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Abstract

In this paper, we study the structure of certain conditional expectation on crossed product C*-algebra. In
particular, we prove that the index of a conditional expectation E : B — A is finite if and only if the
index of the induced expectation from B X G onto A X G is finite where G is a discrete group acting on B.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 46L05; secondary 46H25.

Introduction

In this paper we study conditional expectations defined on certain C*-algebras given
as crossed products. Consider a pair A C B of C*-algebras, E : B — A a conditional
expectation, and an action of a discrete group G on B commuting with E. Then, there
are conditional expectations E (respectively E,) from B x G (respectively B x, G)
onto A x G (respectively A X, G). Many properties of E (and E,) are realized by
studying the Hilbert C*-modules obtained by a Jones-type basic construction method.
Consequently, a large portion of this paper is concerned with Hilbert C*-modules and
the C*-algebra of the so-called compact operators on a Hilbert C*-module. In Section
2 we consider a Hilbert C*-module & equipped with an action of a group G. Then, G
acts on ¥ (&) and the main theorem of this section states that if G is discrete, then
JH (&) x G (respectively X (&) %, G) is *-isomorphic to £ (& x G) (respectively
H (é’ X, G)). In Section 3, we prove that E (and E,) has finite index if and only if £
has finite index. We also show that the canonical conditional expectations from B x, G
onto B x, H and from B X G onto B x H for a subgroup H of G have finite indices
if and only if [G : H] < oco. The notion of index considered here was introduced by
Watatani [14] who was inspired by Jones’ index theory for subfactors [7]. The index
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of a conditional expectation E : B — A is a positive element of B. When the index is
scalar (for example B simple) it belongs to the set {4 cos® r/n : n > 3}U[4, 00). One
hopes that if £ : B — A has finite index, then A and B cannot be structurally very
different. For example, it is known that a C*-subalgebra A of a nuclear C*-algebra
B need not be nuclear [1, 3]. However, when E : B — A has finite index, then B
is nuclear if and only if A is so. Throughout this paper all C*-algebras (except for
ideals) are assumed to be unital and we deal with actions of discrete groups only. If a
group G acts on a C*-algebra A as a group of automorphisms, then A X G and A X, G
respectively denote the full and the reduced crossed product C*-algebras [10].

1. Finitely-generated Hilbert C*-modules

In this section we prove a series of technical lemmas on Hilbert C*-modules.
Let A be a C*-algebra and & a Hilbert A-module. Then #(&") denotes the C*-
albegra of adjointable operators and ¢ (&) the closed ideal in £ (&) generated by the
elements 6; , where &, n € & (cf. [8]). If & is a right Hilbert A-module, &, a right
Hilbert B-module, and 7 :6 — £ (&) a *-representation, then the algebraic tensor
product & © &, has a natural B-valued inner product. Namely, (x; ® x2, y1 ® y») =
{(x2, m({x1, y1))y2) withxy, y; € & and x,, ¥, € 6. Let & ® 48, denote the completion
of & © &, after vectors of length zero have been factored out. For a Hilbert module
&, 14 denotes the identity operator on &

LEMMA 1.1. Let &, and &, be Hilbert modules over C*-algebras A and B respect-
ively, and m : A — £(&) a x-representation. If m is faithful, then the mapping
Z(8) > L(8 Qa4 &) definedby T — T ® g, is faithful.

PROCF. Let T € Z(&)), and T # 0. Then, there exists & € & such that T¢ #
0. Since & is faithful x((T&, TE)) # 0. Hence, there exists n € & such that
7 ({TE, TE))n # 0. Therefore, (w((TE, TE))n, m) # O for some n; € &. Hence,

(TO®DE®n), (TDE@m) = (m, n((T§, TENn) #0

and T @1 # 0.

LEMMA 1.2. Let A be a unital C*-algebra and & a Hilbert A-module. If 15 €
H (&), then there exist u,, ... ,u, € & suchthat 1o =37 _ 0, ...

