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Abstract

In this paper we make use of semigroup methods on the space of compactly supported measures to obtain
a Bochner representation for a-bounded positive-definite functions on a commutative hypergroup.

1991 Mathematics subject classification (Amer. Math. Soc): primary 43A62; secondary 60B05, 43A10,
43A35.

The analysis throughout will be carried out on a (locally compact) hypergroup X
admitting a left Haar measure m. (For a definition and properties refer to Jewett [5]
whose notation we follow.) This includes those hypergroups that are compact ([5,
Theorem 7.2A]), discrete ([5, Theorem 7.1A]) or commutative (Spector [9, Theorem
III.4]). We reserve the symbols Ml(X), Ml

c(X) and MC(X) for the spaces of prob-
ability measures, those that have compact support, and the space of measures that
have compact support respectively. L™C(X) is just the space of measurable functions
that are bounded on every compact subset of X. There is an analogous definition for
the space L)0C{X) . We denote the point measure at x e X by e,, and the indicator
function of a set A by 1A. The involution on X extends to Mh(X) via fi~(B) =
for all Borel sets B c X.

For each x, y e X write

f(x*y):= f fd(ex *ey), n*f(x):= f f(z~ *
Jx Jx
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[2] Positive-definite functions 239

and

:= / f(x*y)g(y~)dm(y) = /
Jx Jx

f*g(x):= / f(x*y)g(y~)dm(y) = / f(y)g(y~ * x)dm(y).
J Jx

Here / , g are measurable functions on X and /u, e Mb(X), and the latter equality holds
whenever one of / , g is cr-finite (see [5, Theorem 5.ID]). The left x-translate of / is
written fx{y) = f(x * y).

The main objects of interest in this paper are positive-definite functions, that is
functions / e L™C(X) satisfying

for each n, and for each choice of complex numbers a, and points x, e X. For basic
properties of positive-definite functions on hypergroups the reader is referred to [5,
Section 11].

DEFINITION 1. We call a <= L%C(X) with a > 0 an absolute value on X if it satisfies

(i) cc(e) = 1;
(ii) a(x * y) < a(x)a(y);

(iii) a{x~) = a(x)

for all x, v e X.

It should be observed that every continuous absolute value a is positive on X.
Indeed if a(x) = 0 for some x e X then a(x * x~) < a(x)2 = 0 shows that
fxad((x * €x-) = 0, and hence a = 0 on {x} * {x~}. But this contradicts (i) as
ee {x}*[x~}.

DEFINITION 2. We say that / on X is bounded with respect to an absolute value
a, or simply a-bounded, if there is a constant K such that | / (x) | < Ka(x) for all
AT € X. If there exists an absolute value with respect to which / is bounded then / is
called exponentially bounded.

PROPOSITIONS. Every a-bounded positive-definite function f satisfies \f(x)\ <
f(e)a(x)forallx e X.

PROOF. Write K = sup{a(x)"' | / (x) | : x e X,a(x) ^ 0}. Using the positive-
definiteness of / we have

I/OOI2 < f(x*x-)f(e) < Ka(x*x-)f(e) < Ka(x)2f(e)

so that |/(JC)| < (Kf(e)y/2a(x) for all x e X. By the choice of K it follows that
K < (Kf(e))]/2 and K < f(e).
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PROPOSITION 4. Let a be an absolute value on X. Then A defined by

A{s):= [ a d \ s \
Jx

is submultiplicative on MC(X).

PROOF. We have, using [5, Lemma 6.1C],

A(s*t)= fad\s*t\< [ ( a{x*y)d\s\{x)d\t\{y)
Jx Jx Jx

< f f a(x)a(y)d\s\(x)d\t\(y)
Jx Jx

= A(s)A(t)

and this completes the proof.

Write Ll(X) = {/ e L)OC(X) : fx \f\ adm< oo}.

THEOREM 5. Suppose that a (x) > 1 for all x e X. With the norm

lio:= [ \f\adm
J

Lx
a(X) is a Banach subalgebra of Ll(X).

