) and lemma 2.13(iv),

B̄ − F̄it(G) ⊆ Van(Ḡ). (3.15)

Obviously, there exists an element g ∈ B ∩A such that g �∈ Fit(G). Since ḡ ∈ B̄ −
F̄it(G), we get from (3.15) and lemma 2.13(ii) that g ∈ Van(G). However, g ∈ A =
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CG(P5) and [G : P5]5 = 5. It follows that |clG(g)|5 � 5. So, |clG(w)|5 � 5, for every
w ∈ Van(G). Let x2 ∈ G−M be a p-element, where if G/M ∼= Alt5, then p = 2
and otherwise, p = 7. Then, x2M ∈ Van(G/M). By lemma 2.13(ii), x2 ∈ Van(G).
So, |P5| | |CG(x2)|. We have |clG/M (x2M)|5 = 1 and M/Fit(G) is a 2-group. Thus,
corollary 2.4 forces P5 � CG(x2). Therefore, x2 ∈ CG(P5). This yields that M �=
x2M ∈ CG(P5)M/M � G/M ∼= Alt5 or Alt7. Since G/M is simple, CG(P5)M/M =
G/M . Consequently, CG(P5)M = G. Thus, CG(P5) contains a 5-element x5 such
that x5 �∈M . So, M �= x5M ∈ G/M . It follows that x5M ∈ Van(G/M). By lemma
2.13(ii), x5 ∈ Van(G). Also, P5〈x5〉 � CG(x5). So, 5 � |clG(x5)|. Hence, (∗) forces 5
not to divide the vanishing conjugacy class sizes of G. It follows from [6, theorem
A] that G has a normal 5-complement, which is impossible.

This shows that M = Fit(G), as wanted. �

Step 7. We get the final contradiction.

Proof. By step 6, G/Fit(G) ∼= Alt5 or Alt7. First, let G/Fit(G) ∼= Alt5. Then,
for every x ∈ G− Fit(G), Fit(G) �= xFit(G) ∈ G/Fit(G) ∼= Alt5. So, xFit(G) ∈
Van(G/Fit(G)). By lemma 2.13(ii), x ∈ Van(G). By step 5, 3, 5 ∈ π(Fit(G)). Let
E be a Hall 3′-subgroup of Fit(G). Set G̃ = G/E and, for every H � G and x ∈ G,
let H̃ = HE/E and x̃ be the image of x in G̃. Then, F̃it(G) is a 3-group and lemma
2.5 shows that for every 1̃ �= x̃ ∈ G̃− F̃it(G), |clG̃(x̃)|3 = 3e, for some positive inte-
ger e. Let x̃5 ∈ G̃− F̃it(G) be of order 5 and let {1̃} = M̃0 � M̃1 � · · · � M̃t =
F̃it(G) � G̃ be a chief series of G̃. By proposition 2.8, there is an 1 � i � t such that
M̃i/M̃i−1 �� Z(G̃/M̃i−1) and |CM̃i/M̃i−1

(x̃5M̃i−1)| � |CM̃i/M̃i−1
(x̃M̃i−1)|, for some

2-element M̃i−1 �= x̃M̃i−1 ∈ NG̃/M̃i−1
(〈x̃5M̃i−1〉). Hence, proposition 2.17 implies

the existence of a non-trivial element ñM̃i−1 ∈ CM̃i/M̃i−1
(x̃5M̃i−1) and a character

ψ ∈ Irr(G̃/M̃i−1) such that ψ(ñM̃i−1) = 0. So, ñM̃i−1 ∈ Van(G̃/M̃i−1). By lemma
2.13(ii), n ∈ nMi−1 ⊆ Van(G). Since 3 � |E| and M̃i is a 3-group, we can assume
that n is a 3-element. Thus, E � CG(n), because n ∈ Fit(G), E � Fit(G) is a 3′-
group and Fit(G) is nilpotent. We note that |G/E|5 = |G/Fit(G)|5 = |Alt5|5 = 5.
Therefore, |clG(n)|5 � |G/E|5 = 5. Hence,

|clG(w)|5 � 5, for every w ∈ Van(G). (3.16)

Let x3 ∈ G− Fit(G) be a 3-element. Then, |CG/Fit(G)(x3Fit(G))|5 = 1. By
(3.16) and corollary 2.4, |CFit(G)(x3)|5 = |Fit(G)|5. So, P5 � CFit(G)(x3), where
P5 ∈ Syl5(Fit(G)). Thus, x3 ∈ P5CG(P5) − Fit(G). This yields that {Fit(G)} �=
P5CG(P5)/Fit(G) � G/Fit(G). However, G/Fit(G) ∼= Alt5 is simple. Therefore,
P5CG(P5)/Fit(G) = G/Fit(G). Hence, P5CG(P5) = G. This guarantees the exis-
tence of a 5-element y5 ∈ CG(P5) − Fit(G). Then, y5 ∈ Van(G). Also, P5〈y5〉 �
CG(y5). This signifies that 5|P5| | |CG(y5)|. Taking into account the fact that
[G : P5]5 = 5, we get that |G|5 | |CG(y5)|. Therefore, 5 � |clG(y5)|. So, (∗) forces
5 not to divide any vanishing conjugacy class size of G. It follows from [6, theorem
A] that G has a normal 5-complement, which is impossible.