PROOF. Choose yi, Y2, ... » Ym; X1, X2, -+ , Xm € & suchthat T = Y " 6, , and
Ille — Tl < 1. Then, T + T* = Y., 6, + 6, is invertible. Forevery &, € &,
we have that (6 :(n), n) = (§,n)(&, n)*. Since (§, n)(§, n)* is positive in A by
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[12, Corollary 2.7], 6; ; is a positive element of £ (&). Using this and the equation
0X+y,x+y = Ox,y + ey,x + Ox,x + ey,y we have

Ox,y + ey,x .<_ 9x+y,x+y _<_ 0x+y,x+y + gx—y,x—y = 29x,x + 29y,y-

Apply this inequality to each term of > ., 6, ,, + 6,, ., to conclude that the operator
S=73" 04 + 6,y is positive and invertible. Then,

1g = S_I/ZSS_I/2 = 95—1/2,“.'54/2&. + 03—1/2),,.‘54/2”

m
i=1

which is the desired result.

LEMMA 1.3. Let & = & Q4 & and 1o € (). Then, there exist x,, Xy, ..., Xm €
Eyandy,...,ym € & suchthat Y ;_ 0.0 xoy is positive and invertible.

PROOF. By Lemma 1.2 there exist z,,...,z, € & such that 1, = }|_ 9, ..
Without loss of generality we assume that j|z;]| < 1fori = 1,...,n. Givene > 0,
choose x;; € & and y;; € &, j =1,2,...,n, such that ||z; — Z}":l xi; ® yijll < €/n.
Letw; = 377", x;; ® yij- Then [|w;|| < 14 €/n,and by, v, = 37—, Or 0y, xu@ya-

But

I Zgw,,w,- — el = Zgwi.wi - Zez,-.zi I < i Hew.-,w. - 6z,-.2, I
i=1 i=1 i=1 i=1

- € € €
<2t = alllal + i) < (24 2) =€ (24 ).
This shows that }_,_, 6,, ., is invertible if € is sufficiently small. This, together with
the inequality in the proof of 1.3 implies that the element T = >7_| ¥, 6, 0y, 0,
is positive and invertible once € is chosen sufficiently small.

LEMMA 1.4. Let & be a Hilbert B-module, & a Hilbert A-module, and m : A —
Z (&) a faithful x-representation. If 1p9,6 = Y . 6y With x; € &' Q4 &, then
there exist u, Uz, ..., U, € & suchthat 1o =3 _ 0y .

PROOE. By 1.3 there exist y;,...,y, € & and z,...2, € & such that T =
Y 1 0@ .es 1S Positive and invertible. Foreach x € & define T, : & — £ ®, €
by T:(y) = x ®a y.

Then T} : £ ®4 & — & is given by T*(§ ® n) = n({x,&))n. Also, for
ze€ &, letS, : B — & bedefined by S,(¢c) = zc. Then S}(x) = (z,x), and
Oy.0z. 0 = Ty, 5,5 Ty*

YivziYz;
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Hence
n n n
* Pk * *
§ :eyi®zivyi®zi = § :T)'i SZi Sz,- Ty,~ = 2 :”SZn Sz, ”Tyi Ty,~‘
i=1 i=1 i=l

Therefore

Z Tyi T;: > ‘Al_l Ze i ®zi,yi ®zi
i=1

where M = max{||S, S;||:i=1,...,n}>0. Then) ' | T, Tr =3 6,, ®lg,
and hence § = ) ;_, 0, ,, is positive and invertible. Let u; = $~'2y, to get 15 =
D ic1 Os-imy, sy,

COROLLARY 1.5. Let &', &, and m be as in Lemma 1.4. If & ®,4 & is a finitely-
generated projective C*-module, then &' is a finitely generated projective A-module.

PROOCF. Since &’ ®, & is finitely-generated and projective, it follows that 14, ¢
satisfies the hypothesis of Lemma 1.4. Let u;,...,u, € & be as in Lemma 1.4.
Then f;(x) = (u;, x) is an element of Hom, (&, A) and {(u;, fi) :i =1,...,n}isa
projective system. Hence &” is a finitely generated projective A-module.

