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Abstract
Weprove newmixing rate estimates for the randomwalks on homogeneous spaces determined by a proba-
bility distribution on a finite groupG. We introduce the switched randomwalk determined by a finite set of
probability distributions on G, prove that its long-term behaviour is determined by the Fourier joint spec-
tral radius of the distributions, and give Hermitian sum-of-squares algorithms for the effective estimation
of this quantity.
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1. Introduction
A person shuffles a deck of n cards. Her shuffling method is specified by a probability distribution
Q on the permutation group Sn. More concretely, at stage j= 1, . . . ,N, the person takes the deck
in some position v in Sn and reshuffles it to position gjv ∈ Sn, where gj is a random element of Sn
selected according to the distribution Q and sampled independently from the chosen gs for s< j.
The resulting process is called a random walk on the group G= Sn. These processes have been
the focus of much work, masterfully explained in the book [D]. Under common assumptions on
the distribution Q, such processes approach the uniform distribution on G as N increases (i.e.,
the deck of cards gets evenlymixed). A key quantitative question is to determine how quickly this
occurs. More precisely, one wishes to bound the total variation distance between the distribution
QN of the process afterN stages and the uniform distributionU, where the total variation distance
is defined as

‖QN −U‖TV := max
A⊆G

∣∣QN(A)−U(A)
∣∣ .

More generally, if the group G acts on a set X and x0 is an element of X, then the probability dis-
tribution Q on G determines a random walk (hk)k∈N on X via the formula hj := gjgj−1 . . . g1 · x0.

In the first part of this article (Sections 2 and 3), we study the behaviour of such random
walks on sets X where G acts transitively using the modules CX over the group ring CG which
such actions determine (see Section 3.1 for details). In order to describe our results precisely, we
first establish some notation. Assume the finite group G has distinct irreducible representations
(Vj, ρj) for j= 1, . . . , k and denote by triv the trivial representation. Furthermore, let CX be the
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permutation representation associated to the action of G on X, that is, the space with basis given
by the symbols {ex : x ∈ X} together with the natural action of G (i.e., eg · ex := eg(x)), and let
u= 1

|X|
∑

x∈X ux ∈CX represent the uniform distribution on X. Our first result is a bound on
the average squared total variation:

Theorem 1.1. Let Q be a probability distribution on G and let X be a G-homogeneous space. If
q := ∑g∈G Q(g)eg ∈CG, then the following inequalities hold:

1
|X|
∑
x∈X

‖q · ex − u‖2TV ≤ 1
4
∑

Vj �=triv
m(Vj,CX)‖Q̂(ρj)‖2Fb

1
|X|
∑
x∈X

‖q · ex − u‖2TV ≥ 1
4|X|

∑
Vj �=triv

m(Vj,CX)‖Q̂(ρj)‖2Fb,

where the matrix Q̂(ρj) denotes the value of the Fourier transform of Q in the representation ρj,
‖A‖2Fb := Tr(AA∗), and m(Vj,CX) denotes the multiplicity of the irreducible representation Vj in
theCG-moduleCX. Furthermore, if ‖q · ex‖2 is independent of x ∈ X, then for every x ∈ X we have

‖q · ex − u‖2TV ≤ 1
4
∑

Vj �=triv
m(Vj,CX)‖Q̂(ρj)‖2Fb

‖q · ex − u‖2TV ≥ 1
4|X|

∑
Vj �=triv

m(Vj,CX)‖Q̂(ρj)‖2Fb.

The first part of Theorem 1.1 implies the existence of deterministic initial states which are better
than average and worse than average with respect to mixing, proving that the sum appearing in
the theorems above is a fine estimator of the mixing rate. More precisely,

Corollary 1.2. For every integer N, there exist initial states r and s in X satisfying

‖qN · er − u‖2TV ≤ 1
4
∑

Vj �=triv
m(Vj,CX)‖Q̂(ρj)N‖2Fb

‖qN · es − u‖2TV ≥ 1
4|X|

∑
Vj �=triv

m(Vj,CX)‖Q̂(ρj)N‖2Fb.

