THE SECOND MEAN VALUES OF ENTIRE FUNCTIONS

Q. I. RAHMAN

1. Let $f(z)$ be an entire function of the complex variable $z=x+i y$ defined by the everywhere absolutely convergent Dirichlet series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \exp \left(\lambda_{n} z\right) \quad\left(0<\lambda_{n}<\lambda_{n+1} \rightarrow \infty\right) . \tag{1.1}
\end{equation*}
$$

If

$$
m(x, f)=\sup _{-\infty<y<\infty}|f(x+i y)|,
$$

then $\log m(x, f)$ is an increasing convex function of x (2), and

$$
\rho_{R, f}=\limsup _{x \rightarrow \infty} \frac{\log \log m(x, f)}{x}
$$

is called the Ritt order of $f(z)$. For functions of finite Ritt order (5)

$$
\begin{equation*}
\log m\left(x, f^{\prime}\right) \sim \log m(x, f) \quad \text { as } x \rightarrow \infty . \tag{1.2}
\end{equation*}
$$

Here f^{\prime} stands for the derivative of f.
Let

$$
I_{2}(x, f)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|f(x+i y)|^{2} d y .
$$

Gupta (3, Theorem 2) has proved that, for $x>x_{0}$,

$$
\begin{equation*}
I_{2}\left(x, f^{\prime}\right)-I_{2}(x, f)\left(\frac{\log I_{2}(x, f)}{2 x}\right)^{2} \geqslant 0 . \tag{1.3}
\end{equation*}
$$

We observe that the difference between $I_{2}\left(x, f^{\prime}\right)$ and

$$
I_{2}(x, f)\left(\frac{\log I_{2}(x, f)}{2 x}\right)^{2}
$$

is much greater for large x. In fact, the zero on the right-hand side of (1.3) can be replaced by

$$
\frac{1}{(2 x)^{2}} I_{2}(x, f) \log I_{2}(x, f) \log \left(\frac{I_{2}(x, f)}{2 x}\right) .
$$

We shall deduce various results for $I_{2}(x, f)$ and $I_{2}\left(x, f^{\prime}\right)$ from corresponding results involving $m(x, f)$ and $m\left(x, f^{\prime}\right)$.

To illustrate the method, we are going to prove the proposed refinement of (1.3).

Received January 4, 1966.

Lemma. If in (1.1) all the coefficients $\left\{a_{n}\right\}, n=1,2, \ldots$, are non-negative, then for large values of x,

$$
m\left(x, f^{\prime}\right) \geqslant m(x, f) \frac{\log m(x, f)}{x}
$$

From the fact that $\log m(x, f)$ is a non-decreasing convex function of x, it follows that

$$
g(x)=\frac{\log m(x, f)}{x}
$$

is non-decreasing for large values of x, say $x>x_{0}$. Since the coefficients $\left\{a_{n}\right\}$, $n=1,2, \ldots$, are non-negative, $m(x, f)=f(x)$ and $m\left(x, f^{\prime}\right)=f^{\prime}(x)$. If $x>x_{0}$, then

$$
\begin{aligned}
m\left(x, f^{\prime}\right)=f^{\prime}(x) & =\lim _{h \rightarrow+0} \frac{f(x)-f(x-h)}{h} \\
& =\lim _{h \rightarrow+0} \frac{m(x, f)-m(x-h, f)}{h} \\
& =\lim _{h \rightarrow+0} \frac{\exp \{x g(x)\}-\exp \{(x-h) g(x-h)\}}{h} \\
& \geqslant \lim _{h \rightarrow+0} \frac{\exp \{x g(x)\}-\exp \{(x-h) g(x)\}}{h} \\
& =\exp \{x g(x)\} g(x)=m(x, f) \frac{\log m(x, f)}{x}
\end{aligned}
$$

and the lemma is proved.
Now let $f(z)$ be an entire function defined by (1.1), where the coefficients are not restricted to be non-negative. Note that the functions represented by the series

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(\lambda_{n} z\right), \quad \sum_{n=1}^{\infty} \lambda_{n}\left|a_{n}\right|^{2} \exp \left(\lambda_{n} z\right)
$$

satisfy the hypothesis of our lemma. The coefficients are clearly non-negative. The fact that

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(\lambda_{n} z\right)
$$

represents an entire function $\phi(z)$ follows, for example, from the fact that, for every $X<\infty$,

$$
\left.\max _{\operatorname{Re} z<2 X}| | a_{n}\right|^{2} \exp \left(\lambda_{n} z\right)\left|\leqslant\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} X\right)\right.
$$

and

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} X\right)
$$

is convergent, its sum being $I_{2}(X, f)$. The series

$$
\sum_{n=1}^{\infty} \lambda_{n}\left|a_{n}\right|^{2} \exp \left(\lambda_{n} z\right)
$$

represents the function $\phi^{\prime}(z)$. Applying the lemma to the functions $\phi(z)$ and $\phi^{\prime}(z)$, we conclude that for large values of x

