
J. Aust. Math. Soc. 91 (2011), 421–429
doi:10.1017/S1446788712000018

GENERATORS OF THE EISENSTEIN–PICARD
MODULAR GROUP

JIEYAN WANG, YINGQING XIAO ˛ and BAOHUA XIE

(Received 11 November 2010; accepted 7 October 2011)

Communicated by M. G. Cowling

Abstract

We prove that the Eisenstein–Picard modular group SU(2, 1; Z[ω3]) can be generated by four given
transformations.
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1. Introduction

The Picard modular groups SU(2, 1; Od) are the subgroups of SU(2, 1) with entries
in Od. Here Od is the ring of algebraic integers in the imaginary quadratic number field
Q(i
√

d) for any positive square-free integer d. If d ≡ 1, 2 mod 4, then Od = Z[i
√

d], and
if d ≡ 3 mod 4, then Od = Z[ 1

2 (1 + i
√

d)]. It is well known that the ring Od is Euclidean
for positive square-free integers d if and only if d = 1, 2, 3, 7, 11.

The Picard modular groups SU(2, 1; Od) are the simplest arithmetic lattices in
SU(2, 1). In the case that d ≡ 3 mod 4, the ring Od can be described as Od =

Z[ 1
2 (−1 + i

√
d)]. Here the ring Z[ 1

2 (−1 + i
√

d)] is isomorphic to the ring Z[ 1
2 (1 + i

√
d)].

The Picard modular groups can also be denoted by SU(2, 1; Z[ωd]) if we let ωd =
1
2 (−1 + i

√
d).

In general the presentation of a group can be obtained by constructing an explicit
fundamental domain. Falbel and Parker (see [4]) studied the Eisenstein–Picard group
SU(2, 1; Z[ω3]) and gave a system of generators and the corresponding presentation
for this lattice. They similarly obtained a presentation of the Gauss–Picard modular
group SU(2, 1; Z[i]) in [3].

In [2] the authors used a constructive method to obtain a finite system of
generators for the Gauss–Picard modular group SU(2, 1; Z[i]). More precisely, they
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proved that the Gauss–Picard modular group SU(2, 1; Z[i]) can be generated by four
transformations: two Heisenberg translations, a rotation and an involution. Their
description was applied to instanton corrections in string theory in [1].

It would be interesting to know whether the method used in [2] can be extended to
the Euclidean Picard modular groups SU(2, 1; Od) for d = 2, 3, 7, 11. In this note we
show that the method used in [2] can applied to the Eisenstein–Picard modular group
SU(2, 1; Z[ω3]) and obtain a simple description of this group in terms of its generators.
Recently, using a different method, Zhao found generators of the Euclidean Picard
modular groups SU(2, 1; Od) for d = 2, 7, 11 in [11].

In this paper we find a connection between the generators of the Eisenstein–Picard
modular group SU(2, 1; Z[ω3]) given in [4] and the generators given in this note. This
connection leads to a new presentation of the lattice.

This paper is organized as follows. In Section 2 we introduce some basic general
definitions and results from complex hyperbolic geometry and the Picard modular
groups. The main result and its proof appear in Section 3.

2. Preliminaries

In this section we recall some basic definitions and results from complex hyperbolic
geometry which can be found, for example, in [2, 7–10].

Let C2,1 denote the three-dimensional complex vector space C3 equipped with the
Hermitian form

〈z, w〉 = w∗Jz = z1w3 + z2w2 + z3w1

of signature (2, 1). Here the matrix J is defined by

J =

0 0 1
0 1 0
1 0 0


and the vectors z and w have the form

z = (z1, z2, z3)t, w = (w1, w2, w3)t

where we denote by xt the transpose of the vector x.
Let z ∈ C2,1. Then 〈z, z〉 is real. Thus we can define subsets V0, V− of C2,1 by

V0 = {z ∈ C2,1 − {0} | 〈z, z〉 = 0},

V− = {z ∈ C2,1 | 〈z, z〉 < 0}.

The complex hyperbolic space H2
C is defined to be the complex projective subspace

P(V−) equipped with the Bergman metric where

P : C2,1 − {0} → CP2

is the canonical projection onto the complex projective space. The boundary of the
complex hyperbolic space is defined to be ∂H2

C = P(V0).
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Using nonhomogeneous coordinates, we see that the complex hyperbolic space H2
C

is equal to the Siegel domain
z1

z2

1

 ∈ CP2 | 2 Re(z1) + |z2|
2 < 0

 .
Let N denote the Heisenberg group which is equal to the set C × R with the product

(z1, t1)(z2, t2) = (z1 + z2, t1 + t2 + 2 Im(z1z̄2)).

