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For coherent systems with components and active redundancies having heterogeneous and dependent lifetimes,
we prove that the lifetime of system with redundancy at component level is stochastically larger than that with
redundancy at system level. In particular, in the setting of homogeneous components and redundancy lifetimes
linked by an Archimedean survival copula, we develop sufficient conditions for the reversed hazard rate order, the
hazard rate order and the likelihood ratio order between two system lifetimes, respectively. The present results
substantially generalize some related results in the literature. Several numerical examples are presented to illustrate
the findings as well.

1. Introduction

As one of the most effective and direct methods, redundancy is widely adopted to improve system
reliability. An active redundancy, also called hot standby, is put in parallel to a component and starts
functioning once the component is initiated, and a standby redundancy is put in standby and starts up
once the component fails. In the prominent monograph [1], it was put forward that the active redundancy
at the component level is generally more reliable than the redundancy at the system level in the sense
of the usual stochastic ordering for mutually independent components and redundancy lifetimes. From
then on, this milestone conclusion was known as Barlow–Proschan (BP) principle in reliability theory.

In the literature, there are bunch of typical references on active redundancy allocation in the setting of
independent component and redundancy lifetimes. Take for example, for coherent systems of indepen-
dent and identically distributed (i.i.d.) component and redundancy lifetimes, [5] derived the necessary
and sufficient conditions to extend the BP principle from the usual stochastic comparison to the haz-
ard rate order, [34] further developed this principle in terms of the likelihood ratio order for k-out-of-n
systems, [15, 24] respectively brought forth two sufficient conditions to upgrade the BP principle to the
reversed hazard rate order, and [24] also derived the necessary and sufficient condition on BP principle
in the sense of the likelihood ratio order. In addition, for coherent systems with i.i.d. component and
redundancy lifetimes, [16] developed sufficient conditions for the BP principle in the sense of shifted
reversed hazard rate order, the hazard rate order, and the likelihood ratio order, respectively. [18] built
the BP principle for k-out-of-n systems in the sense of the stochastic precedence order. Recently, for
coherent systems with dependent component lifetimes, [19] examined the condition sufficient for the
BP principle in the context of the relevation transform. For more research on the BP principle, please
also refer to [6, 7, 9, 18, 25, 41].
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In traditional theory of reliability, component and redundancy lifetimes are usually assumed indepen-
dent for tractability in mathematics. However, such a rigid assumption discards the potential statistical
dependence among component lifetimes and thus is far away from the truth for many complicated engi-
neering systems due to the common stresses bore by components and redundancies and the cross impact
of each other. Motivated by the pressing demand on reliability and safety of complicated engineering
systems, several authors made impressive progresses in the attempt to incorporate statistical depen-
dence into component and redundancy lifetimes of those simple coherent systems. The past decade
has witnessed a stream of research in this line. For example, [2, 3, 11, 12, 28, 29, 36–38], just to
name a few. Remarkably, for coherent systems with dependent but identically distributed component
and redundancy lifetimes, [14] developed necessary and sufficient conditions for the BP principle
in the sense of likelihood ratio, hazard rate, reversed hazard rate, and the usual stochastic order,
respectively.

In this study, we examine the BP principle for coherent systems with dependent and heterogeneous
component and redundancy lifetimes. The rest of this paper rolls out as follows: Section 2 reviews
stochastic orders, copula functions, minimal cut decomposition of coherent systems, and two technical
lemmas. In Section 3, by numerical examples, we illustrate that necessary and sufficient conditions of
[14] are of less merit due to unrealistic assumptions. In Sections 4, we derived the BP principle in
the sense of the usual stochastic order for coherent systems with components and redundancies having
dependent and heterogeneous lifetimes. Further, for coherent systems with component and redundancy
lifetimes linked by an Archimedean copula, we develop in Section 5 necessary and sufficient conditions
for the BP principle in the sense of the likelihood ratio order, the reversed hazard rate order, and the
hazard rate order, respectively. In Section 6, through several corollaries, we show that characterizations
in Section 5 substantially extend the key results of [5, 24, 34].

Throughout the remaining sections, the random vector X = (X1, . . . , Xn) and real vector x =

(x1, . . . , xn) represent component or redundancy lifetimes and their realizations, respectively. For con-
venience, we denote x ∨ y = max{x, y}, x ∧ y = min{x, y}, and x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn). By
convention, the terms “increasing” and “decreasing” stand for “nondecreasing” and “nonincreasing,”
respectively.

2. Some preliminaries

For ease of reference, in this section, we review some related notions and also introduce two technical
lemmas, which are useful in developing the main results in Sections 4 and 5.

2.1. Stochastic orders

Well developed in the past decades, stochastic orders have been widely utilized to conduct nonparamet-
ric comparison on random variables such as system or component lifetimes in engineering reliability,
operating times in operations management, running times of algorithms in computer science, potential
rewards of portfolios in financial and quantitative risks, etc.

Let X and Y be random variables with cumulative distribution function (cdf) F, G and probability
density function (pdf) f , g (if absolutely continuous), and denote F̄ = 1− F, Ḡ = 1−G. Then, X is said
to be smaller than Y in the sense of the

(i) likelihood ratio order, denoted as X ≤lr Y , if g(x)/f (x) is increasing on the support of X;
(ii) hazard rate order, denoted as X ≤hr Y , if Ḡ(x)/F̄ (x) is increasing in x with F̄ (x) > 0;
(iii) reversed hazard rate order, denoted as X ≤rh Y , if G(x)/F (x) increases in x with F (x) > 0;
(iv) usual stochastic order, denoted as X ≤st Y , if Ḡ(x) > F̄ (x) for any x.

