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Abstract. Let X be a real Banach space, 4: X — X a bounded linear operator,
and B: X — X a (possibly nonlinear) continuous operator. Assume that A = 0 is an
eigenvalue of A4 and consider the family of perturbed operators 4 + ¢B, where ¢ is
a real parameter. Denote by S the unit sphere of X and let Sy = SN Ker 4 be the
set of unit 0-eigenvectors of 4. We say that a vector xy € Sy is a bifurcation point
for the unit eigenvectors of A4 + ¢B if any neighborhood of (0,0, x)) e R x R x X
contains a triple (g, A, x) with ¢ # 0 and x a unit A-eigenvector of 4 + ¢B, i.e. x € S
and (4 + eB)x = Ax.

We give necessary as well as sufficient conditions for a unit 0-eigenvector of 4 to
be a bifurcation point for the unit eigenvectors of 4 + ¢ B. These conditions turn out to
be particularly meaningful when the perturbing operator B is linear. Moreover, since
our sufficient condition is trivially satisfied when Ker 4 is one-dimensional, we extend
a result of the first author, under the additional assumption that B is of class C2.

2000 Mathematics Subject Classification.

1. Introduction. The intent of this paper is a nontrivial extension, under some
additional regularity assumptions, of a perturbation result on nonlinear spectral theory
due to the first author (see [1, Theorem 2]). This result can be (re)formulated as follows.

THEOREM 1.1. Let T be a selfadjoint bounded operator on a real Hilbert space H,
and B: H — H a Lipschitz continuous operator. Let S denote the unit sphere of H and
assume that Ly is an isolated simple eigenvalue of T. Then, given one of the two unit
Mo-eigenvectors of H, say xo, there exist o > 0, § > 0, and a neighborhood U of x
such that for every ¢ € (—o, o) one can find a unique L. € (Ao — 8, Ao + 8) and a unique
X € SN U such that

(T + eB)x; = AgX,.

Moreover, the maps € +— L, and ¢ — x, are Lipschitz continuous.
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In some sense, this result asserts that an isolated unit eigenvector of 7" cannot be
destroyed by a small perturbation ¢ B, but just displaced from its original position, still
remaining on the unit sphere S of H.

It is natural to ask what happens if one drops the hypothesis that the eigenvalue
Ao 1s simple. Our feeling is that if its multiplicity is odd (algebraic and geometric
multiplicities are the same in the selfadjoint case), then at least one unit eigenvector of
T + e B survives, provided that the coefficient ¢ is sufficiently small. To be more precise,
our conjecture is that in this case there exists a sequence {(&;, A;, x;)} in R x R x S which
converges to a point (0, Ao, xo) and such that

(T + EiB)Xl' = AiX;, & 75 O, Vi e N.

Clearly, if this happens, xo must be a unit eigenvector of 7" with eigenvalue A.

Unfortunately, we are not able, so far, to prove or disprove this conjecture which,
we believe, is related to the fact that the Euler—Poincaré characteristic of the even
dimensional sphere S N Ker(7T — A¢[l) is nonzero (I denotes the identity on H).

In this work, we tackle a different, but related, problem in the general case in which
the multiplicity of the isolated eigenvalue A is finite. Then, the kernel of the operator
A =T — Aol is nontrivial (i.e., 0 € R is an eigenvalue of 4) and finite dimensional.
Moreover, the unperturbed operator A is Fredholm of index zero (in fact, its image is
the orthogonal complement to its kernel). We consider the set ¥ € R x R x H of the
solutions (e, A, x) of the problem

(A+eB)x=xx, xe€S, (1.1)

and we regard the distinguished subset M = {(0,0, x) € T : Ax = 0} of £ as the set
of trivial solutions of (1.1). Since (X, M) is a topological pair (i.e. M is a subspace of
the topological space X), according to [3], an element py = (0, 0, x9) € M is called a
bifurcation point of this pair (or, equivalently, of problem (1.1)) if any neighborhood
of py contains an element of X\ M, which, in our case, is a nontrivial solution of (1.1).
Since the finite dimensional sphere S4 = S N Ker 4 (of the normalized 0-eigenvectors
of A) may be identified with the distinguished set M, for the sake of simplicity we will
say that an element xo € S4 is a bifurcation point of (1.1) if so is po = (0, 0, xp). From
two results in [3] about this general point of view in bifurcation theory we will deduce
necessary as well as sufficient conditions for a normalized 0-eigenvector of 4 to be a
bifurcation point of (1.1). Since these conditions are trivially satisfied when the sphere
S 4 is zero-dimensional (that is, when 0 is a simple eigenvalue of 4), we extend Theorem
1.1 of the first author, under the additional assumption that B is of class C?, which is
required in order to apply a sufficient condition for bifurcation given in [3].

Our results are particularly meaningful when the perturbing operator B is linear.
In this case a necessary condition for xy € Sy to be a bifurcation point is that xj is an
eigenvector (associated with a real eigenvalue) for the finite dimensional operator

B:KerA — Ker A

defined by x — 7 (Bx), where 7 is the orthogonal projection onto Ker A.