2. Hilbert G-modules

Let & be a Hilbert A-module equipped with an action of a discrete group G such
that:

(i) t(xa) = (@x)(ta), xe€ &, ac A, ted,

(i) t{x,y) = {tx,ty), x,y€ &, t € G.

The induced action of G on J¢ (&) is defined by (t.#)(x) = 1(F (17 x)) for
S e H(E),x e &andt € G. Let C.(G, &) be the set of functions with finite
support from G into &. Define an A x G-valued inner product on C.(G, &) by
(e1,e)(t) = Y 657" ({e1(s), ex(st))) where e, e; € C(G, &) andt € G. If
e € C.(G, &) anda € C(G, A) let (e.a)(t) = Y, e(s)s(a(s™'0)).

Let & x G be the completion of C.(G, &) inthe norm |le|| = |/{e, e)||'/* when (e, €)
is regarded as an element of A X G. Similarly & x, G is defined to be the closure
of C.(G, &) with respect to the norm |le||, = |/{e, e)||/?, that is, (e, e) is regarded
as an element of the reduced crossed product A %, G. Then & %, G is a Hilbert
A %, G-module. For more on this construction we refer to [4, 9]. Using the action
of G on ¥ (&) we form the full and the reduced crossed products ¥ (&) % G and
H(€) x, G. We have the following theorem.
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THEOREM 2.1. Let G be a discrete group acting on a C*-algebra A and a Hilbert
A-module & . Then
(@A) X (E)YXNGEH(E XG);
(b) X (&) %, G=XH(& %, G).

PROOF. (a) Define a covariant representation of the pair (£ '(&), G) on the A x
G-module & x G by (u,f)(s) = t(f(t7's)) and (Tf)(s) = T(f(s)) for f €
CAG,&),t,s € G,and T € ¥ (&). Itis routine to check that these equations define
unitary and *-representations. Moreover,

@, Tu)()) = [T )@"s)] =T (@} H's))
=1(TC ' (f()N) = ¢T)()).

Hence, by [10, Proposition 7.6.4] we obtain a #-representation 7 ;: ¥ (&) X G —
ZL(& x G).

Since ¥ (&) is generated by the rank one elements 6; ,, and G is discrete, £ (&) x G
is generated by the elements 6; ,u, for §, n € &£ and t € G. It is straightforward to
verify that  sends these elements into £ (& x G) and that the range of 7 contains
the generators of £ (& »x G). Hence r is onto. To show that 7 is one-to-one define
a *x-homomorphism

T: X (EXNG)—> M(XH(E) xG)

such that 7 o 7 is identity on J£ (&) x G. Let & be & with the J¢ (&)-valued
inner product (x*, y*) = 6, , and the module action x*.7 = (T*(x)*) forx,y € &
and T € # (&) (cf. [12, Definition 6.17]). Here x* denotes x seen as an element
of &*. Since |6.,]| = {lx||?, it follows that &* is closed in the norm induced by
the above inner-product. Define ¢ : A — £(&*) by p(a)(x*) = (xa*)*. Then
it is easy to verify that ¢ is a *-representation, and we can form the tensor product
& ®,4 & equipped with the diagonal action of G. Furthermore, & ® ; £ is naturally
and equivariantly isomorphic to ¢ (&) as Hilbert ¢ (&£)-modules (cf. [12, Lemma
6.22]). Using this we conclude that £ (£) % G and & ®,4 &* x G are isomorphic as
Hilbert £ (£) x G-modules. Then by [9, Lemma 3.10] we have

(EXG)Ruug (" XG)=(E®4E") % G.
Hence

Z((& % G) @anc (6* X G)) Z L((6 Q4 &) % G),
= #(H (&)  G)
= (X (6) xG)
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(cf. [8]). Using the above isomorphisms and the mapping T — T ® 1 of £ (£ % G)
into Z((€ % G) ®axc (6* x G)) we obtain a x-homomorphism 7 : ¥ (& x G) —
M (&) x G). It is routine to show that 7 o = is the identity on £ (&) % G.

