
ANZIAM J. 66 (2024), 222–237
doi:10.1017/S1446181124000269

NONLINEAR MODULATION OF RANDOM WAVE SPECTRA FOR
SURFACE-GRAVITY WAVES WITH LINEAR SHEAR CURRENTS

SUMAN MUKHERJEE 1, SOURAV HALDER 1 and A. K. DHAR �1

(Received 9 September, 2024; accepted 5 November, 2024; first published online 10 January, 2025)

Abstract

We first derive Alber’s equation for the Wigner distribution function using the
fourth-order nonlinear Schrödinger equation, and on the basis of this equation we
next analyse the stability of the narrowband approximation of the Joint North Sea
Wave Project spectrum. Therefore, one interesting result of this study concerns the
effect of modulational instability obtained from the fourth-order nonlinear Schrödinger
equation. The analysis is restricted to one horizontal direction, parallel to the direction
of wave motion, to take advantage of potential flow theory. We find that shear currents
considerably modify the instability behaviours of weakly nonlinear waves. The key point
of this study is that the present fourth-order analysis shows considerable deviations in
the modulational instability properties from the third-order analysis and reduces the
growth rate of instability. Moreover, we present here a connection between the random
and deterministic properties of a random wavetrain for vanishing spectrum bandwidth.

2020 Mathematics subject classification: primary 76B07; secondary 76B15.

Keywords and phrases: nonlinear Schrödinger equation, random phase spectra, linear
shear currents, Benjamin–Feir index.

1. Introduction

Nonlinear effects such as sideband instability have played a significant role in numer-
ous nonlinear analysis domains [19]. In appropriate physical conditions, the nonlinear
Schrödinger equation (NLSE) can be utilized to investigate nonlinear evolution of
water waves, and this equation can be used to characterize sideband instability [32].
For perturbations with small amplitude and long wavelength, nonlinear analysis is
appropriate. However, predictions using the cubic NLSE do not match the exact
results of Longuet–Higgins [20, 21] for wave steepness greater than 0.15. As a result,
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Dysthe [7] developed an improved version of the NLSE by adding fourth-order effects,
and he claimed that the stability analysis derived from the fourth-order NLSE for deep
water produces results that are compatible with both the results of Longuet–Higgins
and Benjamin and Feir [3]. The importance of a wave-induced mean flow response
is the new effect added to the fourth-order which produces a significant deviation
in the stability characteristics. A few of the features that are significantly improved
by the fourth-order effects have been explored by Janssen [14]. In the presence of
wind blowing over water, Dhar and Das [5] developed a fourth-order modified NLSE
for deep-water surface gravity waves and investigated the impact of wind on the
Benjamin–Feir instability. Dhar and Kirby [6] currently derived a fourth-order NLSE
for capillary-gravity waves on finite depth with constant vorticity. They remarked that
vorticity significantly alters the modulational instability properties and that, when
vorticity and capillarity are combined, the growth rate of instability (GRI) influenced
by capillarity on finite depth is increased when vorticity is negative. Therefore, we
conclude that a fourth-order NLSE is a good starting point for the investigation of
nonlinear effects of surface waves on deep water.

Recently, the study of surface waves when vorticity is present has received much
attention. Nonlinear wave–current interactions are of interest to ocean engineers and
scientists, because waves and currents typically coexist in an ocean. The wave–current
interactions depend on the propagation direction and also on the vertical distribution
of the currents. So, it is important to study the various characteristics of water
waves travelling in a shearing flow. In fact, vorticity coexists with the underlying
currents. Therefore, both the influence of depth uniform currents and vorticity must be
considered when deriving a NLSE. Because of this, Liao et al. [18] used the multiple
scale technique to develop a linear-shear-current modified cubic Schrödinger equation
for gravity waves in finite water depth.