Then H2
C can be parameterized in horospherical coordinates by (z, t, u) ∈ N × R+ with

the connection map

(z, t, u)→

(−|z|
2 − u + it)/2

z
1

 .
The boundary of the complex hyperbolic space ∂H2

C can be identified with the one-
point compactification N̄ = N

⋃
{q∞} by the stereographic projection. Here q∞ =

(1, 0, 0)t denotes the point at infinity.
The holomorphic isometry group of H2

C is PU(2, 1). Recall that PU(2, 1) is
the projectivization of the special unitary group SU(2, 1) that preserves the above
Hermitian form. The matrix G = (g jk)3

j,k=1 ∈ SU(2, 1) satisfies the condition

G∗JG = J.

Here G∗ denotes the conjugate transpose of the matrix G and the determinant of the
matrix G is normalized to be equal to 1. The Picard modular groups SU(2, 1; Od) are
discrete holomorphic automorphism subgroups of H2

C. The stabilizer subgroup Γ∞ of
q∞ in SU(2, 1) contains three important classes of elements, namely the Heisenberg
translations, dilations and rotations.

The Heisenberg translation by (z, t) ∈ ∂H2
C is given by the matrix

N(z,t) ≡

1 −z̄ (−|z|2 + it)/2
0 1 z
0 0 1

 .
The two Heisenberg translations N(z1,t1) and N(z2,t2) have product

N(z1,t1) ◦ N(z2,t2) = N(z1+z2,t1+t2+2 Im(z1 z̄2))

which is the Heisenberg translation corresponding to the product of the two points
(z1, t1) and (z2, t2) in the Heisenberg group N.

The Heisenberg rotation by β ∈ S1 is given by the matrix

Mβ ≡

1 0 0
0 β 0
0 0 1

 .
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The Heisenberg dilation by λ ∈ R+ is given by the matrix

Aλ ≡

λ 0 0
0 1 0
0 0 λ−1

 .
The holomorphic involution R swaps the point q0 = (0, 0) ∈ ∂H2

C and the point at
infinity q∞. It is given by the matrix

R ≡

0 0 1
0 −1 0
1 0 0

 .
Using the Langlands decomposition, any element P ∈ Γ∞ can be decomposed into a
product of a Heisenberg translation, a dilation and a rotation. Thus all elements of Γ∞
can be written in the form

P =

p11 p12 p13

0 p22 p23

0 0 p33

 = N(z,t)AλMβ =

λ −βz̄ 1
2 (−|z|2 + it)λ

0 β λ−1z
0 0 λ−1

 . (2.1)

The parameters satisfy the corresponding conditions.
Equation (2.1) tells us that all elements of Γ∞ are upper triangular. However, the

following lemma gives a more precise characterization of the elements of Γ∞. We omit
the proof since it is similar to that of [2, Lemma 1].

L 2.1. Let G = (g jk)3
j,k=1 ∈ SU(2, 1). Then G ∈ Γ∞ if and only if g31 = 0.

In [5, 6] it is shown that the Langlands decomposition (2.1) can also be used to
parameterize a holomorphic automorphism G = (g jk)3

j,k=1 which is not in the subgroup
Γ∞. Let NG(q∞) denote the Heisenberg translation which maps q0 to G(q∞). Then
the transformation P ≡ RN−1

G(∞)G belongs to Γ∞. Hence there are a Heisenberg
translation N, a dilation A and a rotation M satisfying the equation

G = NG(∞)RP = NG(∞)RNAM.

The transformations N and P in the decomposition of G are not necessarily in the
Picard modular groups SU(2, 1; Od) even if G ∈ SU(2, 1; Od). It is clear that the entries
of N and P are not necessarily integers in the ring Od.

3. Main result and proof

We use the notation SU(2, 1; Z[ω3]) to denote the Eisenstein–Picard modular group
with ω3 = (−1 + i

√
3)/2. In this section we extend the techniques of [2] to prove the

following theorem.

https://doi.org/10.1017/S1446788712000018 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000018


[5] The Eisenstein–Picard modular group 425

T 3.1. The Picard modular group SU(2, 1; Z[ω3]) is generated by the
Heisenberg translations

N(ω3,
√

3) =

1 −ω3 ω3

0 1 ω3

0 0 1

 , N(1,
√

3) =

1 −1 ω3

0 1 1
0 0 1

 ,
the rotation

M−ω3 =

1 0 0
0 −ω3 0
0 0 1


and the involution

R =

0 0 1
0 −1 0
1 0 0

 .
In order to prove this theorem we first characterize the elements of the stabilizer

subgroup Γ∞ of q∞ in the Picard modular group SU(2, 1; Z[ω3]).