(b) Define a covariant representation of the pair (¢ (&), G) on the space & ®1*(G)
by (u, f)(s) = tf (t7's) and (Tf)(s) = T(f(s)) for f € (G, &), T € X (&), and
s,t € G. Since this is a faithful representation of J£ (&) by [10, Theorem 7.7.5], we
obtain a faithful representation

¥ H(E) %, G > L(E®LG)).

By Lemma 1.1 the mapping 7 — T ® 1 from J£ (& %, G) into £((& %, G)Q(A®
I2(G))) is faithful. Since (& X, G) ®ax.¢ A ® [*(G) and & ® I*(G) are naturally
isomorphic we get a faithful representation A of ¢ (£ %, G) on the space & ® I*(G).
Thus

¥ H (&) %, G~ L(€11(G)),
A H(E %, G) > Z(6RIMG))

are faithful x-representations. Letw : # (£)XG — JH (& X G) be the *-isomorphism
given by part (a). Letg : X (&) x G > H (&) 1, G and ¢’ : K (& x G) —
JH (& %, G) be the natural surjections. Then one can check thatp o g = Ao g’ om.
Clearly this shows that the ranges of ¢ and A coincide. Hence J£ (&) %, G and
X (& %, G) are x-isomorphic.

REMARK 2.2. Consider a pair A C B of C*-algebras with a common identity and
a faithful conditional expectation E : B — A. Moreover, assume that B is equipped
with the action « of a discrete group G such that « commutes with E. Then, we show
that there are induced conditional expectations from B x G (respectively B x, G)
onto A x G (respectively A X, G). We prove that E is of finite index type in the sense
of [14] if and only if the induced conditional expectations on the crossed products
are so. Recall that if A is a C*-subalgebra of a C*-algebra B, then a positive norm
one projection E : B — A is said to be a conditional expectation from B onto A if
E(axb) = aE(x)bfora,b € A and x € B. We say E is faithful if x = 0 whenever
E(x*x) =0 (cf. [14]).

DEFINITION 2.3. ([15]). A conditional expectation £ : B — A is said to have
finite index if there exists uy,...,u, € B such that x = 3" u;E(ux),x € B.
The set uy, u,, ..., u, is called a basis for E and the index of E is defined to be
indE=7Y%_,uul.
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REMARK 2.4. It follows directly from the above definition and the A-linearity of E
that ind E is independent of basis. By [15, Proposition 1.2.8], ind E belongs to the
center of B. In particular, when B is simple ind E is a scalar and belongs to the familiar
set {4cos’m/n : n > 3} U[4, co) discovered by Jones for the index of subfactors of
type 11, factors (cf. [7]).

REMARK 2.5. Given a faithful conditional expectation £ : B — A we denote by
& the completion of B with respect to the norm ||x||2 = || E(x*x)]|, that is, the norm
induced by the inner product (x, y) = E(x*y). Note that ||.|| ¢ is a norm because E is
assumed to be faithful. Since E is A-linear and of norm one it extends to a projection
ey : &g — &g. Also regard B as a subalgebra of £ (&%) through left multiplication.
The C*-subalgebra of .Z(&x) generated by BeyB is just J£(&£%). In fact, we have
that (xe,y)(x'esy) = xE(yx)esy and xe,y is just 0, ..