Incidentally, we observe that, in the case when Ker 4 is odd dimensional, this
necessary condition does not contradict our conjecture about the existence of a
bifurcation point: in this case, the characteristic polynomial of the endomorphism
B has a real root. The same necessary condition shows that when the dimension of
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Ker 4 is even, one can always find a bounded linear operator B such that (1.1) does

not have bifurcation points: it is sufficient to define B with B without real eigenvalues.
Still in the case of B linear, a sufficient condition for xy € S, to be a bifurcation

point is that x is an eigenvector of B corresponding to a simple (real) eigenvalue.

For the sake of generality, as well as simplicity in some applications, we will deal
with operators between Banach spaces instead of confining ourselves to the context of
Hilbert spaces. Thus, we shall consider (1.1) where 4 : X — X (X a Banach space) is a
Fredholm operator of index zero with nontrivial kernel and such that Ker 4 @ Im 4 =
X; in fact, we will consider a more general situation, see (3.1) below.

In detail, the plan of this paper is as follows.

In Section 2 we recall the notion of nonlinear Fredholm map between Banach
spaces, a concept which is required in order to state precisely, as Theorem 2.1 and
Theorem 2.2, the two bifurcation results from [3] mentioned above. These results
regard, respectively, a necessary condition and a sufficient condition for bifurcation of
a pair (f~1(0), M), where f is a Fredholm map between Banach spaces and M C f~1(0)
is a differentiable manifold (Theorem 2.2 extends the well-known Crandall-Rabinowitz
sufficient conditions for bifurcation given in [2]).

Section 3 is devoted to statement and proof of our main results: Theorem 3.2
and Theorem 3.4. Essentially these are, respectively, the versions of Theorem 2.1 and
Theorem 2.2 which are appropriate to deal with the operator equation (1.1) in order
to obtain necessary as well as sufficient conditions for bifurcation of unit vectors for
the above equation.

Section 4 contains some useful reformulations of our main results, whose
statements, although expressed in Section 3 in a meaningful canonical form, are
unfriendly for applications. These new formulations involve the choice of linear
coordinates for Ker 4 and coKer A4.

Finally, in Section 5, we discuss the existence of nontrivial 2 -periodic solutions
of the differential equation

X'+ x +e(tx 4+ x7) = Ax,

which we see as a simple, yet nontrivial, example to test the conclusions of our theory.
Here the eigenspace of the unperturbed linear operator is two-dimensional.

2. Notation and preliminaries. Let £ and F be two real Banach spaces and let
U be an open subset of E. Given a C' map f: U — F, the (first) derivative of f at
u € U will be denoted by f'(u). When E = E| x E,, the partial derivative with respect
to the first (respectively, the second) variable at (4, uy) will be indicated with 9 f (u;, u»)
(respectively, 3,/ (u;, u»)). Because of the linearity of the (total) derivative f”(u;, u»), for
any pair of vectors (i1, iy) € E| x E;, one has

Sy, ua) (i, i) = 91f (ur, wa)iey + dof (ur, u2)ity.

In particular, if £} = R, the partial derivative d,f(u;, ), which is actually a linear
operator from R to F, will be identified with the vector d;f(u;, u)(1) € F. With this
notation, for f’(u;, u) one has the equality

S (ur, wp)(iny, i) = 01 f (uy, uz) + 0of (uy, up)iy,

where (it], uz) € R x Ez.
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The second derivative of a C> map f: U € E — F at p € U is a symmetric bilinear
operator from E to F, i.e. an element of the Banach space Lf(E, F), and will be
denoted by f”(p). A practical method for its computation is the following: given
u, v € E, consider the function of two real variables o (r, ) = f(p + rit + sv); then,

82

1 ()i, ) = ar;’s(o, 0).

Let L(E, F) be the Banach space of the bounded linear operators from E into F.
We recall that an element L € L(E, F)is called Fredholm if both Ker L and coKer L :=
F/Im L have finite dimensions (consequently, Im L must be closed). The index of L is
the integer

ind L = dim Ker L — dim coKer L.

The following properties of Fredholm operators are well-known and will be used in
the sequel:
1) the set of Fredholm operators from E into F of a given index is open in L(E, F);
il) if L;: E — Fand L,: F — G are Fredholm operators, then the composition L,
is Fredholm and ind L,L; = ind L; + ind L»;
i) if L: E — Fis Fredholm and H: E — F is a compact linear operator, then L + H
is Fredholm and ind(L + H) = ind L.

We recall that a (nonlinear) map f: U C E — F is said to be Fredholm of index
n e Zifitis of class C' and f'(u) is Fredholm of index 7 for all u € Uy it is simply called
Fredholm if it is Fredholm of index #n for some .

Iff:U — Fis C', a point v € F is a regular value of f if f'(u) is surjective for all
u € f~1(v). If f is Fredholm of class C* and v is a regular value of f, then the Implicit
Function Theorem implies that f~!(v) is a C*-submanifold of E with dimf~'(v) =
ind f (see e.g. [6], [7]). Moreover, given u € f~!(v), the surjectivity of f"(u) implies that
the tangent space T,f ~'(v) of f~'(v) at u coincides with Ker f"(u).