For comprehensive discussions on stochastic orders, we refer readers to [4, 20, 22, 33].
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2.2. Copula function

For Xi with cdf Fi, i = 1, . . . , n, if a mapping L : [0, 1]n ↦→ [0, 1] is such that X has the joint cdf

P(X1 6 x1, . . . , Xn 6 xn) = L(F1 (x1), . . . , Fn(xn)), for all x1, . . . , xn,

then, L(u1, . . . , un) is called the copula of X, and if there exists a mapping K : [0, 1]n ↦→ [0, 1] such
that their joint survival function is represented as

P(X1 > x1, . . . , Xn > xn) = K
(
F̄1(x1), . . . , F̄n(xn)

)
, for all x1, . . . , xn,

then, K is said to be the survival copula of X.
For a nonempty C ⊆ {1, . . . , n}, let ui,C = uiI (i ∈ C) + I (i ∉ C) for i = 1, . . . , n. The subvector of

Xi’s with subscripts inside C has survival copula

KC (u1, . . . , un) = K
(
u1,C , . . . , un,C

)
. (2.1)

For example, if (X1, X2, X3, X4) has copula K(u1, u2, u3, u4), then the survival copula of (X2, X4) is
K{2,4} (u1, u2, u3, u4) = K

(
u1,{2,4} , u2,{2,4} , u3,{2,4} , u4,{2,4}

)
= K(1, u2, 1, u4).

A function i on (0,∞) is said to be n-monotone if (−1)ri (r) (t) > 0 for r = 0, 1, . . . , n and t ∈ (0,∞),
where i (r) (t) is the rth order derivative for r > 0, and i (0) (t) ≡ i(t) by convention. A function i is
said to be completely monotone if (−1)ri (r) (t) > 0 for r = 0, 1, . . . . Obviously, a n-monotone i(t) is
such that (−1)ri (r) (t) is decreasing for any r = 0, . . . , n − 1. For a continuous, strictly decreasing and
n-monotone function i : [0,+∞) ↦→ (0, 1] with i(0) = 1 and lim

t→∞
i(t) = 0, let k = i−1 be the pseudo

inverse of i, then, the function

Ki (u1, . . . , un) = i
(
k(u1) + · · · + k(un)

)
is said to be an n-dimensional Archimedean copula associated with the generator i.

Due to the simple form of separating the dependence from the marginal distributions, the theory
of copula was rapidly developed and has been successfully applied in many statistics related areas, to
name a few, lifetime data analysis, biomedical science, quantitative risk management, actuarial science,
etc. In particular, owing to the technical tractability, the Archimedean family of copulas became rather
popular in real data analysis during the recent two decades. In this study, we employ a general copula
to model the statistical dependence among component and redundancy lifetimes. One may refer to [23,
31] for a comprehensive exposition on copula theory and Archimedean copulas, respectively.

2.3. Coherent systems

Based on components D1, . . . , Dn with respective lifetimes X1, . . . , Xn, a reliability structure with sys-
tem lifetime T (X1, . . . , Xn) is said to be coherent if the structure function T (x1, . . . , xn) > 0 is increasing
in each xi and every xi is relevant. A set of components of coherent system is said to be a cut if system
fails whenever they all fail, and it is called a minimal cut if any its subset is not a cut any more. Let
S = {C1, . . . , Cr} be the class of all system minimal cuts. As per [1], based on component lifetimes
X = (X1, . . . , Xn), the coherent system attains lifetime

T (X) = min
Ci∈S

max
j∈Ci

Xj = min
i=1,...,r

max
j∈Ci

Xj . (2.2)

For more on coherent systems, we refer readers to [1, 10, 13, 27].
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Assume for X1, . . . , Xn a common reliability function F̄ (t) and a survival copula K(u1, . . . , un). By
Theorem 2.1 of [28], the system reliability can be represented as

H̄ (t) = P(T (X1, . . . , Xn) > t) = h̄(F̄ (t)), t > 0, (2.3)

where the distortion function h̄(u) : [0, 1] ↦→ [0, 1] is increasing, continuous and such that h̄(0) = 0,
h̄(1) = 1. Since T (X) has the cdf H (t) = 1 − H̄ (t) = 1 − h̄(F̄ (t)) = 1 − h̄(1 − F (t)), the dual distortion
function h(u) = 1 − h̄(1 − u) is also increasing, continuous and such that h(0) = 0, h(1) = 1. Note that
a distortion function and its dual version both depend only on the system structure and the dependence
of component lifetimes.

As a technical tool, the distortion transform is usually employed to modify the survival function of
a potential risk so that the tail area of its probability distribution gains more weight. Such a popular
practice also plays an critical role in financial and critical risk management. See for example [17, 32].
It should be remarked that [26] took the first to represent system reliability as a multivariate distortion
transform of component reliability. Subsequently, this technique was further applied to unify different
redundancy forms for coherent systems in [29, 30, 39].

2.4. Active redundancy allocation

In engineering reliability, the active redundancy is a common practice to enhance system reliability.
For system components D1, . . . , Dn having respective lifetimes X1, . . . , Xn and active redundancies
R1, . . . , Rn having respective lifetimes Y1, . . . , Yn, it is usually assumed that X1, . . . , Xn, Y1, . . . , Yn are
mutually independent. In practice, engineers may allocate Ri to Di, i = 1, . . . , n, to end up with the
redundant system lifetime Tc = T (X ∨ Y). Also, one may allocate the system of R1, . . . , Rn with the
same structure to the system of D1, . . . , Dn (i.e., redundancy at system level) to produce the correspond-
ing system lifetime Ts = T (X) ∨ T (Y). As for the active redundancy allocation, readers may refer to a
brief review of [21]. Denote F̄ the common reliability function of components and redundancies. [14]
identified reliability functions of T (X ∨ Y) and T (X) ∨ T (Y) as

H̄c (t) = h̄
(
1 − (1 − F̄ (t))2) , H̄s(t) = 1 −

[
1 − h̄

(
F̄ (t)

) ]2, for any t > 0, (2.4)

respectively, where h is exactly the distortion function of (2.3).
Although the system structure is fixed, owing to the dependence of component and redundancy life-

times, the survival copula of X ∨ Y corresponding to redundancy at component level is not necessarily
that of component lifetimes X. Evidently, H̄c and H̄s of (2.4) serve as the desired system reliability func-
tions only when component and redundancy lifetimes are independent. Consequently, the main results
of [14] and hence [35, 40] hold only for systems with redundancy lifetimes independent of component
ones. We will reexamine BP principle for heterogeneous and dependent component and redundancy
lifetimes in Sections 4 and 5.