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right) \geqslant\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)\right) \frac{\log \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)}{2 x} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda_{n}{ }^{2}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right) \tag{1.5}\\
& \quad \geqslant\left(\sum_{n=1}^{\infty} \lambda_{n}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)\right) \frac{\log \sum_{n=1}^{\infty} \lambda_{n}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)}{2 x}
\end{align*}
$$

Thus if x is large enough, say $x>x_{0}$, then

$$
\begin{aligned}
& I_{2}\left(x, f^{\prime}\right)=\sum_{n=1}^{\infty} \lambda_{n}{ }^{2}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right) \\
& \quad \geqslant\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)\right)\left(\frac{\log \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)}{2 x}\right)^{2} \\
& +\frac{1}{(2 x)^{2}}\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)\right)\left(\log \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)\right) \\
& \quad \times \log \left(\frac{\log \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)}{2 x}\right)=I_{2}(x, f)\left(\frac{\log I_{2}(x, f)}{2 x}\right)^{2} \\
& \quad+\frac{1}{(2 x)^{2}} I_{2}(x, f) \log I_{2}(x, f) \log \left(\frac{\log I_{2}(x, f)}{2 x}\right) .
\end{aligned}
$$

This gives the desired refinement of (1.3).
Theorem 1. If the Ritt order of f is finite, then

$$
\log I_{2}\left(x, f^{\prime}\right) \sim \log I_{2}(x, f), \quad x \rightarrow \infty
$$

We have proved elsewhere that if the function $f(z)$ defined by (1.1) is of finite Ritt order $\rho_{R, f}$, then for every $\epsilon>0$,

$$
\begin{equation*}
m\left(x, f^{\prime}\right) \leqslant m(x, f) \exp \left\{x\left(\rho_{R, f}+\epsilon\right)\right\} \tag{1.6}
\end{equation*}
$$

if x is sufficiently large. Since

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|f(x+i y)|^{2} d y \leqslant\{m(x, f)\}^{2}
$$

the Ritt order of the function represented by the series

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} z\right)
$$

is at most $\rho_{R, f}$. Hence, for every $\epsilon>0$ and sufficiently large x,

$$
\text { (1.7) } \quad \sum_{n=1} 2 \lambda_{n}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right) \leqslant\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)\right) \exp \left\{x\left(\rho_{R, f}+\epsilon\right)\right\}
$$

We know (5) that the Ritt order of a function is the same as the Ritt order of its derivative. Therefore the Ritt order of the function represented by the series

$$
\sum_{n=1}^{\infty} 2 \lambda_{n}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} z\right)
$$

is not greater than $\rho_{R, f}$. From (1.6), we obtain

$$
\begin{array}{r}
\sum_{n=1}^{\infty} 4 \lambda_{n}{ }^{2}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right) \leqslant\left(\sum_{n=1}^{\infty} 2 \lambda_{n}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)\right) \exp \left\{x\left(\rho_{R, f}+\epsilon\right)\right\} \tag{1.8}\\
\epsilon>0, x>X(\epsilon)
\end{array}
$$

Inequalities (1.7) and (1.8) are equivalent to

$$
\begin{align*}
I_{2}\left(x, f^{\prime}\right) & =\sum_{n=1}^{\infty} 4 \lambda_{n}{ }^{2}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right) \tag{1.9}\\
& \leqslant\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)\right) \exp \left\{2 x\left(\rho_{R, f}+\epsilon\right)\right\} \\
& =I_{2}(x, f) \exp \left\{2 x\left(\rho_{R, f}+\epsilon\right)\right\}, \quad \epsilon>0, x>X(\epsilon)
\end{align*}
$$

This fact, together with (1.3) and (3, Theorem 3), implies that for functions of finite Ritt order

$$
\log I_{2}\left(x, f^{\prime}\right) \sim \log I_{2}(x, f) \quad \text { as } x \rightarrow \infty .
$$

Azpeitia (1) has proved that if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\lambda_{n} \log \lambda_{n}}{\log n}=\infty \tag{1.10}
\end{equation*}
$$

then

$$
\rho_{R, f}=\limsup _{n \rightarrow \infty} \frac{\lambda_{n} \log \lambda_{n}}{\log \left(1 /\left|a_{n}\right|\right)}
$$

Hence if $f(z)$, defined by (1.1), is of order $\rho_{R, f}\left(0 \leqslant \rho_{R, f} \leqslant \infty\right)$, the order of the function defined by the series

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} z\right)
$$

is also $\rho_{R, f}$ if (1.10) holds. Consequently, if (1.10) is satisfied, then
(1.11) $\lim _{x \rightarrow \infty} \frac{\sup \log I_{2}(x, f)}{x}=\lim _{x \rightarrow \infty} \frac{\log \log \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)}{x}=\rho_{R, f}$.