Let f: U — F be of class C'. Given a differentiable manifold M < f~!(0), regard
M as the set of trivial solutions of the equation f(u) = 0, so that f~'(0) \ M represents
the set of nontrivial solutions. An element p € M is a bifurcation point (from M) of
f(u) = 0 (or, equivalently, of the topological pair (f~!(0), M)) if any neighborhood of
p contains elements of /~1(0) \ M.

In what follows, we will make use of two bifurcation results (Theorems 2.1 and 2.2
below) obtained in [3]. To understand the meaning of these results, observe that the
condition M C £~1(0) implies that, for any u € M, the tangent space T,,M of M at u is
contained in Ker f”(u).

The following result provides a meaningful necessary condition for an element
p € M to be a bifurcation point of the topological pair (f~'(0), M). The map f is
assumed to be Fredholm (of any given index), and no relation between ind f and
dim M is assumed.

THEOREM 2.1. Let f: U € E — F be a C' Fredholm map defined on an open subset
U of a Banach space E into a Banach space F and let M be a C' manifold contained in
f7N0). If p € M is a bifurcation point ( from M) for the equation f(u) = 0, then T,M is
a proper subspace of Ker f'(p).

The following sufficient condition for bifurcation should not be regarded as a
result in the so-called “several-parameter bifurcation” (see e.g. [9]) since the dimension
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of the manifold M of the trivial solutions of the equation f(x) = 0 does not necessarily
coincide with the index of the Fredholm map f (which below is assumed to be one). It
should be regarded, instead, as an extension of the Crandall-Rabinowitz Bifurcation
Theorem, in which dim M =1 (see [2]), as well as an extension of a result obtained
independently in [8] and in [4], in which M is a finite dimensional subspace of the
Banach space E.

THEOREM 2.2. Let f: U C E — F be a C* Fredholm map of index one defined
on an open subset U of a Banach space E into a Banach space F. Let M be a C?
manifold contained in f~'(0) and let p € M be such that dim Ker f'(p) = dim T, M + 1.
Choose any i1 € Ker f'(p) \ T,M. Then p is a bifurcation point ( from M) for the equation
f(u) =0, provided that

veT,M and f"(p)i,d)eImf (p) = b =0. Q.1

REMARK 2.3. In [5] it was proved that the condition (2.1) does not depend on the
choice of the vector it € Ker f"(p) \ T, M.

Notice that if in Theorem 2.2 the manifold M is assumed to be a singleton {p},
then condition (2.1) is automatically satisfied, since 7, M = {0}. However, in this case,
dim Ker f’(p) = 1 and, consequently, f’(p) is a surjective operator. Thus, the assertion
could be directly deduced from the Implicit Function Theorem, which implies that
/~1(0), in a neighborhood of p, is a 1-dimensional manifold.

REMARK 2.4. An equivalent formulation of the condition (2.1) is the following:
veTyM and nf"(p)i,v)=0=— v =0,

where 7: F — F/Imf’(p) denotes the canonical projection. Observe also that any
projection parallel to Imf’(p) onto a direct summand of Imf’(p), or any bounded
linear operator Q: F — R™ (m = dim T,M) such that Ker Q = Im f(p), would play
the same role as 7.

3. Mainresults. Let X and Y be two real Banach spaces and consider the system

{Ax—i—sB(x) = ACx, 3.1

g(x)=0,

where 4: X — Y and C: X — Y are bounded linear operators, ¢ and A are real
parameters, B: X — Y and g: X — R are continuous maps. We assume that A4 is
Fredholm of index zero with nontrivial kernel and that

C(Ker A)®ImA = Y. (3.2)

As a consequence, 4 — AC is onto for A # 0 small and, thus, one-to-one, since it
is Fredholm of index zero (being close to A). This shows that A = 0 is an isolated
eigenvalue for the problem Ax = ACx. Moreover, as is easy to verify, dim C(Ker A) =
codimIm 4 = dim Ker 4. Thus, assumption (3.2) is also equivalent to C(Ker A) +
ImA=Y.

A solution of (3.1) is a triple u = (¢, A, x) in the Banach space E=R xR x X
satisfying (3.1). Clearly, for ¢ = A = 0, the triple (0, 0, x) is a solution if and only if x

https://doi.org/10.1017/5S0017089508004217 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089508004217

308 R. CHIAPPINELLI, M. FURI AND M.P. PERA

belongs to the set
S, :=KerA4ng ' (0).

Assume that g~!(0) surrounds the origin in the following sense: for all x # 0, there
exists s > 0 such that g(sx) = 0. Also assume that g is of class C* (k > 1) on an open
neighborhood of g~'(0) and g’(x)x # 0 for any x € g~!(0). This last condition ensures
that 0 is a regular value both for g and for the restriction of g to Ker 4 (observe that
the functional g’(x) is nonzero for any x € g~!(0) and is nonzero also its restriction to
Ker A4 for any x € S4). Consequently, g~!(0) is a C* manifold of codimension 1 in X
and S, is a nonempty C* manifold of dimension

dimS, =dimKer4 — 1.