2.5. Two technical lemmas

For convenience, we build the survival function of two-component series system with redundancy at
component level, which serves as a building block of redundant systems.

Lemma 2.1. If X1, X2, Y1, Y2 are linked by a survival copula K and have survival functions
F̄1, F̄2, Ḡ1, Ḡ2, respectively, then, Tc = (X1 ∨ Y1) ∧ (X2 ∨ Y2) has the survival function, for t > 0,

H̄c (t) = K(F̄1(t), F̄2(t), 1, 1
)
+K(F̄1(t), 1, 1, Ḡ2(t)

)
+K(1, F̄2(t), Ḡ1(t), 1

)
(2.5)

+K(1, 1, Ḡ1(t), Ḡ2(t)
)
−K(F̄1(t), F̄2(t)), 1, Ḡ2(t)

)
−K(F̄1 (t), F̄2(t), Ḡ1 (t)), 1

)
−K(F̄1(t), 1, Ḡ1(t), Ḡ2(t)

)
−K(1, F̄2(t), Ḡ1(t), Ḡ2(t)

)
+K(F̄1 (t), F̄2(t), Ḡ1 (t), Ḡ2(t)

)
.
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Proof. Owing to the minimal path decomposition Tc = (X1 ∧X2) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y1) ∨ (X2 ∧ Y2),
the desired result of (2.5) follows immediately from the inclusion-exclusion formula. �

Also, we present the one preservation property of Archimedean copulas of homogeneous marginals
under the taking of maximum pairwise.

Lemma 2.2. If (X, Y) are homogeneous and linked by the 2n-dimensional Archimedean copula with
generator i, then, X ∨ Y are linked by the n-dimensional version of this copula.

Proof. Let F be the common cdf of Xi’s and Yi’s. By assumption, (X, Y) has cdf

P
(
X1 6 x1, . . . , Xn 6 xn, Y1 6 y1, . . . , Yn 6 yn

)
= i

(
n∑

i=1

[
k(F (xi)) + k(F (yi))

] )
.

According to (2.1), the univariate marginal Xi ∨ Yi has cdf M (x) = P
(
Xi ∨ Yi 6 x

)
= i

(
2k(F (x))

)
, for

i = 1, . . . , n. Therefore, X ∨ Y attains the cdf

P
(
(Xi ∨ Yi) 6 xi, i = 1, . . . , n

)
= i

(
n∑

i=1
2k

(
F (xi)

))
= i

(
n∑

i=1
k
(
M (xi)

))
.

Now, based on Sklar’s theorem, we conclude that X ∨ Y attains the copula

L(u1, . . . , un) = i
(
k(u1) + · · · + k(un)

)
, for any ui ∈ (0, 1), i = 1, . . . , n,

which is exactly the n-dimensional Archimedean copula associated with the generator i. �

In general, the dependent structure of X ∨ Y is usually different from that of X (see Example 3.1).
However, by Lemma 2.2, both X ∨ Y and X have the same copula when (X, Y) are linked by one
Archimedean copula. This is critically important in developing the proof of the main results in Section 5.

3. Several examples

Based on H̄c of (2.4), [14] conducted stochastic comparisons on coherent systems with redundancy at
component and system level. However, as per Example 3.1, distortion functions of a coherent system
and its redundant version are indeed different. Consequently, the reliability function (2.2) of [14] is
usually invalid for coherent systems with redundancy at component level.

Example 3.1. Assume that (X1, X2) and (Y1, Y2) are independent of each other and they have the com-
mon marginal survival function F̄. Let (X1, X2) and (Y1, Y2) both be coupled by the survival copula
K(u1, u2). The series system lifetime T = X1∧X2 has survival function H̄ (t) = K

(
F̄ (t), F̄ (t)

)
= h̄

(
F̄ (t)

)
,

where the system level distortion function is h̄(u) = K(u, u) on (0, 1). Based on (2.1), with redundancy
at component level, the system has lifetime Tc = (X1 ∨ Y1) ∧ (X2 ∨ Y2) and hence survival function

H̄c (t) = P
(
Tc > t

)
= 2K

(
F̄ (t), F̄ (t)

)
+ 2F̄2(t) − 4F̄ (t)K

(
F̄ (t), F̄ (t)

)
+K2 (F̄ (t), F̄ (t)

)
. (3.1)

By contrast, as per (2.4), Tc has the survival function h̄
(
1 − (1 − F̄ (t))2) = K

(
1 − (1 − F̄ (t))2, 1 −

(1 − F̄ (t))2) . Markedly, H̄c (t) ≠ h̄
(
1 − (1 − F̄ (t))2) . Therefore, the system and its redundant version

usually have different distortion functions.
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Example 3.2. Suppose X1, X2, Y1, Y2 are with respective marginal survival functions F̄1, F̄2, Ḡ1 and Ḡ2
and linked by a survival copula K. Then, with redundancy at system level the system attains lifetime
Ts = (X1 ∧ X2) ∨ (Y1 ∧ Y2) and hence the survival function, for all t > 0,

H̄s(t) = K(F̄1(t), F̄2(t), 1, 1
)
+K(1, 1, Ḡ1(t), Ḡ2(t)

)
−K(F̄1(t), F̄2(t), Ḡ1(t), Ḡ2(t)

)
. (3.2)

Note that, for all t > 0,

P
(
X1 > t, X2 6 t, Y2 > t

)
= K

(
F̄1 (t), 1, 1, Ḡ2(t)

)
−K(F̄1(t), F̄2 (t), 1, Ḡ2(t)

)
,

P
(
X1 6 t, X2 > t, Y1 > t

)
= K

(
1, F̄2(t), Ḡ1(t), 1

)
−K(F̄1(t), F̄2 (t), Ḡ1(t), 1

)
,

P
(
X1 6 t, X2 > t, Y1 > t, Y2 > t

)
= K

(
1, F̄2(t), Ḡ1(t), Ḡ2(t)

)
−K

(
F̄1(t), F̄2(t), Ḡ1(t), Ḡ2(t)

)
,

P
(
X1 > t, X2 6 t, Y1 > t, Y2 > t

)
= K

(
F̄1 (t), 1, Ḡ1(t), Ḡ2(t)

)
−K

(
F̄1(t), F̄2(t), Ḡ1(t), Ḡ2(t)

)
.