Starting with the studies of Phillips [28] and Hasselmann [10, 11], attention has
been paid to the energy transfer due to four-wave interactions in an ocean [12, 29, 31].
Lower-order corrections to Hasselmann’s spectral transport equation (STE) were
found by Willebrand [31], and by Watson and West [29] for an inhomogeneous
random ocean. Additionally, an STE that explains the development of narrowband
Gaussian random surface wavetrains has been established by Alber [1], and by Alber
and Saffman [2]. They derived the STE from the weakly nonlinear equations of Davey
and Stewartson. Eventually, Crawford et al. [4] obtained a unified equation for the
development of a random field of gravity waves on infinite depth of water, starting
with the complete equations of motion. This evolution equation describes the impacts
of inhomogeneity and also the energy transfer process associated with a homogeneous
spectrum. Again, Janssen [13] investigated the nonlinear interactions of narrowband
Gaussian random inhomogeneous wavetrains, and, using the multiple scale technique,
he described the long-term behaviour of an unstable modulation. Starting from the
NLSE and employing the Wingner–Moyal transform [22, 30], Onorato et al. [23]
discussed the modulational instability of the narrowband approximation of the Joint
North Sea Wave Project (JONSWAP) spectrum. Recently, Halder and Dhar [8]
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described the random effect on the modulational instability of two Stokes waves
on deep water. In a subsequent paper [9], they studied the same for interfacial gravity
waves on deep water in the presence of air flowing over water, and they stated that the
random effect is to decrease the instability growth rate and the extent of the instability
region.

This paper is devoted to studying the theory of weakly nonlinear periodic gravity
waves on linear shear currents on deep water. Considering the significance of the
fourth-order NLSE, as stated by Dysthe [7], the purpose of this paper is to develop
the Alber’s equation for the Wigner distribution function, starting from a fourth-order
NLSE, and to describe the modulational instability for random wave spectra and finally
to discuss the influence of the BFI on vorticity. The key point is that the addition of
fourth-order effects significantly affects estimates of the geometry of unstable regions
in parameter space. Further, in the present paper we provide a bridge between the
deterministic and random schools by investigating the stability properties of random
wavetrains.

The presentation of the paper is as follows. In Section 2, we derive Alber’s equation
for the wave envelope. We discuss the stability analysis for the random wave spectra
in Section 3. Section 4 deals with the limit of vanishing bandwidth. The BFI in the
context of freak waves is presented in Section 5, and Section 6 concludes the paper.

2. Alber’s equation for the wave envelope

In a recent paper, Pal and Dhar [27] derived a fourth-order linear shear currents
modified NLSE for two-dimensional periodic gravity waves in a finite depth of water
using multiscale expansion. In a frame of reference travelling with the group velocity,
the fourth-order NLSE in dimensional form on deep water for the wave envelope
B(ξ, τ) can be written as

i
∂B
∂τ
+ β1
∂2B
∂ξ2
+ iβ2

∂3B
∂ξ3
= μ1|B|2B + iμ2|B|2

∂B
∂ξ
+ iμ3B2 ∂B

∗

∂ξ
+ μ4BH

[
∂

∂ξ
|B|2
]
, (2.1)

where ξ = x − cgt, cg is the group velocity of the carrier wave in dimensional form,
τ = t, B∗ is the complex conjugate of B and H is the Hilbert transform operator. The
coefficients of equation (2.1) are given in Appendix A.

The linear dispersion relationship connecting the frequency Σ and the wave
number k is

Σ2(1 − v)(1 − v + Ω) = gk, (2.2)

where v = v/c, is the nondimensional depth uniform current, c = Σ/k is the wave
velocity, Ω = Ω/Σ is the nondimensional uniform vorticity and g is the gravitational
acceleration.

Starting from equation (2.1), we next obtain Alber’s equation. Following Alber [1]
and Wigner–Moyal [22, 30], we introduce the Wigner distribution function n(ξ, k, τ)
corresponding to the wave amplitude B(ξ, τ) given by
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n(ξ, k, τ) =
1

2π

∫ +∞
−∞
〈B(ξ + y/2, τ)B∗(ξ − y/2, τ)〉e−iky dy,

where ξ = (ξ1 + ξ2)/2 is the average coordinate, y = ξ1 − ξ2 is the spatial separation
coordinate and the angle brackets represent an ensemble average.

