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Abstract

In this paper we make use of semigroup methods on the space of compactly supported measures to obtain
a Bochner representation for a-bounded positive-definite functions on a commutative hypergroup.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 43A62; secondary 60B05, 43A10,
43A35.

The analysis throughout will be carried out on a (locally compact) hypergroup X
admitting a left Haar measure m. (For a definition and properties refer to Jewett [5]
whose notation we follow.) This includes those hypergroups that are compact ([5,
Theorem 7.2A]), discrete ([5, Theorem 7.1A]) or commutative (Spector [9, Theorem
[11.4]). We reserve the symbols M'(X), M!(X) and M (X) for the spaces of prob-
ability measures, those that have compact support, and the space of measures that
have compact support respectively. L7 (X) is just the space of measurable functions
that are bounded on every compact subset of X. There is an analogous definition for
the space L;,.(X) . We denote the point measure at x € X by ¢,, and the indicator
function of a set A by 1,. The involution on X extends to M?(X) viau™(B) = u(B~)
for all Borel sets B C X.

For each x, y € X write

FGxxy) :=ffd<ex*ey), w F) :=/f(z‘*x)du(2)
X X
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2] Positive-definite functions 239

and

frgx) = / fxxy)g(y )dm(y) = / Fg(hy™ *x)dm(y).
X X

Here f, g are measurable functions on X and 4 € M*(X), and the latter equality holds
whenever one of f, g is o-finite (see [5, Theorem 5.1D]). The left x-translate of f is

written f,(y) = f(x * y).
The main objects of interest in this paper are positive-definite functions, that is
functions f € L{° (X) satisfying

loc
Xn:ia,ﬁj f(x,- *Xj_) > 0

i=1 j=1

for each n, and for each choice of complex numbers @; and points x; € X. For basic
properties of positive-definite functions on hypergroups the reader is referred to [5,
Section 11].

DEFINITION 1. Wecalla € L2,
i) ale)=1;

(i) alx*y) <a(x)a(y);
(i) a(x7) =alx)

(X) with ¢ > 0 an absolute value on X if it satisfies

forallx,y € X.

It should be observed that every continuous absolute value « is positive on X.
Indeed if a(x) = O for some x € X then a(x * x~) < a(x)*> = 0 shows that
fX ad(e, x€.-) = 0, and hence « = 0 on {x} *» {x~}. But this contradicts (i) as
ee{x}={x"}

DEFINITION 2. We say that f on X is bounded with respect to an absolute value
«, or simply a-bounded, if there is a constant K such that | f(x)| < Ka(x) for all
x € X. If there exists an absolute value with respect to which f is bounded then f is
called exponentially bounded.

PROPOSITION 3. Every «-bounded positive-definite function f satisfies | f(x)| <
fle)a(x) forall x € X.

PROOF. Write K = sup{a(x)~'|f(x)| : x € X, a(x) # 0}. Using the positive-
definiteness of f we have

If(x)l2 < flxxx")f(e) < Ka(x xx7)f(e) < Koz(x)zf(e)

so that | f(x)| < (Kf(e))'?a(x) for all x € X. By the choice of K it follows that
K <(Kf(e))'?and K < f(e).
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PROPOSITION 4. Let a be an absolute value on X. Then A defined by

A(s) :=/ad|s|
X

is submultiplicative on M .(X).

PROOF. We have, using [5, Lemma 6.1C],

A(s*t):/adls*tlS/fa(x*y)dlsl(x)dltl(y)
X xJx

< / / a()a()d sl x)d |t ()
XJX
= A()A()

and this completes the proof.

Write LL(X) = {f € LL.(X) : [, |fladm < oo}.

loc

THEOREM 5. Suppose that a(x) > 1 for all x € X. With the norm

£l :=f \fladm
X
L (X) is a Banach subalgebra of L'(X).
PROOE. If f, g € LL(X) then appealing to {5, Lemma 5.1D]
f|f*gtadms//|f|(y> 18] (v *x) dm(y) a(x) dm(x)
X XJX
=//lgl(y**x)a(x)dm(x)lfl(y)dm(y)
XJVX
=f/tg|(x)a(y*x>dm<x) 1) dm(y)
XJX