Based on (2.5) of Lemma 2.1 and (3.2), we have

H̄c (t) − H̄s(t) = K
(
F̄1(t), 1, 1, Ḡ2(t)

)
+K

(
1, F̄2(t), Ḡ1(t), 1

)
−K(F̄1 (t), F̄2(t), 1, Ḡ2(t)

)
−K(F̄1(t), F̄2(t), Ḡ1(t), 1

)
−K(F̄1(t), 1, Ḡ1(t), Ḡ2(t)

)
−K(1, F̄2(t), Ḡ1(t), Ḡ2(t)

)
+ 2K(F̄1(t), F̄2(t), Ḡ1(t), Ḡ2(t)

)
= P(X1 > t, X2 6 t, Y2 > t) − P(X1 > t, X2 6 t, Y1 > t, Y2 > t)

+P(X1 6 t, X2 > t, Y1 > t) − P(X1 6 t, X2 > t, Y1 > t, Y2 > t)
= P(X1 > t, X2 6 t, Y1 6 t, Y2 > t) + P(X1 6 t, X2 > t, Y1 > t, Y2 6 t)
> 0, for any t > 0.

This gives rise to Tc ≥st Ts, the usual stochastic order.

As a continuation, we further illustrate that the necessary and sufficient condition in Theorem 4 of
[14] doesn’t apply to Example 3.3.

Example 3.3. (Clayton survival copula) Assume that (X1, X2) and (Y1, Y2) are independent of each
other and they have the common marginal survival function F̄. Let (X1, X2) and (Y1, Y2) be coupled by
the same Clayton survival copula K. As per (3.1) and (3.2), survival functions of Ts = (X1∧X2) ∨ (Y1∧
Y2) and Tc = (X1 ∨ Y1) ∧ (X2 ∨ Y2) are such that

H̄c (t) − H̄s(t) = 2
[
F̄ (t) −K

(
F̄ (t), F̄ (t)

) ]2
> 0, for all t > 0. (3.3)

This confirms that Tc ≥st Ts.
However, in the context of Clayton survival copula K(u1, u2) =

(
u−U

1 + u−U
2 − 1

)−1/U, the distortion
function h̄(u) = K(u, u) = (2u−U − 1)−1/U, it is easy to check that neither h̄(2u − u2) > 2h̄(u) − h̄2(u)
nor h̄(2u − u2) < 2h̄(u) − h̄2(u) for u ∈ (0, 1). In accordance with Theorem 4 of [14], there is no
usual stochastic order between Tc and Ts. Evidently, this conflict is due to use of the incorrect distortion
function there.

According to Example 3.2, for a series system of two components, the active redundancy at com-
ponent level results in a stochastically larger system lifetime than does the active redundancy at system
level, irrespective of the statistical dependence of component and redundancy lifetimes. This motivates
us to further explore the BP principle for dependent and heterogeneous component and redundancy
lifetimes in the coming Section 4.
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4. Systems with dependent component and redundancy lifetimes

In this section, we develop the BP principle in the sense of the usual stochastic order for dependent
component and redundancy lifetimes. For coherent systems, let us denote component lifetimes X =

(X1, . . . , Xn) and redundancy lifetimes Y = (Y1, . . . , Yn).

Theorem 4.1. For a coherent system with component and redundancy lifetimes X and Y, respectively,
T (X∨Y) ≥st T (X)∨T (Y) if the statistical dependence structure of (X, Y) is fixed for any configuration
of the system with redundancy at component or system level.

Proof. Since the structure function T (x) of a coherent system is increasing in each xi, i = 1, . . . , n, we
have T (x ∨ y) > T (x), T (x ∨ y) > T (y), and hence T (x ∨ y) > T (x) ∨ T (y) for any x, y ∈ [0,∞)n. As
a result, it holds that, for any increasing function g(x) for which the expectations exist,

E[g(T (X ∨ Y))] =

∫
g(T (x ∨ y)) dP(X ≤ x, Y ≤ y)

≥
∫

g(T (x) ∨ T (y)) dP(X ≤ x, Y ≤ y)

= E[g(T (X) ∨ T (Y))] .

Owing to the arbitrariness of g, this yields T (X ∨ Y) ≥st T (X) ∨ T (Y). �

In accordance with Theorem 4.1, BP principle actually holds for coherent systems with dependent
component and redundancy lifetimes. Additionally, one may wonder whether the usual stochastic order
in Theorem 4.1 can be even upgraded to some stronger version, for example, the hazard rate order. In
what follows, Example 4.3 serves as a negative answer even though Example 4.2 verifies Tc ≥hr Ts for
series systems with independent component lifetimes.

Example 4.2. (Example 3.2 continued) Consider Example 3.2 again in the setting of the independence
copula. Since 4

2+u − 2
2−u2 is decreasing in u ∈ (0, 1), as per (2.5) and (3.2),

H̄c (t)
H̄s(t)

=
4F̄2(t) − 4F̄3(t) + F̄4(t)

2F̄2(t) − F̄4(t)
=

4
2 + F̄ (t)

− 2
2 − F̄2(t)

− 1

is increasing in t > 0. This invokes Tc ≥hr Ts.