The wave intensity corresponding to B(ξ, τ) can be expressed as

〈|B(ξ, τ)|2〉 =
∫ +∞
−∞

n(ξ, k, τ) dk. (2.3)

To derive the kinetic equation of n(ξ, k, τ), namely, the Wigner–Moyal equation, we
take the time derivative of equation (2.1). The nonlinear terms in NLSE will generate
the fourth-order correlators

〈B1B∗1B1B∗2〉,
〈
B1B∗1

∂B1

∂ξ1
B∗2
〉
,
〈
B1B1

∂B∗1
∂ξ1

B∗2
〉
,
〈
B1H

∂

∂ξ1
[B1B∗1]B∗2

〉
,

respectively, where B1 = B(ξ + y/2) and B2 = B(ξ − y/2). For proceeding with the
calculation, a closure that connects second- and fourth-order correlators must be
considered (see [1, 9]). This closure is obtained by considering the quasi-Gaussian
approximation

〈B1B∗1B1B∗2〉 = 2〈B1B∗2〉〈|B1|2〉,〈
B1B∗1

∂B1

∂ξ1
B∗2
〉
=

〈
∂B1

∂ξ1
B∗2
〉
〈|B1|2〉 +

〈
B∗1
∂B1

∂ξ1

〉
〈B1B∗2〉,〈

B1B1
∂B∗1
∂ξ1

B∗2
〉
= 2〈B1B∗2〉

〈
B1
∂B∗1
∂ξ1

〉
,〈

B1H
∂

∂ξ1
[B1B∗1]B∗2

〉
= 〈B1B∗2〉

〈
H
∂

∂ξ1
|B1|2
〉
,

so that the fourth-order correlators can be written as a sum of the products of pairs of
second-order correlators.

This practice is familiar for the statistical description of progressive water waves
[33] and of several other fields, for example plasma physics [34]. By a standard
procedure as described in [1, 23] the resulting Alber’s equation takes the form

∂n
∂τ
+ 2β1k

∂n
∂ξ
+ β2

(1
4
∂3n
∂ξ3
− 3k2 ∂n

∂ξ

)
= 4μ1

∞∑
m=0

am
∂2m+1〈|B|2〉
∂ξ2m+1

∂2m+1n
∂k2m+1

+ μ2

[ ∞∑
m=0

bm

(
∂2m〈|B|2〉
∂ξ2m

∂2m+1n
∂ξ∂k2m +

∂2m+1〈|B|2〉
∂ξ2m+1

∂2mn
∂k2m

)

− 2
∞∑

m=0

am
∂2m+1〈|B|2〉
∂ξ2m+1

∂2m+1(kn)
∂k2m+1

]
+ 2μ3

∞∑
m=0

bm
∂2m+1〈|B|2〉
∂ξ2m+1

∂2mn
∂k2m

+
2μ4

π

∞∑
m=0

am
∂2m+1

∂ξ2m+1

( ∫ +∞
−∞

dξ
′

ξ
′ − ξ

[
∂

∂ξ
′ 〈|B(ξ

′
)|2〉
])
∂2m+1n
∂k2m+1 , (2.4)
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where

am =
(−1)m

(2m + 1)! 22m+1 and bm =
(−1)m

(2m)! 22m .

3. Stability of random wave spectra

Alber [1] stated that a homogeneous spectrum is unstable subject to long-wavelength
perturbations if the bandwidth is sufficiently small. So, to emphasize inhomogeneous
ensemble wavetrains, let the distribution function n(ξ, k, τ) be written as sum of
homogeneous envelope spectra and an infinitesimal perturbation given by

n(ξ, k, τ) = n0(k) + εn1(ξ, k, τ), (3.1)

with n1(ξ, k, τ) � n0(k), and where ε is a slow ordering parameter.
In view of (2.3) and (3.1),

〈|B(ξ, τ)|2〉 = 〈|B0|2〉 + ε〈|B1(ξ, τ)|2〉, (3.2)

where

〈|B0|2〉 =
∫ +∞
−∞

n0(k) dk, 〈|B1(ξ, τ)|2〉 =
∫ +∞
−∞

n1(ξ, k, τ) dk. (3.3)

Substituting equations (3.1) and (3.2) into equation (2.4) and linearizing, we get the
following equation for the perturbation, that is,