PROOF. If / , g e L[
a(X) then appealing to [5, Lemma 5.ID]

[ \f*g\adm< I f \f\(y)\g\(y-*x)dm(y)a(x)dm(x)
Jx Jx Jx

= f I \g\(y-*x)a(x)dm(x)\f\(y)dm(y)
Jx Jx

= f f \g\(x)a(y*x)dm(x) \f\(y)dm(y)
Jx Jx

< f \f\{y)a{y)dm{y) f \g\(x)a(x)dm(x)
Jx Jx

= \\f\\l.a\\8\\l.a

so that f*g €Li(X)and | | /*g | | l i ( , < | | / | | l i a ||^||,,a. Because a > 1 we must have
Ll

a(X) c Lx (X), and the rest of the proof is clear.
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The assumption a > 1 is essential to Theorem 5. Indeed (see Ross[8, Section 6])
if X is 2-fold absolutely continuous with trivial centre then a = l|e) is easily seen to
define an absolute value on X. However

= {fe L)OC{X) : f \f\ \{e]dm < cx>}
Jx

= {feLlc(X):\f\(e)m({e})<oo}

which in general is not contained in L'(X), and for which | | | | l a does not define a
norm when m({e}) = 0. An example of such a hypergroup is given in [5, Example
9.5].

In view of the above we assume from now on that a > 1. We follow the develop-
ment in Reiter [6, 1.6.1] noting that Ll

a(X) has many of the properties of a Beurling
algebra.

LEMMA 6. CC(X) is dense in Ll
a(X).

PROOF. The inclusion CC(X) c Ll
a(X) is clear since a e L~C(X). To prove

denseness consider / e L\{X), e > 0 and k\ e CC{X) such that

fa - / t i | dm <e/2.

Let C be a compact set with supp(£,) c int(C). Choose a constant K such that
a(x) < K for all x e C, and then k e CC(X) with supp(£) c C and

t ^ - 1 - £ | dw <e/(2K).
JX

Then

/ | / — £| a dm < €
Jx

as required.

LEMMA 7. For allx e X, | | / , | | l o < aQc) ||/||,,o.

PROOF.

(y)a(y)dm(y) < f \f\ {x * y)a(y-) dm(y)
x Jx
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\f\(y)a(y-*x)dm(y)
x

< a(x) / \f\(y)a(y)dm(y)
Jx

= «(*) 11/11,,,,.

LEMMA 8. Given f e Ll
a(X) and e > 0 there exists a neighbourhood U of e such

that\\fx-f\\ha <eforallxeU.

PROOF. Let V be a compact symmetric neighbourhood of e, and choose a constant
K such that a{x) < K for all x e V. Given / € Ll

a(X) and e > 0, Lemma 6 gives
the existence of A: € CC(X) such that | | / - k\\Ua < e/(3K + 1).

Now by Bloom and Heyer [1, Corollary 2.7], k is uniformly continuous. Hence,
writing Kx = sup{|a(^)| : x € V* supp(&)} there is a neighbourhood U C V of e
such that \\kx — kW^ < e/(3Ar

1/?z(V* supp(/t))) for all x € U. Then making use of
[5, Lemma 3.2G], and splitting k into its non-negative parts k\ — k2 + i(k^, — k4) we
see that for x e U

) = suppfe- * k) c supp(eA-) * supp(£) c V * supp(&)

and

11^ - *ll u = f \Kx *y)- k(y)\ a(y) dm(y)
Jx

< (€/QKxm(V *supp(A:))) / lVtsvipmadm
Jx

< e / 3 .

We now have for x e U

H/x - / l l l . o < ll/x - k*h,a + Mi ~ kh.a + II* - /Hl.a

< a(x)e/(3K + 1) + eft + e/(3K + 1)

< e

and this completes the proof.

We now show that the algebra Ll
a(X) admits a bounded approximate unit. For the

remainder of the paper we assume X to be commutative.