L 3.2. Let Γ∞(2, 1; Z[ω3]) be the stabilizer subgroup of q∞ in SU(2, 1; Z[ω3]).
Then any element P ∈ SU(2, 1; Z[ω3]) lies in Γ∞(2, 1; Z[ω3]) if and only if the
parameters in the Langlands decomposition of P satisfy the conditions

λ = 1, t ∈
√

3Z, z ∈ Z[ω3], β = ±1, ±ω3, ±ω
2
3

and the integers t/
√

3 and |z|2 have the same parity.

P. It is quite easy to see that λ = 1. Considering the Langlands decomposition
when P ∈ Γ∞(2, 1; Z[ω3]) allows us to deduce that |β| = 1, z ∈ Z[ω3] and t ∈

√
3Z. Since

1
2 (−|z|2 + it) ∈ Z[ω3], t/

√
3 ∈ Z and |z|2 ∈ Z, the integers t/

√
3 and |z|2 have the same

parity. As ω3 is a cube root of unity it follows that β = ±1, ±ω3 or ±ω2
3. �

P 3.3. Let Γ∞(2, 1; Z[ω3]) be the stabilizer subgroup of q∞ in SU(2, 1;
Z[ω3]). Then Γ∞(2, 1; Z[ω3]) is generated by the Heisenberg translations N(ω3,

√
3),

N(1,
√

3) and the rotation M−ω3 .

P. We know that any P ∈ Γ∞(2, 1; Z[ω3]) is upper triangular. By Lemma 3.2 there
is no dilation component in the Langlands decomposition of P, that is,

P = N(z,t)Mβ =

1 −z̄ 1
2 (−|z|2 + it)

0 1 z
0 0 1


1 0 0
0 β 0
0 0 1

 .
Since β6 = 1 the rotation component of P is one of M−ω3 , Mω2

3
= M2

−ω3
, M−1 = M3

−ω3
,

Mω3 = M4
−ω3

, M−ω2
3

= M5
−ω3

or I = M6
−ω3

. Therefore the rotation component of P in the
Langlands decomposition is generated by M−ω3 .
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We now consider the Heisenberg translation component of P, namely N(z,t). Let
z = a + bω3, where a, b ∈ Z since z ∈ Z[ω3]. Then N(z,t) splits as

N(z,t) = N(a+bω3,t) = N(bω3,
√

3b) ◦ N(a,
√

3a) ◦ N(0,t−
√

3ab−
√

3a−
√

3b).

Here N(bω3,
√

3b) can be written in the form N(bω3,
√

3b) = Nb
(ω3,
√

3)
since b ∈ Z. The

Heisenberg translation N(a,
√

3a) can be written in the form N(a,
√

3a) = Na
(1,
√

3)
since a ∈ Z.

To obtain the equality

N(0,t−
√

3ab−
√

3a−
√

3b) = N(t−
√

3(ab+a+b))/2
√

3

(0,2
√

3)

it suffices to show that the number (t −
√

3(ab + a + b))/2
√

3 is an integer. By
Lemma 3.2 the integers t/

√
3 and |z|2 = |a + bω3|

2 = a2 − ab + b2 have the same parity.
It is easy to see that

a2 − ab + b2 + (ab + a + b) = a(a + 1) + b(b + 1) ∈ 2Z.

Hence t/
√

3 and ab + a + b have the same parity. It follows that (t −
√

3(ab +

a + b))/2
√

3 is an integer.
The Heisenberg translation N(0,2

√
3) can be generated by N(1,

√
3) and M−1, that is,

N(0,2
√

3) = (N(1,
√

3) ◦ M−1)2.

Our proposition has now been established. �

P  T 3.1. Let G = (g jk)3
j,k=1 be an element of the group SU(2, 1; Z[ω3]).

Since the result is obviously true when G ∈ Γ∞, which is the stabilizer subgroup of q∞,
we may assume that G does not belong to the subgroup Γ∞.

In this case g31 , 0 by Lemma 3.2 and G maps q∞ to (g11/g31, g21/g31). Since
G(q∞) is an element of ∂H2

C, we see that

2 Re
(g11

g31

)
= −

∣∣∣∣∣g21

g31

∣∣∣∣∣2. (3.1)

Consider the Heisenberg translation NG(q∞) that maps q0 to G(q∞). Note that the
translation NG(q∞) does not necessarily lie in the Picard modular group SU(2, 1; Z[ω3])
except when |g31| = 1. However, we know that

RN−1
G(q∞)G = P.

