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Abstract.
We study the excitation and damping of transverse oscillations in a complex multi-stranded

model of a coronal loop. By numerically solving the time-dependent magnetohydrodynamic
(MHD) equations in two dimensions, we show how the global motion of the whole bundle of
tubes, produced by an external disturbance, is converted into localised motions due to the
process of resonant absorption. At any location in the structure two dominant frequencies are
found, the frequency of the global mode (different from the kink frequency of the individual
strands) and the local Alfvén frequency. The mechanism of mode conversion is not affected by
the complicated geometry of the system and for certain configurations the energy conversion
does not only take place at the external edge of the composite loop but also inside the structure.
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1. Introduction
The resonant conversion of wave energy from global large scale motions to localised

Alfvén modes has been invoked as a possible candidate to explain the damping of coronal
loop oscillations (Hollweg & Yang 1988; Goossens et al. 1992; Ruderman & Roberts
2002; Goossens et al. 2002, Terradas et al. 2006a). The theoretical models that have
been studied so far are simple but necessary to understand the main properties of this
damping mechanism. The most popular models are smooth transition layers, slab models
and straight cylindrical loops. Other effects have been also investigated. The effects of
background flows have been investigated for example by Hollweg et al. (1990) and Erdélyi
& Goossens (1996). The curvature effect has been studied by Van Doorsselaere et al.
(2004) and Terradas et al. (2006b), and the influence of stratification along the loop
has been analysed by Andries et al. (2005) and by Arregui et al. (2005). The effect of
non-circularity of the tube cross-section has been analysed by Ruderman (2003) and
Ruderman & Erdélyi (2004), while the effect of the internal structure in loops has been
studied by Arregui et al. (2007). The overall conclusion of these recent investigations
is that these new ingredients do not significantly change the damping per period of
the oscillations. This suggests that resonant absorption is a robust mechanism whose
efficiency is not easily affected by second-order effects.

Nevertheless, the new models are still too simple compared with the real conditions in
coronal loops. For example, there is observational information suggesting that loops are
not monolithic (as they are usually modelled) but that they are formed by bundles of
individual strands considered as mini-loops for which the heating and plasma properties
are approximately uniform in the transverse direction (Schmeltz et al. 2005). This view
is supported by some authors (Martens et al. 2005, Klimchuck 2006) but not by others
(Aschwanden & Nitghtingale 2005, Aschwanden 2005).

The purpose of this paper is to study the effect of the internal structure and arbitrary
geometry on the damped transverse coronal loop oscillations. We use a composite loop

116

https://doi.org/10.1017/S1743921308014762 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308014762


Resonant absorption in multi-stranded loops 117

model and we adopt a direct approach, instead of calculating the eigenmodes of the
structure, which is difficult due to the complicated geometry, we investigate the dynamical
response of the loop to an initial disturbance. This allows us to analyse how the energy
from the global mode is converted into localised motions in the inhomogeneous regions
of the loop.

2. Model and Governing MHD Equations
In our model the magnetic field is straight, uniform and pointing in the z−direction,

B = B0 êz . We adopt the zero−β approximation, under such condition the density
profile can be chosen arbitrarily. To model a bundle of loops we use a superposition
of tiny, parallel tubes with different radii and densities. In Cartesian coordinates, the
cross-section of the density of each individual strand is assumed to have following form,

ρi(x, y) = ρ0i exp
[
− (x − xi)2 + (y − yi)2

a2
i

]
, (2.1)

where ρ0i is the maximum density of the strand, xi and yi the position of the strand axis
and ai the strand half-width. The density of the multi-stranded model composed of N
strands is simply defined as

ρ0(x, y) =
N∑

i=1

ρi(x, y) + ρe, (2.2)

ρe being the density of the external medium. In Fig. 1 the two-dimensional distribution
of the density (the cross section of the composite loop) is plotted for a particular con-
figuration based on Eqs. (2.1) and (2.2). We see that in this model the loop density has
an inhomogeneous distribution with a quite irregular cross section. This model has a
complex geometry compared with the usual cylindrical tube or even the elliptical cross
section model studied by Ruderman (2003) and Ruderman & Erdélyi (2004).