< / 1 Galy) dm(y) / gl (e x) dm(x)
X X
= “f“la ||8||1,a

sothat f xg € L!(X) and || f * 8lhio < I flliqligll .- Because @ > 1 we must have
LL(X) C L'(X), and the rest of the proof is clear.
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The assumption o > 1 is essential to Theorem 5. Indeed (see Ross[8, Section 6])
if X is 2-fold absolutely continuous with trivial centre then o = 1, is easily seen to
define an absolute value on X. However

LLX) = {f € LL.(X) : / 11 1 dm < 00)
X

={f € L,,,(X) : |f] (e) m({e}) < oo}
=L;,.(X)

loc

which in general is not contained in L!(X), and for which |||/, , does not define a
norm when m({e}) = 0. An example of such a hypergroup is given in [5, Example
9.5].

In view of the above we assume from now on that & > 1. We follow the develop-
ment in Reiter [6, 1.6.1] noting that L! (X) has many of the properties of a Beurling
algebra.

LEMMA 6. C.(X) is dense in LL(X).

PROOF. The inclusion C.(X) C L.(X) is clear since « € L2 (X). To prove
denseness consider f € L!(X), € > 0 and &, € C.(X) such that

/lfa—kll dm < €/2.
X

Let C be a compact set with supp(k;) C int(C). Choose a constant K such that
a(x) < K forall x € C, and then k € C.(X) with supp(k) C C and

/ k™ — k| dm < €/(2K).
X
Then

flf—klozdm<e
X

as required.

LEMMA 7. Forall x € X, | fell;o < @) | Fll o

PROOF.

/Ifxl(y)a(y)dm(y) 5/ 1 % ya(m) dm(y)
X X
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/ 1 ey * x) dm(y)
X

< a(x) f 1 (Daly) dmy)
X
T

LEMMA 8. Given f € LL(X) and € > 0 there exists a neighbourhood U of e such
that | f. — fll;o < €forallx € U.

PROOE. Let V be a compact symmetric neighbourhood of e, and choose a constant
K such that a(x) < K forall x € V. Given f € L!(X) and € > 0, Lemma 6 gives
the existence of k € C.(X) such that || f — k||, , < €/(3K +1).

Now by Bloom and Heyer (1, Corollary 2.7], k is uniformly continuous. Hence,
writing K; = sup{ja(x)| : x € Vx supp(k)]} there is a neighbourhood U C V of e
such that ||k, — k||, < €/(BK;m(Vx supp(k))) for all x € U. Then making use of
[5, Lemma 3.2G], and splitting & into its non-negative parts k; — k, + i (k3 — ky) we
see that for x € U

supp(k,) = supp(€,- * k) C supp(€,-) * supp(k) C V *x supp(k)

and
T f k(e % y) — kO] @ () dm()
X

< (e/BKm(V * Supp(k)))/ Ly ssuppiyox dm
X
< €/3.
We now have forx € U

e =l S e —kellig + ke =kl o + k= fll,
<a(x)e/BK +1)+¢€/3+€¢/BK+1)

< €

and this completes the proof.

We now show that the algebra L} (X) admits a bounded approximate unit. For the
remainder of the paper we assume X to be commutative.

PROPOSITION 9. Let (V,) be a base of relatively compact open neighbourhoods of
e, and write k, = m(V))"'1y,. Then km — €., and for each f € LL(X), k,x f — f
in L (X).
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PROOF. Consider

/|kl*f—f|adm
X

=),

/m(%)‘llu(y)f(X*y‘)dm(y)
X
—/ m(V) 'y, () f (x) dm(y)| a(x) dm(x)
X
s// |[f*yT) = FO)|ax)dmx)m(V) 1y (y) dm(y).
XJX

By Lemma 8, given € > O there exists ¢, such that ||(f‘)'v - f‘HM < € for all
y € V,,. Thus for¢ > ¢

/Ikl*f—flotdm

Ef/]f(x_*y_)—f(x_)|Ot(X)dm(X)m(W)_llw(y)dm(y)
XJX

<e€

and this gives the result.

DEFINITION 10. A linear functional n on L!(X) is referred to as multiplicative
and hermitian if it is non-trivial, n(f * g) = n(f)n(g) and n(f™) = n(—f) for all
f.geLl(X).