∂n1

∂τ
+ 2β1k

∂n1

∂ξ
+ β2

(1
4
∂3n1

∂ξ3
− 3k2 ∂n1

∂ξ

)
= 4μ1

∞∑
m=0

am
∂2m+1〈|B1|2〉
∂ξ2m+1

∂2m+1n0

∂k2m+1

+ μ2

[
〈|B0|2〉

∂n1

∂ξ
+

∞∑
m=0

bm
∂2m+1〈|B1|2〉
∂ξ2m+1

∂2mn0

∂k2m − 2
∞∑

m=0

am
∂2m+1〈|B1|2〉
∂ξ2m+1

∂2m+1(kn0)
∂k2m+1

]

+ 2μ3

∞∑
m=0

bm
∂2m+1〈|B1|2〉
∂ξ2m+1

∂2mn0

∂k2m

+
2μ4

π

∞∑
m=0

am
∂2m+1

∂ξ2m+1

( ∫ +∞
−∞

dξ
′

ξ
′ − ξ

[
∂

∂ξ
′ 〈|B1(ξ

′
)|2〉
])
∂2m+1n0

∂k2m+1 . (3.4)

Considering the Fourier transform of (3.4) defined by

n1(k, τ) =
∫ +∞
−∞

n1(ξ, k, τ)e−ipξ dξ, 〈|B1(τ)|2〉 =
∫ +∞
−∞
〈|B1(ξ, τ)|2〉e−ipξ dξ,

where p is the wave number of perturbation, and taking τ dependence of n1(k, τ) to be
of the form e−iντ, we get

[−ν + 2β1kp − β2(p2/4 + 3k2)p)]n1 = 4μ1〈|B1|2〉
∞∑

m=0

p2m+1

(2m + 1)! 22m+1

∂2m+1n0

∂k2m+1
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+ μ2

[
pn1〈|B0|2〉 + p〈|B1|2〉

∞∑
m=0

p2m

(2m)! 22m

∂2mn0

∂k2m

− 2〈|B1|2〉
∞∑

m=0

p2m+1

(2m + 1)! 22m+1

∂2m+1(kn0)
∂k2m+1

]
+ 2μ3p〈|B1|2〉

∞∑
m=0

p2m

(2m)! 22m

∂2mn0

∂k2m

− 4μ4|p|〈|B1|2〉
∞∑

m=0

p2m+1

(2m + 1)! 22m+1

∂2m+1n0

∂k2m+1 . (3.5)

Taking into consideration the following relationships, which are obtained by using
the Taylor’s theorem of n0(k ± p/2), that is,

2
∞∑

m=0

p2m

(2m)! 22m

∂2mn0

∂k2m = n0(k + p/2) + n0(k − p/2),

2
∞∑

m=0

p2m+1

(2m + 1)! 22m+1

∂2m+1n0

∂k2m+1 = n0(k + p/2) − n0(k − p/2),

4
∞∑

m=0

p2m+1

(2m + 1)! 22m+1

∂2m+1(kn0)
∂k2m+1 = 2k[n0(k + p/2) − n0(k − p/2)]

+ p[n0(k + p/2) + n0(k − p/2)], (3.6)

equation (3.5) becomes

[−ν + f (k)]n1 = [g+(k)n0(k + p/2) + g−(k)n0(k − p/2)]〈|B1|2〉, (3.7)

where

f (k) = 2β1kp − β2(p2/4 + 3k2)p − μ2p〈|B0|2〉, g±(k) = ±2μ1 ∓ μ2k + μ3p ∓ 2μ4|p|.

The Fourier transform of the second relationship of (3.3) with respect to ξ gives

〈|B1(τ)|2〉 =
∫ +∞
−∞

n1(k, τ) dk. (3.8)

Equations (3.7) and (3.8) reduce to

1 +
∫ +∞
−∞

g+(k)n0(k + p/2) + g−(k)n0(k − p/2)
ν − f (k)

dk = 0, (3.9)

which represents the dispersion relationship for determining the perturbed frequency
ν for the given homogeneous envelope spectrum n0(k). Set

f (k) = 2β1kp + ε f̃ (k), g±(k) = ±2μ1 + εg̃±(k), (3.10)

where

f̃ (k) = −β2(p2/4 + 3k2)p − μ2p〈|B0|2〉, g̃±(k) = ∓μ2k + μ3p ∓ 2μ4|p|

are the fourth-order contributions of the NLSE (2.1).
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Inserting (3.10) in equation (3.9) and keeping terms up to O(ε), the nonlinear
dispersion relationship reduces to

Φ(ν) = ε Ψ(ν), (3.11)

with

Φ(ν) = 1 + 2μ1

∫ +∞
−∞

n0(k + p/2) − n0(k − p/2)
ν − 2β1kp

dk,

Ψ(ν) = 2μ1

∫ +∞
−∞

[n0(k − p/2) − n0(k + p/2)]f̃ (k)
(ν − 2β1kp)2 dk

−
∫ +∞
−∞

[g̃+(k)n0(k + p/2) + g̃−(k)n0(k − p/2)]
ν − 2β1kp

dk.