Example 4.3. (Example 3.1 continued) One can check that Ts has survival function H̄s(t) =

2K
(
F̄ (t), F̄ (t)

)
−K2 (F̄ (t), F̄ (t)

)
, where Clayton survival copula

K(u1, u2) =
(
u−U

1 + u−U
2 − 1

)−1/U, for U > 0.

By (3.1), for Tc, the survival function

H̄c (t) = 2K
(
F̄ (t), F̄ (t)

)
+ 2F̄2(t) − 4F̄ (t)K

(
F̄ (t), F̄ (t)

)
+K2 (F̄ (t), F̄ (t)

)
.

Set F̄ (t) = e−t for t > 0. In Example 3.3, the usual stochastic order (X1 ∨ Y1) ∧ (X2 ∨ Y2) ≥st
(X1 ∧ X2) ∨ (Y1 ∧ Y2) is confirmed already. However, for U = 1, as is seen in Figure 1, H̄c (t)/H̄s(t) is
not monotone on (0, 4). Thus, (X1 ∨ Y1) ∧ (X2 ∨ Y2) >hr (X1 ∧ X2) ∨ (Y1 ∧ Y2) is not true.
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Figure 1. The curve of the ratio H̄c (t)/H̄s(t) with t ∈ (0, 4).

As suggested by one reviewer, we close this section through making a remark. The ultimate depen-
dence among component lifetimes of engineering systems originates from the interdependence of
components only due to system structure and the statistical dependence of component lifetimes due
to the common stresses from the environment. Sometimes, with the statistical dependence ignored, one
could assume a fixed dependence of component lifetimes for the system irrespective of the type of
involved component lifetimes. In particular, this is suitable when redundancies are independent of the
components in both options of BP principles and all discussion of [14] can be safely applied. In most
of real situations, redundancies and components bear the same stresses due to the common operating
environment and thus are of statistically dependent lifetimes, and the two options of BP principle dif-
fer only in the way for components and redundancies operate and achieve the mission. Consequently,
the dependence and hence survival copula of component and redundancy lifetimes is invariant, and for
redundancy at component level, the survival copula of lifetimes of components equipped with active
redundancies is different from that of components without redundancies. This exactly corresponds to
the more general situation, which is to be further studied in remaining sections. Overall, in practice,
engineers ought to select a suitable model based on the real background of the system.

5. Component/redundancy lifetimes with Archimedean copula

In Section 4, we developed the BP principle in the sense of the usual stochastic order irrespective of
the dependence structure of component and redundancy lifetimes. To further understand the potential
difference between two redundant systems, here we investigate coherent systems with component and
redundancy lifetimes linked by an Archimedean copula. With the knowledge of dependence structure,
we build the characterization of BP principle in the sense of the reversed hazard rate order, the hazard
rate order, and the likelihood rate order, respectively.

Assume that (X, Y) has a 2n-dimensional Archimedean copula Ki . It is plain that X and Y both are
linked by the n-dimensional version of this copula. As per Lemma 2.2, X, Y and X ∨ Y have the same
Archimedean copula. Thus, there is a dual distortion function h such that T (X) and T (Y) have common
cdf H (t) = h(F (t)) and Tc = T (X ∨ Y) attains the cdf

Hc (t) = h
(
i(2k(F (t)))

)
, (5.1)

where h(u) = H
(
F−1(u)

)
for any u ∈ (0, 1). On the other hand, for the system with redundancy at

system level, the cdf of Ts = T (X) ∨ T (Y) is represented as

Hs(t) = r
(
h(F (t))

)
, (5.2)

where the dual distortion function ϱ is to be determined by (5.4).
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Theorem 5.1. Suppose homogeneous (X, Y) are linked by one Archimedean copula.

(i) T (X ∨ Y) ≥rh T (X) ∨ T (Y) iff h(i (2k (u) ) )
r (h(u) ) is increasing in u ∈ (0, 1).

(ii) T (X ∨ Y) ≥hr T (X) ∨ T (Y) iff 1−h(i (2k (u) ) )
1− r (h(u) ) is increasing in u ∈ (0, 1).

(iii) T (X ∨ Y) ≥lr T (X) ∨ T (Y) iff h′ (i (2k (u) ) )i′ (2k (u) )k′ (u)
r′ (h(u) )h′ (u) is increasing in u ∈ (0, 1).

Proof. Recall that S = {C1, . . . , Cr} collects all system minimal cuts. Let Ai,t =
⋂

j∈Ci {Xj 6 t} and
Bi,t =

⋂
j∈Ci {Yj 6 t} for any t > 0 and i = 1, 2, . . . , r. Owing to (2.2), we have

Hs(t) = P
(
T (X) ∨ T (Y) 6 t

)
= P

(
min

i=1,...,r
max
j∈Ci

Xj 6 t, min
k=1,...,r

max
l∈Ck

Yl 6 t
)

= P ©«
{

r⋃
i=1

Ai,t

} ⋂ 
r⋃

j=1
Bj,t

ª®¬ = P ©«
r⋃

i,j=1

(
Ai,tBj,t

)ª®¬ .
Taking the Archimedean copula K(u1, . . . , u2n) = i

( ∑2n
i=1 k(ui)

)
into account, we further have

Hs(t) =

r∑
i=1

r∑
j=1

P(Ai,tBj,t) −
r∑

i=1

∑
16l<k6r

P(Ai,tBl,tBk,t) −
∑

16i<j6r

r∑
k=1

r∑
l=1

P(Ai,tAj,tBl,tBk,t)

+ · · · · · · + (−1)r2−1P

(
r⋂

i=1
Ai,tBi,t

)
=

r∑
i=1

r∑
j=1

KCi∪Cj

(
F (t), . . . , F (t)

)
−

∑
16i<j6r

r∑
k=1

r∑
l=1

KCi∪Cj∪Cl∪Ck

(
F (t), . . . , F (t)