A significant and sufficiently general example of function g is g(x) = |x|> — 1, where
| - | is a smooth norm of the space X, but not necessarily the Banach norm of X,
as in the example of Section 5. The convenience of considering norms which are not
necessarily complete is due to the fact that the Banach norm of the space X may not
be differentiable.

Any solution of (3.1) that belongs to the manifold

M = {0} x {0} x Sy

will be called trivial. Thus, any solution (e, A, x) with (g, 1) # (0,0) will be a
nontrivial solution. Identifying S, with M, an eigenvector X € S, of the operator
A (corresponding to the eigenvalue A = 0) will be called a bifurcation point (from
S4) of system (3.1) if any neighborhood of p = (0,0, ¥) in £ = R x R x X contains
a nontrivial solution. In this case we will also say that p = (0, 0, X) is a bifurcation
point from M. Since, as already remarked, 4 — A C is invertible for A # 0 small, say
0 < |A| < Xg, one gets that system (3.1) has no solutions for e = 0 and 0 < |A| < Ao.
Thus, any nontrivial solution (g, A, x) close to a bifurcation point p = (0, 0, X) must
have ¢ # 0.

We are interested in obtaining necessary as well as sufficient conditions for a 0-
eigenvector of A to be a bifurcation point of (3.1). To this end, let us interpret system
(3.1) above in the abstract setting of Theorem 2.1 by considering the Banach spaces
E=RxRx Xand F = Y x R and by defining f/: E — F as

f(e, &, x) = (Ax + eB(x) — ACx, g(x)).

The manifold M = {0} x {0} x S4, which is clearly a subset of £ ~1(0), will be regarded
as the set of trivial solutions of (3.1) or, equivalently, of the equation

f(e, ,x) = 0. (3.3)

By using the terminology introduced above, an eigenvector X € S4 is a bifurcation
point (from S4) of system (3.1) if and only if p = (0, 0, X) € M is a bifurcation point
(from M) of equation (3.3). Moreover, dim M = dim Sy = dimKer 4 — 1.

Lemma 3.1 below shows that f is a Fredholm map.

LEMMA 3.1. Assume B and g of class C* (k > 1) on an open neighborhood of g~ (0).
Then f is C* and Fredholm of index one on an open neighborhood of M.
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Proof. Since B and g are C¥ on an open neighborhood of g~!(0) in X, then f is C*
in a suitable open neighborhood of M € f~1(0)in E =R x R x X.

The map f can be seen as the sum of the linear map L(g, A, x) = (A4x, 0) with the
map h(e, A, x) = (eB(x) — ACx, g(x)). Since A is Fredholm of index 0, then L is clearly
Fredholm of index 1. Moreover, computing the derivative of 4 at a point (0, 0, x) for
which g(x) = 0, one gets

70,0, x)(é, i, %) = (¢B(x) — ACx, g'(x)X).

Hence, #/'(0, 0, x) has finite dimensional image. Therefore, as already observed in the
preliminaries, /' = L + his Fredholm of index 1 at any point of {0} x {0} x g~!(0) and,
being C*, is still of index 1 on an open neighborhood of M, as claimed. O

Theorem 3.2 below provides a necessary condition for bifurcation in which a
canonical (i.e., independent of the coordinate systems) finite dimensional reduction
between Ker 4 and coKer 4 is done.

THEOREM 3.2. Assume B of class C' on an open neighborhood of g='(0). If X € S4
is a bifurcation point of (3.1), then there exists i € R such that

B(X)— i Cx € Im 4.
Proof. As above, let /R x R x X — Y x R be the map
f(e, &, x) = (Ax + eB(x) — ACx, g(x))
and let M € £~1(0) be the set
M = {0} x {0} x S,,.

As stated in Lemma 3.1, f is C! and Fredholm of index 1 on an open neighborhood
of the C! manifold M. Our aim is to apply Theorem 2.1 to f and M. To this end, let
X1 and Y, be closed subspaces of X and Y, respectively, such that X = X; & Ker 4
and Y =ImA4 @ Y,. Since the space X; is Banach, X can be identified with X x
Ker A4 via the operator (x;, x3) — x1 + X3, whose inverse is continuous because of the
Inverse Function Theorem. Analogously, Y will be identified with Im 4 x Y5. In this
decomposition, we have x = (x1, x;) and system (3.1) can be written in block-matrix
form as follows:

<A11 0) (X1> te (Bl(th)) Y <C1(x1,XZ)> _ <0>
0 0/ \ x> Bs(x1, x2) Cy(xp,x2)) —\O (3.4)
g(x1, x2) = 0.