REMARK 2.6. Let ¢ : G — Aut(B) be an action of a discrete group G and E :
B — A aconditional expectation satisfying E (c,(x)) = o, (E(x)). This implies that
A is G-invariant. By [10, Proposition 7.7.91 A %, G is x-isomorphic to a subalgebra of
B x, G. Inour situation, A X G may also be regarded as a C*-subalgebra of B x G. To
see this, we only need to show that every covariant representation of the pair (G, A)
on a Hilbert space H extends to a covariant pair (77, &) of the pair (B, G) on a space
K containing H. Let K be the completion of the algebraic tensor product B © H
with respect to the inner product (b ® &, c O n) = (&, w(E(b*c))n) after the vectors of
norm zero are factored out. Let 7(b)(c ® §) = bc ® &£ and 4,(d ® 1) = a,(d) @ u,n.
It is easy to check that (7, &) is a covariant pair. Hence, the crossed product A x G
is viewed as a subalgebra of B x G. Now one may use the proof of [12, Lemma 1.1]
with appropriate modifications to prove that the obvious projection of /'(G, B) onto
I'(G, A) defined by f — E o f extends to a conditional expectation E (respectively
E,) from B x G (respectively B x4, G) onto A X G (respectively A %, G). Furthermore,
since the conditional expectations E, : B x, G — Band E, : A x, G — A given by
the evaluation at the identity of G are faithful (cf. [2]) and E0 E, = E o E,, it follows
that E, is faithful if and only if E is so.

PROPOSITION 2.7. Let E : B — A be a faithful conditional expectation. Let E and
E, be the conditional expectations induced by E on B x G and B %, G respectively
(see Remark 2.5). Then & %, G and & are isomorphic as Hilbert modules over
A %, G . If E is faithful, then & %, G and &; are isomorphic as Hilbert modules
over A x G,

PROOE. As pointed out in Remark 2.6, if E is faithful, then E, is also faithful. Then
& is the completion of C.(G, B) with respect to the norm induced by E,. Since B
is dense in &% the action of G extends to & and & X, G can be formed. Moreover,
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C.(G, B)isalsodense in & x, G. Hence we only need to show thatthe A %, G-valued
inner products on &; and &r %, G coincide on C.(G, B). Givenx, y € C.(G, B) and
t € G we have:

(X, Ve = Y et ((x(s), y(s1) = 3 Eent (x(5) y(s1)))

seG seG
= E()_ o1 (x(s))ate-1 (y(s1))) = E( D) x"(s et (¥ (s1)))
seG seG
= E,(x* % y)(0).

But E, (x* * y) is the inner product of x with y when they are seen as elements of &%, .
If E is faithful, then the above argument can be repeated to get the desired result.

THEOREM 2.8. Let G be a discrete group acting on a C*-algebra B and let E :
B — A be a conditional expectation onto a C*-subalgebra A of B commuting with
the action of G. Then the following are equivalent.
(a) E has finite index,
(b) E has finite index,
() E, has finite index.

PROOF. Suppose (a) holds. Let {b,, b,, ..., b,} be a basis for E. For every x € B
and¢ € G we denote by A, , the element of /' (G, B) which s x at¢ and zero elsewhere.
Then denoting the identity of G by ¢ we have

n n
Zke,b,-Eﬂ ()\e,b,»' * Az.x) = Z)\.e,b;E ()w,b;‘x) = Zke,b.)"l,E(b{‘x)
i=1 i=1
= Ay bEGI) = Arxe

Hence the set {A. 5, : i = 1,2, ..., n}is a basis for E. Moreover,

n
ind E = E Aep, ¥ Aepp = Ae 30 bbr = AeindE

i=1

Next we show that (b) implies (a). First note that if E has finite index, then by [15,
Proposition 2.1.5], it is faithful. Hence by Proposition 2.7, &% is isomorphic to £z X G.
By Theorem 2.1, (&%) is *-isomorphic to J# (&) x G. If E has finite index, then
X (&%) has an identity ([15, Proposition 2.1.5]). Since G is discrete, it follows that
J¥ (&) has an identity. Then, by Lemma 1.2, there exist elements u;, ... 4, € & such
that 1, = Y7 6, ... By [15, Proposition 2.1.5] there exists a constant d > 0 such
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that || E(x*x)|| > d||x*x]|. Given b € B, we have

NEG:, * Aep)ll = dlIAL, * Aesll,

4

IEQepep)ll = dlidepmslls
[Aeewmyll = dllXessll,
|E®*B)I = d|Ib*b)).

This shows that & = B and u,, ..., u, € B. Clearly, the set {u,, ..., u,} is a basis
for E. The equivalence of (a) and (c) is similar.