)
−

r∑
i=1

∑
16l<k6r

KCi∪Cl∪Ck

(
F (t), . . . , F (t)

)
+ · · · + (−1)r2+1K

(
F (t), . . . , F (t)

)
. (5.3)

As per (5.2), r(u) = Hs
(
F−1(h−1(u))

)
for u ∈ (0, 1). Now, from (5.3), it follows that

r(u) =

r∑
i=1

r∑
j=1

KCi∪Cj

(
h−1(u), . . . , h−1(u)

)
−

∑
16i<j6r

r∑
k=1

r∑
l=1

KCi∪Cj∪Cl∪Ck

(
h−1(u), . . . , h−1(u)

)
−

r∑
i=1

∑
16l<k6r

KCi∪Cl∪Ck

(
h−1(u), . . . , h−1(u)

)
+ · · · + (−1)r2+1K

(
h−1(u), . . . , h−1(u)

)
. (5.4)

(i) By (5.1) and (5.2), if h
(
i(2k(u))

)
/r

(
h(u)

)
is increasing in u ∈ (0, 1), then, Hc (t)

Hs (t) =
h(i (2k (F (t) ) ) )

r (h(F (t) ) )
is increasing in t > 0. That is, T (X ∨ Y) ≥rh T (X) ∨ T (Y).

(ii) Since 1−h(i (2k (u) ) )
1− r (h(u) ) is increasing, it holds that H̄c (t)

H̄s (t) =
1−h(i (2k (F (t) ) ) )

1− r (h(F (t) ) ) is increasing, and this
yields T (X ∨ Y) ≥hr T (X) ∨ T (Y).

(iii) Owing to (5.1) and (5.2), T (X ∨ Y) and T (X) ∨ T (Y) attains their pdf’s

H′
c (t) = 2h′

(
i(2k(F (t)))

)
i′ (2k(F (t)))k′ (F (t))F′ (t), H′

s (t) = r′
(
h(F (t))

)
h′ (F (t))F′ (t),

respectively. As a result, if h′ (i (2k (u) ) )i′ (2k (u) )k′ (u)
r′ (h(u) )h′ (u) is increasing in u ∈ (0, 1), then,

H′
c (t)

H′
s (t)

=
2h′

(
i(2k(F (t)))

)
i′ (2k(F (t)))k′ (F (t))

r′
(
h(F (t))

)
h′ (F (t))
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is increasing in t > 0. That is, T (X ∨ Y) ≥lr T (X) ∨ T (Y). �

It is worth remarking here that both h and ϱ depend only on the system structure and the dependence
structure of component lifetimes. For coherent systems with component and redundancy lifetimes cou-
pled by an Archimedean copula, Theorem 5.1 presents necessary and sufficient conditions based on
(5.1) and (5.2) for the BP principle in the sense of the reversed hazard rate order, the hazard rate order,
and the likelihood ratio order, respectively. Next, we pay attention to Tc = (X1 ∨ Y1) ∧ (X2 ∨ Y2) and
Ts = (X1 ∧ Y1) ∨ (X2 ∧ Y2), two versions of the series system T (X1, X2) = X1 ∧ X2 with redundancies
Y1, Y2.

Corollary 5.2. Suppose that X1, X2, Y1, Y2 are homogeneous and linked by Archimedean copula Ki .
Then, (i) Tc ≥rh Ts if 3i (4t)−4i (3t)

2i (2t)−i (4t) is increasing, and (ii) Tc ≥lr Ts if i′ (4t)−i′ (3t)
i′ (2t)−i′ (4t) is increasing.

Proof. Denote F the common cdf of X1, X2, Y1, Y2. The system lifetime T (X) = X1 ∧ X2 gets cdf
H (t) = P(X1 ∧ X2 6 t) = 2F (t) − i

(
2k(F̄ (t))

)
. Thus, the distortion function

h(u) = 2u − i
(
2k(u)

)
, for u ∈ (0, 1). (5.5)

Since T (X) has only two minimal cut sets C1 = {1} and C2 = {2}. From (5.3), it follows that

Hs(t) = P ©«
2⋃

i=1

2⋃
j=1

{
Xi 6 t, Yj 6 t

}ª®¬ = 4i
(
2k(F (t))

)
− 4i

(
3k(F (t))

)
+ i

(
4k(F (t))

)
, t > 0,

and thus, we have, for t > 0,

r(u) = Hs
(
F−1 (h−1(u)

) )
= 4i

(
2k

(
h−1(u)

) )
− 4i

(
3k

(
h−1(u)

) )
+ i

(
4k

(
h−1(u)

) )
. (5.6)

(i) By (5.6) and (5.5), we have

r
(
h(u)

)
h
(
i
(
2k(u)

) ) =
4i

(
2k(u)

)
− 4i

(
3k(u)

)
+ i

(
4k(u)

)
2i

(
2k(u)

)
− i

(
4k(u)

) = 2 +
3i

(
4k(u)

)
− 4i

(
3k(u)

)
2i

(
2k(u)

)
− i

(
4k(u)

) .

Since k(u) is decreasing and 3i (4t)−4i (3t)
2i (2t)−i (4t) is increasing, we conclude that 3i (4k (u) )−4i (3k (u) )

2i (2k (u) )−i (4k (u) ) is
decreasing and then h(i (2k (u) ) )

r (h(u) ) is increasing. Now, based on Theorem 5.1, we reach Tc ≥rh Ts.
(ii) Based on (5.5) and (5.6), we have

h′
(
i
(
2k(u)

) )
i′ (2k(u))k′ (u) =

[
h
(
i(2k(u))

) ] ′/2 = 2k′ (u)
[
i′ (2k(u)) − i′ (4k(u))

] ′,
r′

(
h(u)

)
h′ (u) =

[
r
(
h(u)

) ] ′
= 4k′ (u)

[
2i′ (2k(u)) − 3i′ (3k(u)) + i′ (4k(u)) ] .