It is well known that the ring O3 = Z[ω3] is Euclidean. Thus we may successively
approximate N−1

G(q∞) by Heisenberg translations in the Picard modular group and so
decrease the value of |g31|

2 ∈ Z until it becomes 0. Therefore G belongs to the subgroup
Γ∞ by Lemma 3.2 and can be expressed as a product of generators by Proposition 3.3.
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We calculate the entry in the lower left corner of the product

G1 ≡ RN(z,t)G =

0 0 1
0 −1 −z
1 −z̄ (−|z|2 + it)/2

 G.

Now the entry g(1)
31 lying in the lower left corner of G1 = (g(1)

jk )3
j,k=1 is equal to

g(1)
31 = g11 − g21z̄ +

1
2

(−|z|2 + it)g31

= g31

(g11

g31
−

g21

g31
z̄ +

1
2

(−|z|2 + it)
)

= g31

[(
Re

(g11

g31

)
− Re

(g21

g31
z̄
)
−

1
2
|z|2

)
+ i

(
Im

(g11

g31

)
− Im

(g21

g31
z̄
)

+
1
2

t
)]

= g31(I1 + iI2).

We can use (3.1) to simplify I1 to

I1 = −
1
2

∣∣∣∣∣g21

g31
+ z

∣∣∣∣∣2.
Let (g21/g31) = x + iy. Since

z = a + bω3 = (a − 1
2 b) + 1

2 b
√

3i

we can select two appropriate integers a and b satisfying the conditions |x + (a − 1
2 b)| ≤

1
2 and |y + 1

2 b
√

3i| ≤
√

3
4 . Hence we obtain the upper bound

|I1| ≤
1
2

((1
2

)2

+

(√3
4

)2)
=

7
32
.

Choosing some t in I2, we calculate the inequality

|I2| =

∣∣∣∣∣Im(g11

g31

)
− Im

(g21

g31
z̄
)

+
1
2

t
∣∣∣∣∣ ≤
√

3
4

since t ∈
√

3Z. Therefore we have the following estimate for g(1)
31 :

|g(1)
31 |

2 = |g31|
2|I1 + iI2|

2 = |g31|
2(I2

1 + I2
2) ≤ |g31|

2
[( 7

32

)2

+

(√3
4

)2]
<

1
4
|g31|

2.

The preceding inequality tells us that we can reduce the matrix of the transformation
G to the matrix of a transformation Gn with g(n)

31 = 0 by repeating this approximation
procedure finitely many times. Moreover, by Lemma 3.2, this condition implies
that the transformation Gn belongs to the subgroup Γ∞(2, 1; Z[ω3]). As we showed
in Proposition 3.3, the subgroup Γ∞(2, 1; Z[ω3]) can be generated by the Heisenberg
translations N(ω3,

√
3), N(1,

√
3) and the Heisenberg rotation M−ω3 . Since the

approximation procedure just contains the transformations in Γ∞(2, 1; Z[ω3]) and the
transformation R the proof of Theorem 3.1 is now complete. �

https://doi.org/10.1017/S1446788712000018 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000018


428 J. Wang, Y. Xiao and B. Xie [8]

R 3.4. In [4] Falbel and Parker gave the following presentation for the
Eisenstein–Picard modular group PU(2, 1; Z[ω3]):

〈P, Q, R : R2 = (QP−1)6 = PQ−1RQP−1R = P3Q−2 = (RP)3 = 1〉.

Moreover, the stabilizer subgroup of infinity q∞ has the presentation Γ∞ = 〈P, Q〉. Here

P =

1 1 ω3

0 ω3 −ω3

0 0 1

 , Q =

1 1 ω3

0 −1 1
0 0 1

 , R =

0 0 1
0 −1 0
1 0 0

 .
By Proposition 3.3 it is clear that PQ−1 = M−ω3 , Q = N(1,

√
3) ◦ M3

−ω3
and

P = M−ω3 ◦ Q = M−ω3 ◦ N(1,
√

3) ◦ M3
−ω3

.

This means that the subgroup Γ∞ of PU(2, 1; Z[ω3]) can be generated by a
Heisenberg translation N(1,

√
3) and a rotation M−ω3 . Hence the Picard modular group

PU(2, 1; Z[ω3]) is generated by N(1,
√

3), M−ω3 and R.
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