A semicharacter x is a locally bounded measurable function satisfying x (e) = 1,
x(x*y) = x(x)x(y) and x(x~) = x(x) for all x, y € X. Observe that every
positive semicharacter is automatically an absolute value. It is clear from Proposition
3 that every a-bounded semicharacter x satisfies |xy| < «. We denote by X the
set of a-bounded continuous semicharacters on X. It is easy to see that the Fourier
transform f( x) is defined for every x € X, and that f - f( x) is multiplicative
and hermitian on L (X).

THEOREM 11. Every multiplicative hermitian linear functional on L} (X) is of the
form f — f(x) for some x € X°.

PROOF. Let n be a multiplicative hermitian linear functional on L!(X). Since
L!(X) is a commutative Banach algebra, Hewitt and Ross [3, Theorem C.21] gives
that n is bounded with norm not exceeding 1.

Consider k, = m(V,)"'1y,. Since « is assumed to be locally bounded we have that
k € LL(X). Choose g € L. (X) satisfying n(g) # 0 and consider
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(nH k), kg =€, xk,xg =k *(€,- %g) — €,- % g,

the limit holding because of Proposition 9. Also we know from Lemma 7 that
€ * g = g: € L (X).
Define x (x) := n(e,- * g)n(g)~". From (1) and the continuity of n we have

) n(e~ xg) = li}n n(k), *g) = li{n n (k) n(g)

so that x (x) = lim, n((k,),). Therefore y is independent of the choice of g € L!(X)
(with n(g) # 0). Again using the continuity of n we have for any h € L. (X),

n(ex-* h) = limn((k). * h) = limn((k).)n(h) = x (x)n(h),

and putting # = €,- * g gives the third equality in the following:

X(xxy)n(g) = / n(e.- * g)d(e, x €,)(z)
X
= n(e,- x€,- x g) = x(xX)nle,- * g)
= x () x(n(g).
Thus x (x * y) = x(x)x(y). We also have
x(x7) =n(e * g)n(g) ™" = n(e- * g) )n(g™)")™

= n(e- x g )n(g-)~!
= x(x).

Furthermore, using Lemma 7,

1

x| =nte * D@ < lex* gl @™ <a) gl In@l™",

which shows that x is a-bounded. That y is continuous at ¢ follows immediately

from Lemma 8, and hence y is continuous everywhere appealing to Bloom and Ressel

[2, Corollary 1.11]. This all shows that x is a continuous «-bounded character.
Finally, choosing g € L!(X) with n(g) # 0, we observe that for f € L!(X),

n(f)=n(f*gn@~" = / (e, * gIn(g) ™ f(x)dm(x)
X

=fx(x‘)f(x)dm(X)
X
= F(0),

as required.
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We use Theorem 11 to show that every a-bounded continuous positive-definite
function ¢ on X has a Bochner representation

P(x) = /A x(x)du(x)

X

where p ¢ M +(3(\ ). This should be compared with the special case given in Voit
[10, Corollary 2.10] where « is taken to be a positive semicharacter on X.

A hermitian, multiplicative, linear functional p on any subalgebra S of L!(X) is
called A-bounded if there is a positive constant K such that [p(f)] < KA(f) for all
f € S, where A(f) := || fll1.« coincides with the definition given in Proposition 4
provided f has compact support.

In the following, let H denote the set of all non-trivial hermitian, A-bounded,
multiplicative, linear functionals on L!(X). We provide H with the topology of
pointwise convergence, and X with the topology of uniform convergence on compact
subsets of X.

THEOREM 12. Suppose that the hypergroup X is second countable. Then the canon-
ical mapping F : X* — H associating with each x € X° the functional f — f(x)
is a continuous Borel isomorphism.

PROOF. The remark immediately following Definition 10 shows that F is well-
defined, and from Theorem 11 we know that F is onto. If F(x) = F(y) then
f( X) = f(y) for all f € C.(X), from which it follows using the continuity of y, y
that y = y. So we are left with proving that £ is continuous, and that its inverse is
Borel measurable.

Let (x,) C X* be a net converging to x. For f € LL(X) and € > O there is a
compact set K C X such that f,. |fladm < €/4, and then for ¢ sufficiently large
max{|x,(x) — x(x)| : x € K} <€/ fll, o + 1). This implies that

[F (X)) — FOONI =

‘[C[?}Udml
X

<2 |fwdm+/ﬁm~xuﬂdm
K¢ K

< €

which gives the continuity and hence measurability of F.