Also observe that, since 4 is Fredholm of index zero, then dim Y, = dim Ker 4. Let
X € S, be the given bifurcation point. Then, since S4 C Ker 4, we have X = (0, ¢), for
some ¢ € Ker 4. Thus, in the notation of Theorem 2.1 the element p = (0,0, 0, ¢) is
a bifurcation point of (3.3) from M. Consequently, by Theorem 2.1, T,,M is a proper
subset of Ker f"(p). Let us compute explicitly Ker /’(p) and T, M. It is easy to see that
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a vector (¢, A, X1, 1) € R x R x X; x Ker 4 belongs to Ker f/(p) if and only if

<A11 0) <x1> i <BI(O, q)) i (CI(O, q)> B (0>
0 0/ \¥ B>(0, ) C2(0.9)) ~ \0 (3.5)
0120, g)x1 + 928(0, ¢)x2 =0

or, equivalently, if and only if

Ank +éB1(0,q) — 1C1(0,9) =0,
£B(0, ) = AC5(0, g), (3.6)
01g(0, g)x1 + 328(0, g)x2 = 0.

Moreover, the tangent space of M at p is given by
T,M = {(0,0,0, x2) : 3,8(0, ¢)x» = 0}.

As already observed, since p is a bifurcation point of (3.3) from M, by Theorem 2.1,
Ker f'(p) contains properly T,M. Thus, there exists (¢, A, X1, %) e Kerf/(p)\ T, oM.
Let us show that ¢ # 0. Suppose that ¢ = 0. Since X # 0, condition (3.2) clearly
implies C¥ ¢ Im A. Hence, C»(0, ¢) # 0 and, thus, A = 0. Therefore, from (3.5), one
gets A11x; = 0 and, thus, x| = 0 since 41; is an isomorphism between X; and Im 4.
Consequently, it turns out that (¢, A, X1, X») is of the form (0, 0, 0, X»), i.e. an element of
T,M. A contradiction. This proves that ¢ must be different from 0. Hence, by dividing
by ¢ the second equation in (3.6) and by setting /7 = 4 /&, one gets

B1(0, q) — 1 C5(0, 9) = 0,
which is equivalent to
B(X) — 1 Cx € Im 4,
as claimed. U

REMARK 3.3. By introducing the canonical projection 7:Y — coKer 4, the
necessary condition of Theorem 3.2 above can be expressed equivalently as follows:
there exists 1 € R such that

7 B(X) = pn CX.

Theorem 3.4 below provides a sufficient condition for X € S, to be a bifurcation
point of (3.1). As for the necessary condition given in Theorem 3.2, this result represents
the canonical version of the sufficient condition, in the sense that it is stated without
any choice of coordinate systems on Ker 4 and coKer 4.

THEOREM 3.4. Assume B and g of class C* on an open neighborhood of g~'(0). Let
xe Sy and 1 € R be such that B(xX) — i Cx € Im A. Then X is a bifurcation point of
(3.1), provided that

Ah=0, g&h=0 and B(X)h—aChespan{lmA4, Cx¥} = h=0.

Proof. Let f and M be as in Lemma 3.1 and, as already done in the proof of
Theorem 3.2, consider the decompositions X = X; x Ker4and Y = Im 4 x Y,, with
X =1(0,¢9)and p = (0,0, 0, g). By Lemma 3.1, f is a C?> Fredholm map of index 1 on
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an open neighborhood of the C? manifold M. To get the assertion, our aim is to apply
Theorem 2.2. Let us show first that we have

dimKerf'(p) = dim T,M + 1. (3.7

To this end, consider the nonzero functional on Ker f'(p) given by (¢, i, X1, X2) — &.
Its kernel, which is clearly 1-codimensional, consists of those solutions (&, , X1, X2)
of system (3.6) possessing ¢ = 0. The same argument used in the proof of Theorem
3.2 shows that such solutions must be of the form (0, 0, 0, x,) with 3,g(0, ¢)x, = 0,
i.e. belong to T,M. Hence, T, M coincides with the kernel of a nonzero functional on
Ker f'(p) and, thus, is 1-codimensional. This proves (3.7).

Let & be as in the assumption and take ()?1, 5?2) € X; x Ker 4 such that the vector
i = (1, 1, X1, X») satisfies system (3.6). Clearly, from the first equation on (3.6), it turns
out that ¥ is unique (recall that 4; is an isomorphism). Moreover, the existence of
X, € Ker 4 such that 3,g(0, ¢) X; + 3,g(0, ¢) X» = 0is due to the fact that the functional
X5 > 0,g(0, g)x; is onto since 3,g(0, ¢) # 0. This means that & belongs to Ker f”(p) and,
since its first component is nonzero, it is not tangent to M at p. Thus, as needed for
applying Theorem 2.2, we have chosen it € Ker f"(p) \ T, M.