PROPOSITION 9. Let (V,) be a base of relatively compact open neighbourhoods of
e, and write kt = m(Vl)~

x\Vi. Then k,m —>• €e, and for each f e L[
a(X), kt * f —>• /

inVa{X).
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PROOF. Consider

\kt * f — f\ a dm

= f [ m(Viy
1U(y)nx*y-)dm(y)

Jx Jx

f
Jx

- f m(Viy
1h,(y)f(x)dm(y)

J
a(x)dm(x)

< f f \f(x*y~)~ f(x)\a(x)dm(x)m(Vir
1lVi(y)dm(y).

Jx Jx

By Lemma 8, given e > 0 there exists i0 such that | ( /") , . — f~\ , a < e for all
y e Vt0. Thus for t > i0

\kt*f-f\adm

< f I \f(x~ *y~)- f{x-)\a{x)dm{x)m{Vl)-
llVt{y)dm{y)

Jx Jx
< €

and this gives the result.

DEFINITION 10. A linear functional r\ on Ll
a(X) is referred to as multiplicative

and hermitian if it is non-trivial, r)(f * g) = rj(f)r](g) and r)(f~) = r)(f) for all
f,geLl

a(X).
A semicharacter x is a locally bounded measurable function satisfying x(e) = I,

X(x * y) = x(x)x(y) and x(x~) = X(x) f°r all x, y e X. Observe that every
positive semicharacter is automatically an absolute value. It is clear from Proposition
3 that every a-bounded semicharacter x satisfies \x\ < ct. We denote by Xa the
set of a-bounded continuous semicharacters on X. It is easy to see that the Fourier
transform f(x) is defined for every x £ ^a> and that / -» fix) is multiplicative
and hermitian on Ll

aiX).

THEOREM 11. Every multiplicative hermitian linear functional on Lx
aiX) is of the

form f -> f ix) for some x £ Xa-

PROOF. Let r\ be a multiplicative hermitian linear functional on L\iX). Since
Ll

aiX) is a commutative Banach algebra, Hewitt and Ross [3, Theorem C.21] gives
that x] is bounded with norm not exceeding 1.

Consider kL = niiVL)~l lVi. Since a is assumed to be locally bounded we have that
k, e Ll

aiX). Choose g e Lx
aiX) satisfying r)ig) ^ 0 and consider
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(1) (k,)x * g = €x- *kt*g = lct* (ex- * g) - > €x- * g,

the limit holding because of Proposition 9. Also we know from Lemma 7 that
ex- * g = gx e L]

a(X).
Define x(x) := ^fe- * g)r)(8)~l- From (1) and the continuity of r\ we have

(2) r)(€x- *g)= lim r)((kt)x * g) = lim i; ((*,),)

so that x(x) = lim, 7?((£,).r)- Therefore x is independent of the choice of g e L[
a(X)

(with ??(̂ ) ^ 0). Again using the continuity of r) we have for any h e Lx
a{X),

r){ex- *h) = limr)((kt)x*h) = limr)((kL)x)rj(h) = x(x)r){h),

and putting h = ey- * g gives the third equality in the following:

x(x*y)rj(g) = / r)(€z-* g) d(€x * €y)(z)
Jx

= r](€x~ * €y- *g) = x(x)r](e,- * g)

= x(x)x(y)v(g)-

T h u s x(x * y) = x(x)x(y)- W e a l s o h a v e

X(x~) = r){€x * g^ig)'1 = r)((ex- * g ~ *

= r)(ex- *g~)r)(g-)-\-\

= X(x).

Furthermore, using Lemma 7,

\ X ( x ) \ = \ r i ( e x * g ) \ \ r , ( g ) \ - 1 < \\€x*g\\la \r,(g)rl < a(x) \\g\\]a

which shows that x is a-bounded. That x is continuous at e follows immediately
from Lemma 8, and hence x is continuous everywhere appealing to Bloom and Ressel
[2, Corollary 1.11]. This all shows that x is a continuous a-bounded character.