Next, let G/Fit(G) ∼= Alt7. By step 5, 3, 5, 7 ∈ π(Fit(G)). Let F be a Hall 7′-
subgroup of Fit(G). Set Ḡ = G/F and, for every H � G and x ∈ G, let H̄ =
HF/F and x̄ be the image of x in Ḡ. Then, F̄it(G) � Ḡ is a 7-group and
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Ḡ/F̄it(G) ∼= G/Fit(G) ∼= Alt7. Suppose that {1̄} = N̄0 � · · · � N̄t = F̄it(G) � Ḡ is
a chief series of Ḡ. Assume that for every i ∈ {1, . . . , t}, N̄i/N̄i−1 � Z(Ḡ/N̄i−1).
By lemma 2.6, Ḡ = L̄× F̄it(G), where L̄ ∼= Alt7. Let x ∈ L− F be a 7-element.
Then, F̄it(G)〈x̄〉 � CḠ(x̄). However, [G : Fit(G)]7 = 7. Thus, |Ḡ|7 | |CḠ(x̄)|. Since
gcd(|F |, 7) = 1 and x is a 7-element, we get from lemma 2.3(v) that CḠ(x̄) =
CG(x)F/F ∼= CG(x)/CF (x). Thus, |G|7 = |Ḡ|7 | |CG(x)|. Therefore, 7 � |clG(x)|.
However, 1̄ �= x̄ ∈ L̄ is a 7-element and L̄ ∼= Alt7. Hence, x̄ ∈ Van(Ḡ). By lemma
2.13(ii), x ∈ Van(G). So, 7 does not divide the vanishing conjugacy class sizes
of G. Hence, [6, theorem A] implies that G has a normal 7-complement, which
is impossible. This guarantees the existence of an element i ∈ {1, . . . , t} such
that N̄i/N̄i−1 �� Z(Ḡ/N̄i−1). Let y ∈ G be a {2, 3}-element such that ȳF̄it(G) ∈
Ḡ/F̄it(G) is of order 6. Let y2 and y3 be the 2-part and the 3-part of y, respec-
tively. Then, y2 �∈ Fit(G) and o(ȳ3F̄it(G)) = 3. It follows from proposition 2.16
that ȳN̄i−1, ȳ3N̄i−1 ∈ Van(Ḡ/N̄i−1). By lemma 2.13(ii), y, y3 ∈ Van(G). Thus,
|CG(y)| = |CG(y3)|, by (∗). By lemma 2.3(i),

CG(y3) = CG(y) � CG(y2). (3.17)

Also, 3 | |Fit(G)|. So, 〈y〉 = 〈y3〉 × 〈y2〉 acts on P3, where {1} �= P3 ∈ Syl3(Fit(G)).
By (3.17), CP3(y3) � CP3(y2). It follows from lemma 2.2 that y2 ∈ CG(P3). Then,
y2 ∈ CG(P3) − Fit(G). This yields that Fit(G) �= y2Fit(G) ∈ CG(P3)P3/Fit(G) �
G/Fit(G) ∼= Alt7. Since G/Fit(G) is simple, CG(P3)P3/Fit(G) = G/Fit(G). Con-
sequently, G = CG(P3)P3. Thus, CG(P3) contains a 3-element x3 such that x3 �∈
Fit(G). By proposition 2.16, x̄3N̄i−1 ∈ Van(Ḡ/N̄i−1). It follows from lemma 2.13(ii)
that x3 ∈ Van(G). Also, P3〈x3〉 � CG(x3). So, |clG(x3)|3 � 3. Hence, (∗) forces 32

not to divide the vanishing conjugacy class sizes of G. Let x5 ∈ G− Fit(G) be a
5-element. Since G/Fit(G) ∼= Alt7, x5Fit(G) ∈ Van(G/Fit(G)). By lemma 2.13(ii),
x5 ∈ Van(G). Thus, 32 � |clG(x5)|. However, [G : Fit(G)]3 = 32. So, corollary 2.4
forces 3 | |CG/Fit(G)(x5Fit(G))|, which is impossible, because G/Fit(G) ∼= Alt7.

The above steps show that G is solvable. Now, the proof of theorem A is complete.
�
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