To study small amplitude perturbations in this equilibrium we use the linearised ideal
MHD equations. The equilibrium depends on x and y but it is independent of the vertical
coordinate z. For this reason, we Fourier analyse in this direction assuming a dependence
of the form e−ikz z . We concentrate on the fundamental mode, with kz = π/L0 , being L0
the length of the loop (here we use L0 = 20L, L being the typical mean tube radius).
Under these assumptions the MHD equations are,

ρ0
∂vx

∂t
+

B0

µ

(
ikz bx +

∂bz

∂x

)
= 0 , (2.3)

ρ0
∂vy

∂t
+

B0

µ

(
ikz by +

∂bz

∂y

)
= 0 , (2.4)

∂bx

∂t
+ B0ikz vx = 0 , (2.5)

∂by

∂t
+ B0ikz vy = 0 , (2.6)

∂bz

∂t
+ B0

(
∂vx

∂x
+

∂vy

∂y

)
= 0 , (2.7)

where v = (vx, vy , 0) is the velocity and b = (bx, by , bz ) is the perturbed magnetic field.
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Figure 1. Cross section of the density of our multi-stranded loop model. For this particular
configuration the loop is composed of 10 individual strands with widths that vary from 0.2L to
0.3L. The external density is ρe = 1/3 ρ00 , ρ00 being the maximum value of the density inside
the loop. The contours represent curves of constant Alfvén frequency (given by Eq. (4.1)). The
thick line corresponds to the Alfvén frequency that matches the frequency of the global mode.
The lengths are normalised to L.

The initial perturbation is located in the external medium and for simplicity we assume
the following form

vy (x, y) = vy0 exp
[
− (y − y0)2

w2

]
, (2.8)

where y0 is the position of the centre of the disturbance and w is its width (here we use
y0 = 3L and w = L). All other MHD variables are initially set to zero. This perturbation
is a planar pulse which produces the excitation of fast MHD waves that propagate and
interact with the loop structure.

3. Numerical Method
To numerically solve the time-dependent MHD equations, Eqs. (2.3)−(2.7), together

with the initial condition, Eq. (2.8), we use the code CLAWPACK (LeVeque 2002).
This code implements a wide class of methods for solving linear or nonlinear hyperbolic
problems. One of the difficulties of the problem that we are studying is the small spatial
scales that are generated in the inhomogeneous layers. The resolution must be sufficiently
high to resolve the different scales. For this reason we have performed high resolution
simulations (typically with a grid of 4000×4000 points). To avoid significant reflections we
have applied transparent boundary conditions at the domain limits, located at xB = ±8L,
yB = ±8L. In order to better interpret and visualise the results the plots are displayed
in a small spatial domain ([−1.6L, 1.6L] × [−1.6L, 1.6L]).

4. Results and Discussion
The initial pulse produces a displacement of the whole ensemble of strands basically

in the y−direction. Due to the effect of the line-tying the system periodically oscillates
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with certain frequencies. An analysis inside the loop shows that there are two dominant
frequencies at each point, one is the collective frequency of the bundle of loops (different
from the kink frequency of the individual strands) and the other is the local Alfvén
frequency. In our configuration the Alfvén frequency is

ωA (x, y) = kzvA (x, y) = kz
B0√

µρ0(x, y)
, (4.1)

and it depends on x and y. Contours of constant ωA are represented in Fig. 1 with
continuous lines.

Figure 2. Left panels: Time evolution of the vy velocity component at two different positions,
x = 0.0L, y = 0.5L and x = 0.9L, y = 0.0L. Right panels: Power spectrum of the corresponding
velocity signal. The local Alfvén frequencies, calculated from the function ωA (x, y), at the coor-
dinates of the previous points are represented with dot-dashed lines. The time is normalised to
the Alfvén transit time τA = VA 0/L.