Finally, choosing g e Ll
a(X) with r](g) ̂  0, we observe that for / e L\{X),

r)(f) = »?(/ * g)i(gyl = / ri(ex*g)r)(gylf(x)dm(x)
Jx

= f X(x-)f(x)dm(x)
Jx
f

Jx

= fix),
as required.

https://doi.org/10.1017/S1446788700000227 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000227


[8] Positive-definite functions 245

We use Theorem 11 to show that every a-bounded continuous positive-definite
function (f> on X has a Bochner representation

-L
where ix e M+(Xa). This should be compared with the special case given in Voit
[10, Corollary 2.10] where a is taken to be a positive semicharacter on X.

A hermitian, multiplicative, linear functional p on any subalgebra S of Ll
a(X) is

called A-bounded if there is a positive constant K such that |p ( / ) | < KA{f) for all
/ e S, where A(f) := | |/ | | i ,d coincides with the definition given in Proposition 4
provided / has compact support.

In the following, let H denote the set of all non-trivial hermitian, A -bounded,
multiplicative, linear functionals on Ll

a(X). We provide H with the topology of
pointwise convergence, and Xa with the topology of uniform convergence on compact
subsets of X.

THEOREM 12. Suppose that the hypergroup X is second countable. Then the canon-
ical mapping F : X" -> H associating with each x € X" the functional f —>• fix)
is a continuous Borel isomorphism.

PROOF. The remark immediately following Definition 10 shows that F is well-
defined, and from Theorem 11 we know that F is onto. If F(x) = F{y) then
f(x) — fiy) for all / € CC(X), from which it follows using the continuity of x-, Y
that x = Y • So we are left with proving that F is continuous, and that its inverse is
Borel measurable.

Let (xJ C Xa be a net converging to x- F°r / e Ll
a(X) and e > 0 there is a

compact set K c X such that jK, \f\adm < e/4, and then for i sufficiently large
max{|x,(x) - X(x)\ : x e K) < e/(2 ||/||l iO + 1). This implies that

\FiXt)if)~Fix)if)\ = -X)f dm

<2 [ \f\adm+ f \Xi-x\\f\dm
JK< JK

< €

which gives the continuity and hence measurability of F.
The space C(X) of all continuous complex-valued functions is, with regard to

uniform convergence on compact subsets, a Polish space, hence so is Xa as a closed
subspace of C(X). As a continuous one-to-one image of X" the space H turns out to
be a so-called standard or Lusin space, and a deep result from topology (Hoffmann-
J0rgensen [4, Ch. Ill, §7, Theorem 2]) tells us that F"1 is measurable, that is, F is a
Borel isomorphism.
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LEMMA 13. Let p : Ll
ac(X) —> C be a hermitian, A-bounded, multiplicative

linear functional. Then p extends uniquely to a functional p with the same properties
on Ll

a{X). The mapping p -> p is a homeomorphism with respect to pointwise
convergence.

PROOF. For / e Ll(X) and D c X we put fD := f\D. Given e > 0 there is
a compact set C C X such that fcc \f\adm < €. If D, E C X are compact sets
containing C then D A E c Cc, and it follows that

f
\P(/D) ~ P(/E)\ - IP( / (1D - 1E))I < ^ / I/I lDAE(xdm < Kc

Therefore p ( / ) := lim p(fo) exists in C, and p is easily seen to be linear, multiplic-

ative, hermitian and A-bounded.
The last statement will be clear once we prove that pointwise convergence p, -> p

on Llc(X) implies pointwise convergence pt ->• p on L^(X). Let / e ^i(X) and
e > 0 be given. There is a compact set D c X such that fDC \f\adm < e/4 and,
for i large enough, | A ( / D ) - P( /D) I < e/2. Appealing to Theorem 11 we have the
existence of Xi, X e X" s u c n t n a t

A( / ) -?( / )= I fix,-X) dm
Jx

= f f(xl-x)dm+ [ m.-xldm
JD JDC

= A(/D) - P( /D) + [ fiX. ~ X) dm
JD<

and for such i chosen as above I A ( / ) — p ( / ) | < e.

THEOREM 14. Let X be second countable and let (p : X —>• C be a continuous
a-bounded, positive-definite function. Then there is a unique measure fi e Mb

+(Xa)
such that

<P(x)
Jx.