The space C(X) of all continuous complex-valued functions is, with regard to
uniform convergence on compact subsets, a Polish space, hence so is X“ as a closed
subspace of C(X). As a continuous one-to-one image of X* the space H turns out to
be a so-called standard or Lusin space, and a deep result from topology (Hoffmann-
Jprgensen [4, Ch. III, §7, Theorem 2]) tells us that F~! is measurable, that is, F is a
Borel isomorphism.
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LEMMA 13. Let p : L;,C(X) — C be a hermitian, A-bounded, multiplicative
linear functional. Then p extends uniquely to a functional p with the same properties
on LY(X). The mapping p — p is a homeomorphism with respect to pointwise
convergence.

PROOF. For f € LL(X) and D C X we put fp := flp. Given € > O there is
a compact set C C X such that fcr |fladm < €. If D, E C X are compact sets
containing C then D A E C C¢, and it follows that

lo(fo) = p(fe)l =1p(f(Ip = 1p))| < K/ |f11papdm < Ke.
X

Therefore p(f) := lilr)n o(fp) exists in C, and p is easily seen to be linear, multiplic-
ative, hermitian and A-bounded.

The last statement will be clear once we prove that pointwise convergence p, — p
on L} .(X) implies pointwise convergence g, — p on L (X). Let f € L, (X) and
€ > 0 be given. There is a compact set D C X such that f o | fladm < €/4 and,
for ¢ large enough, |0,(fp) — p(fp)| < €/2. Appealing to Theorem 11 we have the
existence of x,, x € X such that

B — ) = / £ G, — %) dm
X
=ff(7[—7)dm+/ £ — %) dm
D D¢
= p(fo) — p(f») +f FR — %) dm
De

and for such ¢ chosen as above |p,(f) — p(f)| < €.

THEOREM 14. Let X be second countable and let ¢ : X — C be a continuous
a-bounded, positive-definite function. Then there is a unique measure pu € M%(X*)
such that

¢ (x) =/A x(x)du(x), x € X.

X

PROOF. Let § := M. (X) and extend ¢ to & : § — C by the natural definition
®(s) := [, ¢ds. If s € S has finite support, say s = ) ._, a;€,,, then

O xs) = f / d(x *y )ds(x)ds (y)
xJx
= Z;Vk:laj5k¢(xj xx,) > 0.
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Any s € S may be approximated (setwise on the Borel field) by a net (s,) of measures
with finite support contained in supp(s). The restriction ¢ |y being bounded and
continuous, the above inequality valid for each s, extends to s. But then ® is a
positive-definite function on § since

D e (s xsp) = Bls*s)
J.k

with 5 = Zj ¢;s;. Because |®(s)] < ¢(e) fxoedlsl = ¢(e)A(s), the function ¢

is A-bounded, and hence so is its restriction ¢’ := & [, (x); Theorem 5 in Ressel
[7] (in connection with Remark 5 to Theorem 4 in the same reference) gives the
representation

O(f xgHh) = fp(f*g*h)dv(p), fighe Ll (X),

v being a bounded non-negative Radon measure on the set of all hermitian, A-bounded,
multiplicative, linear functionals on L (X). By Lemma 13 these may be uniquely
extended to such functionals on L! (X), that is, to elements of H, and hence v may be
considered as a Radon measure on H. Let ' denote the image of v under F~!, and
L its conjugate (the image of i’ under x — ). Then (recall Theorem 12)

<I>’(f*g*h)=/p(f*g*h)dv(p)
H
- / f (F % g % M X () dm () di(x)
X JX

=/ [/A x(x)du(x)] (f *xg*xh)(x)dm(x)
X o

X

forall f,g,h € L, (X). Fubini’s theorem could be used here, since the function
(x,x) —» x(x) on X* x X is (easily seen to be) continuous. Writing ¢o(x) =
S5« x(x) duu(x) we thus have

/¢o(f*g*h)dm=/¢(f*g*h)dm
X X

for all f,g,h € L} (X). Standard arguments using a bounded approximate unit in
L;.C(X) show that ¢(x) = ¢(x) for all x € X, and this proves the theorem.
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