If

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\lim \inf } \frac{\lambda_{n}}{\log n}=\frac{1}{D}>0 \tag{1.12}
\end{equation*}
$$

then for every $\epsilon>0$

$$
\begin{aligned}
\{m(x, f)\}^{2} & \leqslant\left\{\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left\{2 \lambda_{n}\left(x+\frac{1}{2} D+\epsilon\right)\right\}\right\} \sum_{n=1}^{\infty} \exp \left\{-2 \lambda_{n}\left(\frac{1}{2} D+\epsilon\right)\right\} \\
& <K I_{2}\left(x+\frac{1}{2} D+\epsilon, f\right)
\end{aligned}
$$

where K is a constant. From this and the inequality

$$
I_{2}(x, f) \leqslant\{m(x, f)\}^{2}
$$

it follows that

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{\log \log I_{2}(x, f)}{x}=\lambda_{R, f} \tag{1.13}
\end{equation*}
$$

where

$$
\lambda_{R, f}=\liminf _{x \rightarrow \infty} \frac{\log \log m(x, f)}{x}
$$

is the lower order of f.
Theorem 2. If (1.10) is satisfied, then

$$
\limsup _{x \rightarrow \infty} \frac{\log \left\{I_{2}\left(x, f^{\prime}\right) / I_{2}(x, f)\right\}}{x}=2 \rho_{R, f}
$$

and

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{\log \left\{I_{2}\left(x, f^{\prime}\right) / I_{2}(x, f)\right\}}{x}=2 \lambda_{R, f}, \tag{1.14}
\end{equation*}
$$

provided (1.12) holds.
From (1.3), (1.9), and (1.11), we can deduce the first equation, whereas, from (1.3), (1.9), and (1.13) follows the inequality

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{\log \left\{I_{2}\left(x, f^{\prime}\right) / I_{2}(x, f)\right\}}{x} \geqslant 2 \lambda_{R, f} . \tag{1.15}
\end{equation*}
$$

The sign of inequality in (1.15) can, in fact, be replaced by the equality sign. For this we refer to the inequality (5, (14))

$$
m\left(x, f^{\prime}\right) \leqslant \frac{1}{\delta} m(x+\delta, f), \quad \delta>0
$$

valid for the entire function f defined by (1.1). Applying this result successively to the entire functions

$$
\sum_{n=1}^{\infty} 2 \lambda_{n}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n}(z-2 \delta)\right), \quad \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n}(z-\delta)\right),
$$

we obtain

$$
\begin{align*}
I_{2}\left(x-2 \delta, f^{\prime}\right) & =\sum_{n=1}^{\infty} 4 \lambda_{n}{ }^{2}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n}(x-2 \delta)\right) \tag{1.16}\\
& \leqslant \frac{1}{\delta} \sum_{n=1}^{\infty} 2 \lambda_{n}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n}(x-\delta)\right) \\
& \leqslant \frac{1}{\delta^{2}} \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \exp \left(2 \lambda_{n} x\right)=\frac{1}{\delta^{2}} I_{2}(x, f), \quad \delta>0
\end{align*}
$$

Now, since $\log I_{2}(x, f)$ is an increasing convex function of x, we have

$$
\begin{equation*}
\log I_{2}(x, f)=\log I_{2}\left(x_{0}, f\right)+\int_{x_{0}}^{x} w(t) d t \tag{1.17}
\end{equation*}
$$

where $x_{0}<x$ and $w(t)$ is a non-decreasing function of t. From this it follows that if $\lambda_{R, f}<\infty$ and ϵ is a fixed positive number, then, for a sequence of values of x tending to infinity,

$$
\int_{x}^{x+2} w(t) d t<\log I_{2}(x+2, f)<\exp \left\{(x+2)\left(\lambda_{R, f}+\epsilon\right)\right\}, \quad x=x_{1}, x_{2}, \ldots
$$

Since $w(t)$ is non-decreasing, we obtain

$$
2 w\left(x_{n}\right)<\exp \left\{\left(x_{n}+2\right)\left(\lambda_{R, f}+\epsilon\right)\right\}, \quad n=1,2, \ldots
$$