For studying the instability of the homogeneous envelope spectrum, we find that
the spectrum for ζ(x, t) is well approximated by the JONSWAP spectrum [12, 16]

P(Σ) =
αg2

Σ5 e−(5/4)(Σ/Σ0)−4
γexp[−(Σ−Σ0)2/2δ2Σ2

0],

where α is a Philips constant, γ is a peak enhancement factor, δ is the spectral
bandwidth, Σ0 = Σ(k0) and, for the present study, the frequency Σ satisfies the linear
dispersion relationship (2.2). For a narrowband approximation of the JONSWAP
spectrum, (Σ − Σ0)/Σ0 = r � 1, and this can be obtained by a second-order Taylor
series expansion of P(r) around r = 0: that is,

P(r) 	 P(0) + rP
′
(0) +

r2

2
P
′′
(0) 	 P0

[
1 −

P
′′

0

2P0
r2
]−1

if r � 1. (3.12)

Since P
′
(0) = 0, it is necessary to retain the term up to the second order of r for

considering the approximation of P(r) (see [15]). Equation (3.12) reduces to the
Lorentzian spectrum in wavenumber space given by

P(k) =
H2

s

16π
σ

σ2 + (k − k0)2 ,

where

Hs = 4

√
π
αg2γσ

e5/4Σ5
0

and σ =

√
2δ2

20δ2 + ln γ

(
Σ0

v + g/
√
Ω2 + 4gk0

)
.

For a symmetric spectrum P(k) of the free surface elevation, the spectrum for a
complex envelope B is given by n0(k) = 4P(k + k0) (see [4, 23]).

Neglecting O(ε) terms of equation (3.11) and using the expression for n0(k) given
by (3.6), the reduced equation Φ(ν) = 0 becomes
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1 +
μ1σHs

2

2π

[ ∫ +∞
−∞

dp
(ν + 2κkp){σ2 + (k + p/2)2)}

−
∫ +∞
−∞

dp
(ν + 2κkp){σ2 + (k − p/2)2)}

]
= 0. (3.13)

Now, setting k ± p/2 = z in (3.13) and integrating the resulting integral by residues
at z = iσ, we have the nonlinear dispersion relationship

ν =
(
− 2iκσ +

√
κ2p2 − H2

s μ1κ
)
p, (3.14)

where κ = −β1. The GRI νi, expressed by the imaginary part of ν of the perturbation
corresponding to the positive complex root of equation (3.14), is the following, and can
be obtained when p2 < H2

s μ1/κ: that is,

νi =
(√

H2
s μ1κ − κ2p2 − 2κσ

)
p. (3.15)

Note that, for σ→ 0, equation (3.15) represents the BFI.
It is important to mention that the last term of νi in equation (3.15) has a stabilizing

(defocusing) effect and plays the same role as the Landau damping in plasma physics
[17], that is, a damping of the perturbation. There is a contest between exponential
growth and damping of the perturbation which depends on the two parameters,
α and γ, of the Lorentzian spectrum. For σ > (1/2)

√
H2

s μ1/κ − p2, the damping
dominates the modulational instability, and the reverse effect to this will occur if
σ < (1/2)

√
H2

s μ1κ − p2.
Now, we take ν = iνi + εν1 as the root of equation (3.11). Putting this value of ν into

equation (3.11), we readily obtain ν1 in the lowest order, that is,

ν1 =
Ψ(iνi)
Φ
′(iνi)

,

where

Φ
′
(iνi) = −2μ1(J1 − J2), Ψ(iνi) = 2μ1(J3 − J4) − (J5 + J6),

and the expressions for the integrals Jn(n = 1, . . . , 6) are given in Appendix B.
Following the same procedure, we evaluate the integrals to obtain the expression of
the GRI Γi corresponding to the fourth-order results,

Γi = νi + �(ν1) = νi −
μ4|p|
2μ1

[ (νi + 2κpσ)2 + κ2p4

(νi + 2κpσ)

]
. (3.16)

Herein, the last term in the big brackets of (3.16) is obtained from the fourth-order
nonlinear term of the right-hand side of equation (2.1) involving the Hilbert transform,
and νi is given by (3.15).