3. Conditional expectations corresponding to subgroups

Let G be a discrete group and let @ : G — Aut(A) be a continuous action of G
on a C*-algebra A. If H is a subgroup of G, then we define conditional expectations
Ey (respectively E7,) from A x G (respectively A X, G) onto A X H (respectively
A X, H). We show that E, and E}; are of finite index type if and only if [G : H] < oo.
Here again the ideas in [12, Proposition 1.2} are used to show that the projection of
I'(G, A) onto I' (H, A) given by restriction extends to a norm one projection of A X G
onto A X H. We present a proof of this fact for completeness.

PROPOSITION 3.1. Let G be a discrete group acting on a C*-algebra A and let H
be a subgroup of G. Then, the projection of I'(G, A) onto I'(H, A) extends to a
conditional expectation of A X G onto A x H.

PROOF. First we show that A x H is a C*-subalgebra of A x G. Clearly if
f € I'(H, A), then || flla x¢ < Il fllaxz- We need to show the reverse inequality.
Let ¢ be a state of A x H. Then by [10, Proposition 7.6.10], there exits a positive
definite function ® : H — A* such that for each f € I'(H, A) we have ¢(f) =
Yren @O(F®), and Y, ©O)(F* % £)@) = 0.

Extend ® to G by letting it to be zero off H. Let {x;} be a complete set of
representatives of the right cosets of H. For f € I'(G, A) we have

DeO(frxf@O) =) o1 (Z o (f(s’l)*f(S“t)))

teG teH seG
=) &0 (Z hL? (f(x,-“s“)*f(x,-“st)))
seH i teH
= Z Z Z O(1) (as (f(x,._ls'l)*f(x,._ls‘lt)))
i seH teH
= ZZ(D(t) (fr* f.(0) =0
i teH
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where f, (s) = f(x7's) and is restricted to H. The inner sums in the last expression
are non-negative as & is positive definite on H. But this shows that ® : G — A*
is also positive definite. Now by [10, Proposition 7.6.10], ® defines a positive linear
functional on A x G. Hence, every positive linear functional of A x H extends to
a positive linear functional on A x G. It follows that || f|laxy < | fllaxc for each
f € l'(H, A). Therefore A x G contains A x H as a C*-subalgebra. Let f € I'(G, A)
be self-adjoint. Then f|y is a self-adjoint element of A x H. Hence there exists a
state ‘P of A x H such that “fJ_H”AxH = |@(fla)l. Then || flullaxn = & (fla)l,
and |9¢(f)] < || fllaxg where ¢ is the extension of ¢ to A X G. This shows that
the mapping of /'(G, A) onto I'(H, A) given by restriction extends to a norm one
projection of A x G onto A x H. Finally it is straightforward to verify that this
projection is actually a conditional expectation.

REMARK 3.2. The projectionof {'(G, A) onto!'(H, A) also extends to a conditional
expectation of A x, G onto A %, H. We refer to (2] for a proof.

Let G, H, and A be as in the statement of Proposition 3.1. Then

Ey:AxG—> AXH, and
E,:Ax,G—> AX H

denote the conditional expectations given by Proposition 3.1 and Remark 3.2. In
general, Ey is not faithful. For example, if H is an amenable subgroup of a non-
amenable group G, then Ey is not faithful. However, E}, is always faithful. This is
because E, : A %X, G —> Aand E, : A x, H — A evaluations at the identity of G
are faithful (cf. [13]), and E, o E}, = E|.

NOTATION 3.3. If t € G and a € A, then A, is the element of /!(G, A) which is
a at t and zero elsewhere. Let & (respectively &%) be the Hilbert A x H-module
(respectively the Hilbert A x, H-module) associated with Ey (respectively E},) as in
Remark 2.5.

THEOREM 3.4. Let G be a discrete group acting on a unital C*-algebra A and let
H be a subgroup of G. Then, the following are equivalent :
(i) [G:H] < o0,
(i) Ey has finite index,
(iii) E% has finite index.