Let now ¢: S4 — F x R be given by ¢(x) = f7(0, 0, x)z. Since, in the identification
X = X; x Ker 4, any x € Sy is of the form x = (0, x,), we have

A1 %1+ Bi(0, x2) — 1C1(0, x2)
9(0,x2) = | B2(0, x2) — 2G50, x2) . (3.8)
912(0, x2) X1 + 922(0, x2) X2

~ Let us compute the derivative of ¢ at (0, g) along a vector h € TxS4. Clearly,
he TzS, if and only if Ah =0 and g'(X)h =0, i.e. if and only if 4 = (0, x;) with
0,2(0, g)x, = 0. We get

02810, ¢)x2 — 1 C(0, X2)
@'(0, g)(0, x2) = | 02B2(0, )2 — 1 C5(0, x2) |, (3.9
1p/(ov C])X2

where ¥: Sy — R is given by
(0, x2) = 318(0, x2) X1 + 3,8(0, x2) X2
By denoting v = (0, 0, /1) = (0,0, 0, x3), we obviously have

¢'(0, 9)h = 17(0,0,0, g)it, (0, 0, 1)) = f"(p)(it, V).

Finally, in order to verify that our assumptions reduce to those of Theorem 2.2, we need
to compute Imf”(p). Let (k1, k2, s) be an element of Imf'(p) CImA x Y, x R. It is
easy to see that the vectors of the form (k;, 0, 0) and (0, 0, s) belong to Im f’(p). Thus,
ImA4 x {0} x {0} € Imf'(p) and {0} x {0} x R € Im f’(p). Moreover, also the vector
(0, C5(0, ¢), 0) belongs to the image of f(p), so that Im f’(p) contains the subspace
Im A x span(C»(0, ¢)) x R, whose codimensioninIm 4 x Y> x Risequal to dim 7, M
(recall that dim Y, = dimKer 4 = dim 7, M + 1). On the other hand, since f’(p) is
Fredholm of index 1, by (3.7) we get codim Im f"(p) = dim 7, M as well. Therefore, the
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equality
Imf'(p) = Im A x span(C>(0, ¢)) x R
holds. Now, by interpreting the assumption
Ah=0, ¢&Xh=0 and B(Fh—aChespan{lmA4, C5} = h=0
with the notation introduced here, we get

8232(0, q)XQ — ﬂCz(O, XZ) = O[Cz(o, q) for some @ € R, (3 10)

and 32g(0, c])Xz =0 = x,=0. ’
In other words, if /i€ TS, and ¢'(0, ¢)h =/"(0,0,0, g)(, (0,0, h)) belongs to
Imf7(0,0,0,9) =Im A x span(C5(0, ¢)) x R, then /& =0, that is the sufficient
condition stated in Theorem 2.2 is satisfied. Consequently, p =(0,0,0,¢) is a
bifurcation point (from M) of f(e, A, x1, x2) = (0, 0) or, equivalently, X = (0, ¢) is a
bifurcation point (from S,) of (3.1) as claimed. O

An equivalent formulation of the assumption of Theorem 3.4 above is stated in
the following remark.

REMARK 3.5. Let Y3 be the m-dimensional quotient space Y/ span{Im 4, Cx} and

denote 5: Y — Y3 the canonical projection. Then X is a bifurcation point (from S4)
of (3.1), provided that

Ah=0, gEXh=0 and 7x(B(X) —-aCh)=0= h=0.

REMARK 3.6. From the proof of Theorem 2.2 given in [3], one can also deduce
that the closure of the set of nontrivial solutions of (3.1) is, in fact, a C' curve in
a neighborhood of the bifurcation point (0, 0, X). Let us show that this curve can
be parametrized by ¢, the first component of the space R x R x X. More precisely,
let us decompose the Banach space R x R x X into the one dimensional subspace
R x {0} x {0} and its direct summand {0} x R x X. We claim that the given curve can
be represented by a parametrization having R x {0} x {0} as domain and {0} x R x X
as codomain. It is a known fact that this can be done provided that the tangent vector
to the curve at (0, 0, X) does not belong to {0} x R x X. Such a vector belongs to
Ker f7(0, 0, X) but it is not tangent to M. Thus, as already proved, its first component
is nonzero, as required.

REMARK 3.7.If X = Y and 4 is such that Ker 4 @& Im 4 = X (this is the case when,
for instance, X is Hilbert and A4 is selfadjoint with Im A closed), then one can identify
Ker 4 with coKer 4 and the finite dimensional reduction acts between the same spaces.
If, in addition, C is the identity and B is linear, then the necessary condition states that
X is an eigenvector of Blger 4: Ker A — Ker A corresponding to some (real) eigenvalue
. One can check that the sufficient condition stated in Theorem 3.4 means that the
eigenvalue f is simple.

As will be clear in the next section, the special case when the spaces X and Y are
finite dimensional and the operator A is trivial is of some interest. In this situation our
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problem becomes

{ eB(x) = LCx, 3.11)

g(x) =0,
and Theorems 3.2 and 3.4 take the following form.

COROLLARY 3.8. Let dimX =dim Y < oo. Assume B of class C' on an open
neighborhood of g='(0) and C invertible. Then, a necessary condition for X € g~'(0)
to be a bifurcation point of (3.11) (from g='(0)) is that there exists ji € R such that

B(X) = iCx.

COROLLARY 3.9. Let dim X = dim Y < oco. Assume B and g of class C* on an
open neighborhood of g~'(0) and C invertible. Let X € g='(0) and ji € R be such that
B(X) = 1 CX. Then, a sufficient condition for X to be a bifurcation point (from g~'(0)) of
(3.11) is that

d@h=0 and B(X)h— iCh e span(Cx) = h=0.