Figures 1 and 2 show the marginal stability curves in the (γ,α) plane for p→ 0
and p = 0.5, respectively. Herein, we wish to study the modulational instability of
surface gravity waves with random phase spectra. Therefore, in Figures 1 and 2,
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230 S. Mukherjee, S. Halder and A. K. Dhar [9]

FIGURE 1. Instability region in the (γ,α) plane for p→ 0: (a) Ω = 0; and (b) v = 0. I and S indicate the
instability and stability regions, respectively.

FIGURE 2. Instability diagram in the (γ,α) plane for p = 0.5: (a) Ω = 0; and (b) v = 0. Dashed line:
third-order results; solid line: fourth-order results. I and S indicate the instability and stability regions,
respectively.

I indicates the modulational instability region. One can observe from these figures
that spectra with larger values of γ and α are more likely to show the modulational
instability (see [23]). The depth uniform reverse currents can expand the instability
region, whereas following currents have the opposite effect. Again, positive vorticity
(Ω < 0) reduces the instability region, whereas negative vorticity (Ω > 0) increases
the instability region. Figure 2 suggests that fourth-order results reduce the instability
region compared with third-order results for fixed values of Ω and v. As a check, the
modulational instability diagram that we obtain is compared in Figure 1 for Ω = 0,
v = 0 with that found by Onorato et al. [23]. Thus, we can verify that this diagram
reproduced exactly. It is to be noted that, for the purpose of finding the effects of
modulational instability, we have taken values in the (γ,α) plane that lie far away from
the marginal stability curve (see Figure 1).
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[10] Nonlinear modulation of random wave spectra 231

p p

FIGURE 3. Plot of Γi versus p for γ = 3 and α = 0.03: (a) Ω = 0; and (b) v = 0. Dashed line: third-order
results; solid line: fourth-order results.

p p

FIGURE 4. Plot of Γi versus p for γ = 5 and α = 0.05: (a) Ω = 0; and (b) v = 0. Dashed line: third-order
results; solid line: fourth-order results.

In Figures 3 and 4 we have drawn the GRI as a function of p, the wave number of
perturbation, for different values of Ω and v. These figures suggest that Γi increases
when both α and γ increase. These figures also suggest that the fourth-order results
produce a diminished GRI. The depth uniform opposing currents considerably increase
the growth rate, whereas following currents diminish the modulational instability.
Further, the effect of negative vorticity (Ω > 0) is to enhance the growth rate, whereas
for Ω < 0 we observe a decrease in the growth rate.

4. The limit of vanishing bandwidth

For vanishing spectral bandwidth σ→ 0 and, in this case, we can rediscover the
BFI for deterministic wavetrains. For σ→ 0, equation (3.16) becomes

Γi = νi −
κμ4

2νi
H2

s p2|p| with νi =
(√

H2
s μ1κ − κ2p2

)
p. (4.1)

There is a relationship between the wave amplitude a and the wave significant height
Hs given by a = Hs/2. Employing this relationship in equation (4.1) and replacing
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p

FIGURE 5. Plot of Γi versus p for v = 0.4, Ω = 0.5, γ = 3 and α = 0.03. Comparison with the determin-
istic growth rate. Dashed line: third-order results; solid line: fourth-order results.