PROOF. Let S := MC(X) and extend 4> to <J> : S -> C by the natural definition
(s) := Jx <pds. If s e S has finite support, say s = 5Z"=1 a,€Xi, then

/ / <p(x * y~)ds(x)ds~(y)
Jx Jx
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Any s e S may be approximated (setwise on the Borel field) by a net (s,) of measures
with finite support contained in supp(s). The restriction <p |supP(J) being bounded and
continuous, the above inequality valid for each s, extends to s. But then O is a
positive-definite function on S since

* s~) = <t>(s * s~)

with 5 := YLjcjsr Because |4>(s)| < <p(e) fxad\s\ = (p(e)A(s), the function 4>
is ^-bounded, and hence so is its restriction <!>' := <£> \L],C(X)\ Theorem 5 in Ressel
[7] (in connection with Remark 5 to Theorem 4 in the same reference) gives the
representation

* ' ( / *g*h) = j p(f*g*h) dv(p), f , g , h € Lx
ac(X),

v being a bounded non-negative Radon measure on the set of all hermitian, A -bounded,
multiplicative, linear functionals on Ll

ac(X). By Lemma 13 these may be uniquely
extended to such functionals on Ll

a{X), that is, to elements of H, and hence v may be
considered as a Radon measure on H. Let n' denote the image of v under F~l, and
fi its conjugate (the image of / / under x -> ~X~)- Th e n (recall Theorem 12)

&(f*g*h)= / p(f *g*h)dv(p)
JH

= / [(f*g*hHx)x(x)dm(x)dn(X)
JX" JX

= f \ L X(x)dfM(x)](f*g*h)(x)dm(x)

for all f, g, h e Llc(X). Fubini's theorem could be used here, since the function
(X,x) -> x(x) on X" x X is (easily seen to be) continuous. Writing <J>Q{X) :=
Jx° x(x)d[i(x) we thus have

/ 0o(/ * g * h) dm = j
Jx Jx

*g*h)dm= I <p(f * g * h)dm
Jx

for all f, g,h e L\ C(X). Standard arguments using a bounded approximate unit in
L\ C(X) show that 0oOO = <t>(x) for all x e X, and this proves the theorem.

References

[1] W. R. Bloom and H. Heyer, 'Characterisation of potential kernels of transient convolution semig-
roups on a commutative hypergroup', Probability measures on groups, IX (Proc. Conf., Ober-
wolfach, 1988), Lecture Notes in Math. 1379 (Springer, Berlin, 1989), pp. 21-35.

https://doi.org/10.1017/S1446788700000227 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000227


248 Walter R. Bloom and Paul Ressel [11]

[2] W. R. Bloom and P. Ressel, 'Positive definite and related functions on hypergroups', Canad. J.
Mart. 43(1991), 242-254.

[3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol I. Structure of topological groups.
Integration theory, group representations, Die Gundlehren der mathematischen Wissenschaften
115 (Springer, Berlin, 1963).

[4] J. Hoffmann-J0rgensen, The theory of analytic spaces, Var. Publ. Series 10 (Matematisk Institut,
Arhus Universitet, 1970).

[5] R. I. Jewett, 'Spaces with an abstract convolution of measures', Adv. Math. 18(1975), 1-101.
[6] H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Mathematical Mono-

graphs (Clarendon Press, Oxford, 1968).
[7] P. Ressel, 'Integral representations on convex semigroups', Math. Scand. 61 (1987), 93-111.
[8] K. A. Ross, 'Centers of hypergroups', Trans. Amer. Math. Soc. 243 (1978), 251-269.
[9] R. Spector, 'Mesures invariantes sur les hypergroupes', Trans. Amer. Math. Soc. 239 (1978),

147-165.
[10] M. Voit, 'Positive characters on commutative hypergroups and some applications'. Math. Z. 198

(1988), 405^21.

School of Physical Sciences, Mathematisch-Geographische Fakultat
Engineering and Technology Katholische Universitat Eichstatt
Murdoch University D-85071 Eichstatt
Perth WA 6150 Federal Republic of Germany
Australia

https://doi.org/10.1017/S1446788700000227 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000227