Hence, it holds that

r′
(
h(u)

)
h′ (u)

h′
(
i
(
2k(u)

) )
i′ (2k(u))k′ (u)

= 4 + 6
i′ (4k(u)) − i′ (3k(u))
i′ (2k(u)) − i′ (4k(u)) .
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Sincek(u) is decreasing and i′ (4t)−i′ (3t)
i′ (2t)−i′ (4t) is increasing, i′ (4k (u) )−i′ (3k (u) )

i (2k (u) )−i′ (4k (u) ) is decreasing and hence
h′ (i (2k (u) ) )i′ (2k (u) )k′ (u)

r′ (h(u) )h′ (u) is increasing. Thus, we reach Tc ≥lr Ts owing to Theorem 5.1(ii).
�

For a two-component series system with Archimedean copula of component and redundancy life-
times, Corollary 5.2 presents sufficient conditions for BP principle in the sense of the likelihood ratio
order and reversed hazard rate order, respectively. It is routine to check that

( et−1
1−e2t

) ′
= et (et−1)2

(1−e2t )2 ≥ 0
for all t > 0. Therefore, corresponding to the independent copula the generator i(t) = e−t is such that
i′ (4t)−i′ (3t)
i′ (2t)−i′ (4t) = et−1

1−e2t increases in t > 0. This invokes the condition (ii) of Theorem 5.2. Therefore, the
redundancy at component level outfits the redundancy at system level in the sense of the likelihood ratio
order. Besides, as is illustrated by Example 5.3, Clayton copula also fulfills such a sufficient condition.

Example 5.3. Suppose homogeneous lifetimes X1, X2, Y1, Y2 are linked by Clayton copula with gen-
erator i(t) = (1 + t)−1. Since i′ (t) = −(1 + t)−2 and hence i′ (4t)−i′ (3t)

i′ (2t)−i′ (4t) = − 1
4 l(t), where l(t) =

(2 + 15t + 36t2 + 28t3)/(1 + 3t)3 is such that l′ (t) = −3 1+6t+8t2
(1+3t)4 ≤ 0, l(t) is decreasing and hence

i′ (4t)−i′ (3t)
i′ (2t)−i′ (4t) is increasing. Thus, the condition of Theorem 5.2(ii) is fulfilled.

Denote Δ1(t) = 3i(4t) − 4i(3t) and Δ2(t) = 2i(2t) − i(4t). If i′ (4t)−i′ (3t)
i′ (2t)−i′ (4t) is increasing, then, the

ratio Δ′
1 (t)

Δ′
2 (t)

= 3 i′ (4t)−i′ (3t)
i′ (2t)−i′ (4t) is increasing. That is, Δ′

1 (x)
Δ′

2 (x)
≤ Δ′

1 (y)
Δ′

2 (y)
for y > x > 0. Since i′ is increasing, it

holds that Δ′
2(x)Δ

′
2(y) > 0 for y > x > 0 and hence Δ′

1(x)Δ
′
2(y) ≤ Δ′

1(y)Δ
′
2(x) for y > x > 0. In view

of lim
t→+∞

i(t) = 0, we have

−Δ′
1(x)Δ2(x) = Δ′

1(x)
∫ +∞

x
Δ′

2(y)dy ≤
∫ +∞

x
Δ′

1(y)dyΔ′
2(x) = −Δ′

2(x)Δ1(x),

which implies that
(
Δ1 (x)
Δ2 (x)

) ′
=

Δ′
1 (x)Δ2 (x)−Δ′

2 (x)Δ1 (x)
Δ2

2 (x)
≥ 0 for all x > 0. Since i′ (4t)−i′ (3t)

i′ (2t)−i′ (4t) is increasing in

> 0, we conclude that 3i (4t)−4i (3t)
2i (2t)−i (4t) is also increasing in t > 0.

Lemma 2.2 ensures that X ∨ Y inherits the dependence structure of X whenever (X, Y) are of an
Archimedean copula, and this plays a critically important role in developing the proof of the main
results in this section. As for more general copulas, such a nice result is not necessarily true any more
(see Example 3.1), and thus we encounter here the difficulty in extending the preceding results to other
kinds of copulas.

6. Systems with i.i.d. component and redundancy lifetimes

As is remarked in Section 1, most of the research on BP principle in the literature are performed for
i.i.d. component and redundancy lifetimes. Since the independence copula is one typical member of
the Archimedean family, in this section, we present several corollaries of Theorem 5.1 to justify those
typical results on the BP principle in related references.

Note that the system distortion transform h̄(u) = 1 − h(1 − u) on (0, 1), the generator i(t) = e−t for
the independence copula has general inverse k(u) = − ln u such that i(2k(u)) = u2 on (0, 1), and due
to the independence the dual distortion function r(u) = u2 on (0, 1).

Corollary 6.1. Suppose that lifetimes (X, Y) are i.i.d.. Then, T
(
X ∨ Y

)
≥rh T (X) ∨ T (Y) whenever

(1 − u)h̄′ (u)/[1 − h̄(u)] is increasing on (0, 1).
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Proof. Note that r(u) = u2, i(t) = e−t , k(u) = − ln u and i(2k(u)) = u2. It holds that

[(u) =
h
(
i(2k(u))

)
r
(
h(u)

) =
1 − h̄(1 − u2)
[1 − h̄(1 − u)]2 , for all u ∈ (0, 1).

Since 1 − u2 > 1 − u for u ∈ (0, 1), the increasing property of (1 − u)h̄′ (u)/[1 − h̄(u)] implies that

[′ (u) ∝ 2uh̄′ (1 − u2) [1 − h̄(1 − u)]2 − 2[1 − h̄(1 − u2)] [1 − h̄(1 − u)]h̄′ (1 − u)

∝ u
h̄′ (1 − u2)

1 − h̄(1 − u2)
− h̄′ (1 − u)

1 − h̄(1 − u)

∝ [1 − (1 − u2)] h̄′ (1 − u2)
1 − h̄(1 − u2)

− [1 − (1 − u)] h̄′ (1 − u)
1 − h̄(1 − u)

> 0, for all u ∈ (0, 1),

and hence [(u) is increasing in u ∈ (0, 1). Consequently, T
(
X ∨ Y

)
≥rh T (X) ∨ T (Y) follows from

Theorem 5.1(i) immediately. �

It should be remarked that Theorem 3.2 of [15] built the BP principle in the sense of the reversed
hazard rate order in the context that (1 − u)h̄′ (u)/[1 − h̄(u)] is increasing and u > h̄(u) on (0, 1). As
per Corollary 6.1, u > h̄(u) on (0, 1) is superfluous.