2a2 by a2, where a and a represent, respectively, the amplitudes of the random and
deterministic wavetrains, we get the deterministic growth rate given by

Γi =
[
2κa2(μ1 − μ4|p|) − κ2p2]1/2p. (4.2)

ForΩ = 0 and v = 0, this expression for Γi is the same as that of (3.13) of Dysthe [7]
for the one-dimensional case. In Figure 5, the growth rate Γi given by (3.16) is
compared with the corresponding deterministic growth rate given by (4.2). This figure
suggests that the instability growth rate diminishes due to the effect of randomness,
which is consistent with the preceding results of Alber [1] and Halder and Dhar
[8, 9]. Further, it is observed that the growth rate obtained from fourth-order results is
reduced significantly compared with that obtained from third-order results, which is in
agreement with the results of Halder and Dhar [9]. The physical significance related
to fourth-order results can be stated as follows. Dysthe [7] stated that a significant
improvement in the stability properties can be achieved by considering the effects of
fourth-order perturbation. The dominant new effect introduced to the fourth order is
the mean flow response to nonuniformities in the radiation stress caused by modulation
of a finite amplitude wave.

5. The BFI

The concept of the BFI in the context of freak waves has been presented for random
waves by Janssen [14] (see also [24]). For the definition of BFI, he suggested the ratio
of the mean square slope to the normalized width of the frequency spectrum. When
this parameter is greater than one, the random wave field is unstable, whereas in the
opposite case it is stable. From the NLSE, Onorato et al. [25] also defined the BFI in
the context of freak waves.

It is noteworthy that, among the new fourth-order terms of the NLSE (2.1), only
the last term involving Hilbert transform contributes to the instability results given by
equations (3.16) and (4.1). Therefore, as far as stability properties are considered, it is
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FIGURE 6. Effect of vorticity on the BFI.

enough to use the simplified form of the dimensional NLSE (2.1) on deep water [7]
given by

i
∂B
∂τ
+
Σ

k2 β̃1
∂2B
∂ξ2
= Σk2μ̃1|B|2B + Σkμ̃4BH

[
∂

∂ξ
|B|2
]
, (5.1)

where B is the complex wave envelope and (Σ, k) represent, respectively, the carrier
frequency and wave number. Here the coefficients appearing in equation (5.1) depend
on the parameters v and Ω. Following Onorato et al. [25], we rewrite equation (5.1) by
transforming B

′
= B/a, ξ

′
= Δkξ, τ

′
= Σβ̃1(Δk/k)2τ given by

i
∂B
∂τ
+
∂2B
∂ξ2
=

( ak
Δk/k

)2( μ̃1

β̃1

)
|B|2B +

(ak)2

Δk/k

(
μ̃4

β̃1

)
BH
[
∂

∂ξ
|B|2
]
, (5.2)

where primes of B, ξ and τ have been omitted and Δk, a denote typical bandwidth and
wave amplitude, respectively. According to Onorato et al. [25], we define the BFI as
the square root of the coefficient that multiplies the cubic nonlinear term of equation
(5.2). Therefore,

BFI =
ak
Δk/k

√
μ̃1

|β̃1|
. (5.3)

The term
√
μ̃1/|β̃1| on the right-hand side of the BFI given by (5.3) depends on the

parameter Ω, the magnitude of the shear. The effect of this term on the BFI against
Ω is presented in Figure 6. We observe that, for Ω > 0, the BFI increases with an
increase of vorticity. Again, as the BFI increases, the nonlinearity also increases. So,
we may hope that the number of freak waves is enhanced in the presence of shear
currents co-flowing with the waves. It is to be mentioned that this result was first
found numerically with the help of numerical simulations of the cubic NLSE in the
paper by Onorato et al. [26]. Again, for Ω < 0, the presence of vorticity diminishes
the BFI.
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6. Discussion and conclusions

Dysthe [7] first stated that a fourth-order NLSE is a good starting point for
analysing the stability of surface periodic waves on deep water. Therefore, starting
from fourth-order NLSE for surface gravity waves in the presence of linear shear
currents, in this paper, we first derive Alber’s equation, and, based on this equation, we
then describe the instability of weakly nonlinear waves with random phase spectra. The
key outcomes of our study are as follows. The present fourth-order analysis exhibits
significant deviations in the instability growth rate compared with the third-order
analysis. Also, we find the effect of linear shear currents on the modulational instability
properties of weakly nonlinear waves. It is observed that the fourth-order results
produce a decrease in the GRI. Further, the effect of randomness is to decrease
the GRI, which is consistent with the previous results [1]. For waves on shearing
currents, negative vorticity tends to enhance the modulational instability, whereas
positive vorticity decreases the instability. Further, for waves moving in the same
direction as the uniform current, the current was observed to have a stabilizing effect
on the wavetrains and diminishes the instability growth rate. We also recovered the
deterministic GRI for vanishing spectral bandwidth.