PROOF. (i) implies (ii): If G = gtH U g, HU --- U g, H, then it is easy to show
that {A, ,:i=1,2,...,n} with ] the identity of A is a basis for Ey and that
ll'ld EH = Zi A;i,llgi.l = [G . H]A.e‘[.
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(ii) implies (i): If ind Ey were finite, then by [15, Proposition 1.7.2], £ (&y)
contains the identity operator. In the notation of [10, 6], & is just the rigged space Z
on [6, p. 92]). Hence by [6, Theorem 2.4], & is isomorphic to (A x H) ® I*(G/H) as
Hilbert A x H-modules. Hence J¢ () is *-isomorphic to (A x H) ® K (I*(G/H).
If K (&) were unital, then it follows that /(G / H) must be finite dimensional. Hence
G/H is a finite set.

(iii) implies (i): In this case the proofs of [6, Lemma 2.3] and [6, Theorem 2.4] can
be used to prove that &, is isomorphic to (A x, H) ® I*(G/H) as Hilbert modules
over A x, H. Now the argument given in the non-reduced case can be repeated. This
completes the proof of the theorem.

PROPOSITION 3.5. Let A, B and C be C*-algebras with the same unit. Let E :
B — Aand F : C — B be faithful conditional expectations. Then Eo F : C —> A
has finite index if and only if E and F have finite indices.

PROOF. If {u;, u,, ..., u,}, and {vi, ..., v,} are respectively bases for F and E,
then the set {w,v; : i =1,...,n;j = 1,...,m} is a bases for E o F. Conversely,
suppose that E o F has finite index. Then, E o F is faithful and by [15, Proposition
1.7.2], E has finite index. It remains to show that F has finite index. Let 7 : B —
Z (&%) be the +-representation given by left multiplication. Form the tensor product
& ®p &. Then & ®p &, and & are Hilbert A-modules. We show that the
A-valued inner products on the dense subset C ® 3 B(= C) of & ® &F and the dense
subset C of &g r coincide. Let b,, b, € B and ¢;, ¢, € C. Then,

(€1 @ by, 2 ® by) = (b1, w({cy, 2))b2) = (by, F(cT, c2)by)
= E(b{F(c}, c2)by) = E(F(bicic:by)) as bib, € B
= E o F((c1, b)) (¢2b2)) = (c1b1, 02b5).

The above computation shows that the mapping ¢ ® b — ¢b from C @5 B to C
extends to an isomorphism of & ® g & onto &% as Hilbert A-modules. If E o F has
finite index, then &%,r and hence & ® s &% is a finitely-generated projective A-module
(cf. [15, Proposition 1.3.4]). Hence we are in the situation of Proposition 1.5. Since
7 is faithful (cf. 2.5) there exist u;, u, ..., u, € & suchthat 15, = Y 7 6, ... As
E o F has finite index, C is closed in ||.||gor and clearly |[x||g.r < |x|lF, x € C.

Hence C is closed in ||.||r and & = C. This means that u,, ..., u, € C and hence F
has finite index with basis {u;, ..., u,}.

THEOREM 3.6. Let H be a subgroup of the discrete group G and let

E:BxG—> AxG,
Ey:AXG—> AxH
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be as defined in Remark 2.6 and Remark 3.2. Then Ey o E has finite index if and only
if E has finite index, and [G : H] < co. Moreover,ind Egyo E =[G : H]ind E. The
same results hold in the reduced case.

PROOF. If E has finite index, then by Theorem 2.8, E has finite index and ind E =
ind E. If [G : H] is also finite, then by Theorem 3.4, Ey has finite index with
ind Ey = (G : H]A, ;, which is an element of the center of B x G. Hence, by [15,
1.7.11 Ey o E has finite index and we have:

ind Ey o E = (ind E4)(ind E) = [G : H](ind E).

Conversely, suppose that £ o E has finite index. Then by Proposition 3.6, E and
E have finite index. Hence, Theorem 3.4 and Theorem 2.8 imply that [G : H] < o0
and E has finite index.
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