The collective frequency is the result of the excitation of the global mode of the system.
In Fig. 2 (upper row) the vy velocity component as a function of time and its power
spectrum are represented at an interior point (x = 0.0L, y = 0.5L). The two dominant
frequencies, the local Alfvén frequency and the global frequency (with the largest power)
are clearly identified. Note also the strong decrease of the amplitude with time. On the
other hand, in Fig. 2 (lower row) we see that at the point x = 0.9L, y = 0.0L the
behaviour of the signal is completely different. There is just one single peak since the
local and the global frequencies coincide. At this position the amplitude of the vy velocity
component grows with time.

To explain these two different behaviours we need to understand the evolution of the
whole system. In Fig. 3 the evolution of the velocity field is shown at different times in
two dimensions. We can see that after the excitation large amplitude velocities develop
specially near the loop boundaries. This is the consequence of the energy conversion
between the global mode and the Alfvén modes. Due to this process the global oscillation
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losses its energy and its amplitude is attenuated in time (see for example the length of the
arrows at the centres of the individual strands in Fig. 3 for t = 160 τA or the amplitude
of the oscillations in the upper left panel of Fig. 2). This eventually causes that only the
local Alfvén modes remain. The excitation of these modes is already known, specially in
driven problems (see for example Mann et al. 1995, Tirry et al. 1997 and Goossens &
De Groof 2001). An interesting question here is the amount of energy that is deposited
in these modes (this issue is addressed in Terradas et al. 2007). On the other hand,
the amplitude of the Alfvén modes increases at the resonant layers where the energy
conversion takes place (see the large arrows at the loop boundaries in Fig. 3 and see also
the lower left panel of Fig. 2). Since the Alfvén frequency changes with position these
modes get out of phase very quickly due to phase mixing (see also Terradas et al. 2006a in
a cylindrical loop). The consequence of this process is visible at the external boundaries
where strong shear motions develop (see the large arrows, aligned with the contours of
the Alfvén frequency, oscillating in opposite directions).

Figure 3. Time evolution of the velocity field. The loop initially oscillates in the y direction
with the global mode. Due to the mode conversion motions localised on the magnetic surfaces
develop (see the contours of constant Alfvén frequency represented with continuous lines). The
velocity in the interior points attenuates due to the transfer of energy to the resonant layers.

To illustrate the process of energy conversion it is useful to calculate the wave energy
as a function of time. In our system there are only contributions from the kinetic and
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the magnetic energy,

E =
1
2

[
ρ0

(
v2

x + v2
y

)
+

1
µ

(
b2
x + b2

y + b2
z

)]
. (4.2)

This quantity is represented in Fig. 4 at different times (same as in Fig. 3). The plots
show that the system evolves from a situation where the energy is more or less uniformly
distributed to a state where it is very concentrated around the resonant layers (see
the dark areas on the left and right loop edge). In fact the system evolves so that at
t = 160 τA the resonance energy width is quite small (see Mann et al. 1995 and Terradas
et al. 2006a). Note also that the energy decreases with time at the interior points, except
for the area around x = 0.25L, y = −0.25L.

Figure 4. Time evolution of the energy distribution for the same simulation as in Fig. 3.
Due to the mode conversion between the global and the localised modes, the energy tends to
be concentrated around the resonant layer (external boundary and the internal hole, see also
Fig. 1). On the contrary, the energy decreases in most of the internal parts of the loop. The
contours of constant Alfvén frequency are also represented.

Once we know the frequency of the global mode (basically the dominant peak on the
top right panel of Fig. 2) the location of the resonance involving the quasi-mode can be
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determined. In Fig. 1 contours of the Alfvén frequency (ωA ) are represented together
with this global frequency (see the contour with the thick line). In this figure we see
where the energy conversion takes place, basically at the external edge of the loop but in
addition some part of the energy is deposited inside the loop (see the small hole around
x = 0.25L, y = −0.25L), which is precisely where the energy maps show a location
of enhanced energy. Thus, for this particular multi-stranded model resonant absorption
not only takes place at the external boundaries, some energy is also deposited in the
internal part of the loop. This demonstrates that resonant absorption works even in
quite irregular geometries like the one studied in this paper and that regular magnetic
surfaces (considered in previous works) are not necessary for this mechanism to work
efficiently. Further details will be given in a forthcoming paper (Terradas et al. 2007).
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