Corollary 6.2. Suppose that (X, Y) are i.i.d.. Then, T
(
X ∨ Y

)
≥hr T (X) ∨ T (Y) if h̄(u) = 1− h(1− u)

is such that (i) uh̄′ (u)/h̄(u) is decreasing and (ii) u > h̄(u) for u ∈ (0, 1).

Proof. Similar to Corollary 6.1, it holds that ℓ(u) = 1−h(i (2k (u) ) )
1− r (h(u) ) =

h̄(1−u2 )
h̄(1−u) [2−h̄(1−u) ] and hence

ℓ′ (u) ∝ −2uh̄′ (1 − u2) [2 − h̄(1 − u)]h̄(1 − u) − 2h̄(1 − u2)h̄′ (1 − u) [−1 + h̄(1 − u)]

∝ (1 − u) h̄′ (1 − u)
h̄(1 − u)

1 − h̄(1 − u)
2 − h̄(1 − u)

1 + u
u

− (1 − u2) h̄′ (1 − u2)
h̄(1 − u2)

= W(u).

Since h̄(1−u) 6 1−u implies u 6 1−h̄(1−u) on (0, 1) and x
1+x is increasing, it holds that 1−h̄(1−u)

1+(1−h̄(1−u) ) >
u

1+u for all u ∈ (0, 1). Owing to the decreasing uh̄′ (u)/h̄(u), we conclude that

ℓ′ (u) ∝ W(u) > (1 − u) h̄′ (1 − u)
h̄(1 − u)

− (1 − u2) h̄′ (1 − u2)
h̄(1 − u2)

> 0, for all u ∈ (0, 1),

that is, ℓ(u) is increasing. Thus, T
(
X ∨ Y

)
≥hr T (X) ∨ T (Y) follows from Theorem 5.1(ii). �

It should be mentioned here that Theorem 2 of [5] developed the sufficient condition of Corollary
6.2, which gives rise to the characterization of Theorem 5.1(ii).

Corollary 6.3. Suppose that (X, Y) are i.i.d.. Then, T
(
X ∨ Y

)
≥lr T (X) ∨ T (Y) if and only if uh′ ( (u2 )

h′ (u)h(u)
is increasing on (0, 1).

Proof. In view of r(u) = u2, i(t) = e−t , k(u) = − ln u, and i(2k(u)) = u2, we have
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h′
(
i(2k(u))

)
i′ (2k(u))k′ (u)

r′
(
h(u)

)
h′ (u)

=
uh′ (u2)

2h′ (u)h(u) , for all u ∈ (0, 1).

Therefore, T
(
X ∨ Y

)
≥lr T (X) ∨ T (Y) follows directly from Theorem 5.1(iii). �

According to Theorem 3.2 of [24], T
(
X ∨ Y

)
≥lr T (X) ∨ T (Y) if and only if 1−h̄(u)

1−u
h̄′ (u)

h̄′ (u(2−u) ) is
increasing in u ∈ (0, 1). It is not difficult to check that such a characterization result is equivalent to the
necessary and sufficient condition of Corollary 6.3. As thus, Theorem 5.1(iii) serves as one substantial
generalization of Theorem 3.2 of [24].

Denote Tk,n(X) = Xn−k+1:n the lifetime of k-out-of-n:G system, k = 1, . . . , n.

Corollary 6.4. If (X, Y) are i.i.d., then, Tk,n
(
X ∨ Y

)
≥lr Tk,n(X) ∨ Tk,n (Y) for k = 1, . . . , n.

Proof. For n= 1, T1,n
(
X ∨ Y

)
= max

16i6n
Xi ∨ Yi = max{T1,n(X), T1,n(Y)}, the likelihood ratio order is

trivially true. Let us assume 2 6 k 6 n. Denote F and f the cdf and pdf of X1, respectively. In according
to [8], Tk,n(X) has the cdf K (t) = h

(
F (t)

)
, where

h(u) =
∫ u

0

n!
(n − k)!(k − 1)!v

n−k (1 − v)k−1dv, for any v ∈ (0, 1).

Since (X, Y) are i.i.d., the system lifetime Ts = Tk,n(X) ∨ Tk,n(Y) attains cdf Hs(t) =

P
(
Tk,n(X) ∨ Tk,n(Y) 6 t

)
= K2(t) = [h(F (t))]2 = r

(
h(F (t))

)
, where r(u) = u2.

In the setting of independent component and redundancy lifetimes, we have i(t) = e−t and k(u) =
− ln u. Since r′ (u) = 2u and h′ (u) = n!

(n−k)!(k−1)!u
n−k (1 − u)k−1, it is easy to check that

h′
(
i(2k(u))

)
i′ (2k(u))k′ (u)

r′
(
h(u)

)
h′ (u)

= un−k+1(1 + u)k−1
/

2
∫ u

0
vn−k (1 − v)k−1dv.

According to the proof of the technical lemma in [34], this ratio is increasing in u ∈ (0, 1). Thus, the
desired order follows as a direct consequence of Theorem 5.1(ii). �

For k-out-of-n:G systems with i.i.d. component and redundancy lifetimes, [34] independently proved
the BP principle in terms of the likelihood ratio order. As thus, Theorem 5.1(ii) forms as an essential
extension of the result in the setting of component and redundancy lifetimes linked by an Archimedean
copula.
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