4. Main results reformulated. This section is devoted to present practical
reformulations of the two conditions for bifurcation given by Theorems 3.2 and 3.4.
This involves a choice of linear coordinates for the spaces Ker 4 and coKer A4.

Recall that Ker 4 is nontrivial and let m + 1 denote its dimension. A system of
linear coordinates for Ker A4 is just a linear operator J: R”*! — X such that ImJ =
Ker A. Since dim Ker 4 = m + 1, this identifies Ker 4 with R”*! by means of a linear
isomorphism.

As regards coKer A4, a system of linear coordinates may be given by considering a
bounded linear operator Q: ¥ — R”*! such that Ker Q = Im 4. In fact, in this case,
there exists a unique linear operator Q: coKer 4 — R"*! such that Qn = Q, where
m: Y — coKer A is the canonical projection. This operator is clearly injective and,
consequently, must be surjective since dim coKer 4 = m + 1 (recall that 4 is Fredholm
of index zero). In other words, Q induces on coKer 4 a system of linear coordinates
Q. By abuse of terminology, we will say that Q is a system of linear coordinates for
coKer 4.

Theorem 4.1 below is a practical reformulation of the necessary condition given
in Theorem 3.2.

THEOREM 4.1. Let, respectively, J: R™*!' — X and Q: Y — R™*! be two systems of
linear coordinates for Ker A and coKer A4, and define

g—: Rm-H SR B: Rm+l - Rm-H C: Rm-H N Rm-H
byg=gJ, B=0QBJ, C = QClJ.
If @ € g7 1(0) is such that Ja is a bifurcation point of (3.1), then there exists ji € R
such that
B(a) = i Ca.

Proof. Since Ker Q = Im 4, there exists a unique linear operator Q: coKer 4 —
R™*! such that Qm = Q, where m: Y — coKer 4 is the canonical projection. By
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Remark 3.3 with X = Ja, there exists & € R such that 7 B(Ja) = jgm CJa. Thus, by
applying O, one has Qr B(Ja) = 1 Qn CJa,i.e. B(a) = ji Ca. O

Remark 4.2 below will come on hand when one seeks for a system of linear
coordinates for coKer 4.

REMARK 4.2. If we assume that a bounded linear operator Q: F — R"™*! is
onto, then clearly codim Ker Q = m + 1, the same as Im A. Thus, the following three
conditions are equivalent:

e Ker O =1Im 4;
e KerQ € Im4;
e Ker0 D> Im4.

In the same spirit of Theorem 4.1, let us now state the “linear coordinates™ version
of the sufficient condition given in Theorem 3.4.

THEOREIYI 4.3.LetJ, O, B, Candg be as in Theorem4.1. Leta € g~ '(0)and i € R
be such that B(a@) = 1 Ca. Then Ja is a bifurcation point of (3.1), provided that

aeR™ F@a=0 and B(a)a— i Cae span(Ca) = a = 0. 4.1)

Proof. The assertion follows immediately noting that X = Ja and h = Ja clearly
satisfy the sufficient condition of Theorem 3.4. O

The following easy consequence of Theorem 4.3 could be useful in applications as
shown, for instance, in the next section.

COROI:LARY 4.4. Let J, Q, B, C, g be as in Theorem 4.1, a € §’1(0), and 1 € R be
such that B(a@) = j1 Ca. Assume that R: R"! — R™ is a surjective linear operator such
that RCa = 0. Then Ja is a bifurcation point of (3.1), provided that

aeR™, gd@a=0 and RMB@)—iC)a=0—=— a=0. 4.2)

Proof. 1t is enough to show that Ker R = span(Ca). By assumption, C a@ belongs
to Ker R, which is 1-dimensional since R is onto. Thus, Ker R must coincide with
span(Ca), as claimed. d

REMARK 4.5. Consider the map a € 37(0) — R(B(a) — jz Ca) € R". Clearly, the
necessary condition of Theorem 4.1 implies that @ is a zero of this map. The sufficient
condition (4.2) of Corollary 4.4 above, means that such a zero is nondegenerate.

REMARK 4.6. It should be observed that Theorems 4.1 and 4.3 above contain a
reduction of the general case to a problem in R”*! analogous to the finite dimensional
problem presented in (3.11). In fact, it is easy to see that the necessary and the sufficient
conditions obtained in these theorems are the same as those proved in Corollaries 3.8
and 3.9.

5. Anexample. In this section, we give an application of the previous bifurcation
results to the second order differential equation, depending on the real parameters ¢
and A,

X' +x+etx+x)=xrx, teR. (5.1)
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We are interested in 27 -periodic solutions x of (5.1) normalized as follows:
1L [,
— x(0)dt = 1.
T Jx

In particular, we look for solutions which bifurcate from a given trivial (i.e. obtained
for ¢ = A = 0) normalized solution; that is, from a solution of the type x(f) = ¢sin ¢ +
dcost, with 2 +d? = 1.