Appendix A. The coefficients of equation (2.1)

β1 =
Σ

k2 β̃1 = −
Σ

k2

(cg − v)2

(2 − 2v + Ω)
,

β2 =
Σ

k3 β̃2 =
Σ

k3

2(cg − v)3

(2 − 2v + Ω)2
,

cg =
cg

c
=

1 + Ω − v2

(2 − 2v + Ω)
, Ω =

Ω

Σ
, c =

Σ

k
,

μ1 = Σk2μ̃1 =
Σk2(M + LN)

8(1 − v)2(2 − 2v + Ω)(1 − v + Ω)
,

μ2 = Σkμ̃2 =
Σk{δ4 − cgδ2 + 4cgδ1(1 − v)/(2 − 2v + Ω)}

4(2 − 2v + Ω)
,

μ3 = Σkμ̃3 =
Σk{δ5 − cgδ3 + 2cgδ1(1 − v)/(2 − 2v + Ω)}

4(2 − 2v + Ω)
,

μ4 = Σkμ̃4 =
Σk(2 − 2v + Ω)

4{1 − (cg − v)Ω}
,

where

M = 8(1 − v)5 + 24(1 − v)4Ω + 34(1 − v)3Ω
2
+ 26(1 − v)2Ω

3
+ 9(1 − v)Ω

4
+ Ω

5
,
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L = (2 − 2v + Ω)Ω
2
, N =

2(1 − v)2(1 − v + Ω)(2 − 2v + Ω)

Ω(cg − v) − (1 − v)(1 − v + Ω)
,

δ1 =
2(1 − v)2 −Ω2

+ A2
1/2(1 − v)2 −Ω2

(2 − 2v + Ω)2

1 − (cg − v)Ω
,

δ2 =
A1

(1 − v)2

[
4(1 − v + Ω) − {4(1 − v) + Ω}A1

2(1 − v)2

]
− 3Ω(1 − v −Ω)(2 − 2v + Ω)

1 − (cg − v)Ω
,

δ3 =
(1 − v + Ω)(2 − 2v + Ω)Ω

1 − (cg − v)Ω
,

δ4 = −
A2

1

(1 − v)2

[
1 +

1
2(1 − v)2

]
− 4(1 − v)2 + (1 − v)Ω + 3Ω

2
+ A2,

δ5 = Ω(1 − v + Ω) −
A2

1

2(1 − v)2 + A2,

with

A1 = 2(1 − v)2 + 4(1 − v)Ω + Ω
2
,

A2 =
(2 − 2v + Ω)

1 − (cg − v)Ω

[ (1 − v)cgΩ

1 − (cg − v)Ω
− (1 − v) −Ω

2
(2 − 2v + Ω)

]
.

Appendix B. Expressions for Jn (n = 1, . . . , 6)

J1 =
H2

sσ

4π

∫ ∞
−∞

dz
(z2 + σ2)(iνi − κp2 + 2κpz)2 ,

J2 =
H2

sσ

4π

∫ ∞
−∞

dz
(z2 + σ2)(iνi + κp2 + 2κpz)2 ,

J3 =
H2

sσ

4π

∫ ∞
−∞

(b1 − b2z + b3z2) dz
(z2 + σ2)(iνi − κp2 + 2κpz)2 ,

J4 =
H2

sσ

4π

∫ ∞
−∞

(b1 + b2z + b3z2) dz
(z2 + σ2)(iνi + κp2 + 2κpz)2 ,

J5 =
H2

sσ

4π

∫ ∞
−∞

(c2 − μ2z) dz
(z2 + σ2)(iνi − κp2 + 2κpz)

,

J6 =
H2

sσ

4π

∫ ∞
−∞

(c1 + μ2z) dz
(z2 + σ2)(iνi + κp2 + 2κpz)

,
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where
b1 = β2p3 + μ2p〈|B0|2〉, b2 = 3β2p2, b3 = 3β2p,

c1 =
μ2

2
p + μ3p + 2μ|p|, c2 =

μ2

2
p + μ3p − 2μ|p|.
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