Since ϵ is arbitrary, we can write

$$
w\left(x_{n}\right)<\exp \left\{x_{n}\left(\lambda_{R, f}+\epsilon\right)\right\}
$$

for sufficiently large n. Equality (1.17) then gives

$$
\log I_{2}\left(x_{n}, f\right)=\log I_{2}\left(x_{n}-2 \delta, f\right)+\int_{x_{n}-2 \delta}^{x_{n}} w(t) d t
$$

where the integral is smaller than

$$
2 \delta \exp \left\{x_{n}\left(\lambda_{R, f}+\epsilon\right)\right\},
$$

and if we take

$$
\delta=\frac{1}{2} \exp \left\{-x_{n}\left(\lambda_{R, f}+\epsilon\right)\right\},
$$

we obtain

$$
\log I_{2}\left(x_{n}, f\right)<\log I_{2}\left(x_{n}-2 \delta, f\right)+1,
$$

for sufficiently large n. Substituting this value of δ and the corresponding estimate for $I_{2}\left(x_{n}, f\right)$ in (1.16), we see that, $\epsilon>0$ being given, there exists a sequence of values of x such that

$$
\begin{equation*}
I_{2}\left(x-2 \delta, f^{\prime}\right) \leqslant I_{2}(x-2 \delta, f) \exp \left(2 x\left(\lambda_{R, f}+\epsilon\right)\right) \tag{1.18}
\end{equation*}
$$

Since $\delta<1$, we can even write

$$
I_{2}\left(x-2 \delta, f^{\prime}\right) \leqslant I_{2}(x-2 \delta, f) \exp \left\{2(x-2 \delta)\left(\lambda_{R, f}+\epsilon\right)\right\}
$$

instead of (1.18). It follows that

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{\log \left\{I_{2}\left(x, f^{\prime}\right) / I_{2}(x, f)\right\}}{x} \leqslant 2 \lambda_{R, f} \tag{1.19}
\end{equation*}
$$

Thus, if $\lambda_{R, f}<\infty$, the inequality in (1.15) can be replaced by equality. If $\lambda_{R, f}=\infty$, then, from (1.15),

$$
\liminf _{x \rightarrow \infty} \frac{\log \left\{I_{2}\left(x, f^{\prime}\right) / I_{2}(x, f)\right\}}{x}=\infty .
$$

2. In this section, we are going to make a certain remark concerning the second mean value

$$
\mu_{2}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta\right)^{\frac{1}{2}}
$$

of $|f(z)|$ on the circle $|z|=r$.
It has been proved by Lakshminarasimhan (4, Lemma 2) that if $f(z)$ is an entire function, then for $r>r_{0} \geqslant 1$

$$
\mu_{2}\left(r, f^{\prime}\right)>\frac{\mu_{2}(r, f)}{r} \frac{\log \mu_{2}(r, f)-\log \mu_{2}\left(r_{0}, f\right)}{\log r}
$$

By the argument used in the preceding section, we can deduce a somewhat better result from an inequality of Vijayaraghavan (6) which states that if

$$
M(r, f)=\max _{|z|=r}|f(z)|
$$

then for $r>r_{0}$

$$
M\left(r, f^{\prime}\right) \geqslant \frac{M(r, f)}{r} \frac{\log M(r, f)}{\log ^{-r}}
$$

We note that if $f(z)$ has the power series representation

$$
\sum_{n=0}^{\infty} a_{n} z^{n}
$$

then

$$
\left(\mu_{2}(r, f)\right)^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}
$$

and if $f(z)$ is an entire function, then the series

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} z^{n}, \quad \sum_{n=0}^{\infty} n\left|a_{n}\right|^{2} z^{n}
$$

also represent entire functions. We obtain the following result:
If $f(z)$ is an entire function, then

$$
\mu_{2}\left(r, f^{\prime}\right) \geqslant \frac{\mu_{2}(r, f)}{r} \frac{\log \mu_{2}(r, f)}{\log { }^{`} r}
$$

for $r>r_{0}$, where r_{0} is a number depending on f.

I am thankful to Professor A. G. Azpeitia with whom I had useful discussions on the subject, and also to the referee for his suggestions.

References

1. A. G. Azpeitia, A remark on the Ritt order of entire functions defined by Dirichlet series, Proc. Amer. Math. Soc., 12 (1961), 722-723.
2. G. Doetsch, Über die obere Grenze des absoluten Betrages einer analytischen Funktion auf Geraden, Math. Zeitsch., 8 (1920), 237-240.
3. J. S. Gupta, On the mean values of integral functions and their derivatives defined by Dirichlet series, Amer. Math. Monthly, 71 (1964), 520-523.
4. T. V. Lakshminarasimhan, On a theorem concerning the means of an entire function and its derivative, J. London Math. Soc., 40 (1965), 305-308.
5. Q. I. Rahman, The Ritt order of the derivative of an entire function, Ann. Pol. Math., 17 (1965), 137-140.
6. T. Vijayaraghavan, On derivatives of integral functions, J. London Math. Soc., 10 (1935), 116-117.

Université de Montréal