To this end, consider the problem

X'+ x4 e(tx + x?) = Ax,
x(—m) = x(r), Xx'(—7m)=x'(n), (5.2)
L X(ndi=1.

Clearly, all solutions of (5.2) are C*° and we will look for them in the Banach space
G, = {x e C¥(—n, 7)) : x(—7) = x(), X' (—7) = X' (n)}.
In the notation of Section 3, set
X=0C,, Y=C(-nn)
and define
A:X - Y by Ax=Xx"+x,

B:X - Y by B))=tx(t) + x(),
C: X — Y to be the inclusion,

1 T
X >R by g(x):—/ xX(f)dt — 1.
b

—7T

As observed in the preliminaries, the operator A, which is clearly Fredholm of index 2
between C>([—m, ])and Y, becomes of index 0, when restricted to the 2-codimensional
closed subspace X of C*([—, m]), with 2-dimensional kernel

Kerd ={x € X :x(1)=asint+ Bcost,a, B € R}

and 2-codimensional image

T

ImA4 = {ye Y:/ y(t)sintdt:O,/

-7 '

y(t)costdt = 0} .

Moreover, the operator 4 — AC given by x — x” + (1 — A)x is clearly invertible for
A # 0 sufficiently small.

The first derivative of the operator B at a point x € X alonga vector i € X is given
by

(B (x)h)(1) = 2x(D)h(t) + th(7).

Thus, the second derivative of B at x € X along a pair of vectors (h, k) € X? is
represented by

(B"(x)(h, k)) (1) = 2h(0)k(0).
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Hence B” is a constant map from X into the space L,(X, Y) of continuous bilinear
operators from X into Y, therefore B is C?, as required.

The real valued map g is clearly C* and g'(x)x = 2 ["_x2(r)dt # 0 for any x €
27 '(0). Moreover, as easily verified, for any x € X, x # 0, there exists (a unique) s > 0
such that A; ST xX(1)dt =1, 1.e. g7'(0) surrounds the origin.

Moreover, the manifold S, = Ker 4 N g~'(0) is given by

Sy={xeX:x(t)=asint+ pcost,a’ + p* =1}

and is clearly 1-dimensional.
First, our aim is to apply Theorem 4.1 to system (5.2) in order to get a necessary
condition for bifurcation. To this end, let us define J: R — X as

J(a, B) =asint+ Bcost

Qy = % (/_Zy(t)sintdt, /_Zy(t)costdt) .

Clearly, ImJ = Ker 4 and, as observed before, y € Im 4 if and only if Qy =0, i.e.
Ker Q = Im A. An easy computation shows that the map g = Jg: R> — R? is given by

and Q: Y — R? as

g, p)=a>+p -1

and that the composition C = QCJ: R?> — R?,

T b

- 1
Cla, B) = - < (asint+ Bcost)sintdt, (o sint+,3cosl)costdt> ,

-7 -7

turns out to be the identity. Moreover,
g0 =J"(S) =B e R’ + p> =1}
Now, according to Theorem 4.1, a necessary condition for a solution
X(f) = asint + Bcost,

with &> + B> =1, of (5.2) to be a bifurcation point from S, is that there exists 2 € R
such that the pair (&, B) of the unit circle g~!(0) satisfies the eigenvalue problem

B(a, B) = iC(a, B),

where B: R> — R? is the composition B = QBJ. By computing B, one easily obtains

= 1
B(a7 :B) = _E(:Ba Ol)'

Therefore, we are reduced to find the eigenvalues of the equation

1
—5(B. @) = u(@. p) (5.3)
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and the corresponding normalized eigenvectors (c, ), i.e. satisfying a®> + g2 = 1. By
solving (5.3) we get the two values 1_ = —%, with corresponding pairs j:(‘/T5 %), and
fi+ = %, with pairs :l:(*/TE, —‘/77)

Let us now show that such eigenvectors also satisfy the sufficient condition for
bifurcation stated in Corollary 4.4. To this end, choose one of the previous eigenvalues,
say, for instance, ji_ and define R:R?> — R by R(a, 8) = a — 8. Since the map B +
1C:R? — R? is given by

- 12 1 1 1
(B+5C)@p =300+ 3@ = 3@ p.p -,
by composing with R, we obtain the linear operator
R(B+1C)(e, B)=a —B.

Hence, its derivative at each one of the eigenvectors j:(*/TE */75) along any vector
(&, B) € R? turns out to be

R(E +10)(+ (4. 4))@ pr =i~ b
In order to check condition (4.2) of Corollary 4.4, we need to restrict
R(B +10)(+ (£.2))
to the 1-dimensional space

{@ B eR:g(+ (2 )@ p) =0}

V2 V2

As easily seen by computing the derivative of g at :I:(T, 7), this space is given by

{(. ) e R*:a + g =0}.
Consequently, we are reduced to solve the system

a@—p=0,

a@+p=0,
that gives @ = B = 0. This shows that (4.2) is satisfied in the case of the eigenvalue ji_.
A similar argument holds for fi .
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