The second part of Theorem 1.1 specializes, when X =G, to the celebrated Diaconis-
Shahshahani Upper bound Lemma introduced in [DS], but leads to improved estimates of the
total variation distance whenever X �=G. The reason for this improvement is that the multiplici-
ties appearing in Theorem 1.1 arem(Vj,CX), which are no larger and typically strictly smaller than
the multiplicities dim (Vj) appearing in the Upper Bound Lemma. For instance, this improvement
occurs whenever G acts transitively on X and |X|< |G| in the following corollary

Corollary 1.3. Suppose Q is a probability distribution on G which is constant on the conjugacy
classes of G and let Q=∑k

j=1 ajχj be its unique representation as a sum of characters. If q(N) :=∑
g∈G QN(g)eg ∈CG, then for any G-set X and any x0 ∈ X we have

‖q(N) · ex0 − uX‖2TV ≤ 1
4
∑

Vj �=triv
m(Vj,CX) dim (Vj)

( aj|G|
dim (Vj)

)2N
.
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In Section 3.3 we apply these methods to estimate convergence rates for random walks on
tabloids, illustrating connections between such estimates and the Kostka numbers of combinato-
rial representation theory.

The random walks on homogeneous spaces described so far are often easy to simulate on a
computer, even in cases where the group G is huge (this occurs for instance whenever the support
of the distribution Q is small compared to the size of the group) and therefore give us effective
means of approximating the uniform distribution on G by simulating the walk for N stages. Such
simulations allow us to understand what typical elements of the homogeneous space (i.e., elements
uniformly chosen at random) look like, providing us with a ‘statistical’ description of a finite group
or of a large homogeneous space. Our next result makes this idea precise by giving us a bound
on the error resulting from using the random walk at stage N to estimate the true average of a
function onG. The theorem provides a key application for the estimates of total variation obtained
in Theorem 1.1.

Theorem 1.4. Assume Z1, . . . , ZM are M independent copies of the N-th stage of the ran-
dom walk on G defined by Q, f :G→C is any function with maxg∈G |f (g)| ≤ 1, and ε > 0. If
‖QN −U‖TV ≤ ε, then the following inequality holds

P

{∣∣∣∣∣EU(f )− 1
M

M∑
i=1

f (Zj)

∣∣∣∣∣≥ ε
}

≤ 2 exp

(
−M

(
ε − ‖QN −U‖TV

)2
2

)
.

A concrete application of Theorem 1.4 for estimating the average features of travelling salesman
tours is discussed in Example 3.16.

In the second part of this article (Section 4), we introduce a generalization of the random walk
model. The random walk model for card shuffling has a strong assumption, namely that the prob-
ability distribution of allowed moves is assumed to be the same at every stage. While this may
accurately describe the behaviour of a proficient card mixer, it may not be adequate for describing
many real-life mixing behaviours. A more general approach would be to assume that the mixer
has a collection of distributions Q1, . . . ,Qm on G and uses them in some order w1w2 . . . with
wi ∈ [m] to shuffle the deck (where the chosen order is perhaps unknown even to the mixer). We
call these more complicated processes switched random walks by analogy with switched dynamical
systems [AJ, JAPR], which motivated our definition. We ask the following basic questions about
the switched random walk defined by a set of distributions Q1, . . . ,Qm:

(1) Does the deck get evenly mixed regardless of the order in which the Qi’s are used? When the
answer is yes, we say that the set {Q1, . . . ,Qm} has the adversarial mixing property.

(2) If {Q1, . . . ,Qm} has the adversarial mixing property, then we would like quantitative
estimates of how quickly mixing occurs in the worst case. In other words, we wish to esti-
mate the maximum total variation distance between the distribution of the process after
N-stages and the uniform distribution on the permutations of the deck.

The methods developed for random walks can sometimes be extended to the switched setting.
For instance, Theorem 1.1 easily implies the following corollary, where X is any G-set and x0 ∈ X.

Corollary 1.5. Suppose Q1, . . .Qm are probability distributions on G that are constant on con-
jugacy classes and let Qi =∑k

j=1 aijχj be their unique representations as sums of characters. For
a word w=w1w2 . . .wN with wi ∈ [m] let Q(w) be the convolution Q(w) := Qw1 ∗ · · · ∗QwN . If
qw := ∑g∈G Q(w)(g)eg , then the following inequality holds

‖qw · ex0 − uX‖2TV ≤ 1
4
∑

Vj �=triv
m(Vj,CX) dim (Vj)

( |G|
dim (Vj)

)2N ( N∏
i=1

aij

)2
.
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The assumption that the Qi are constant on conjugacy classes makes the dynamics much sim-
pler because, via the Fourier transform, they are reduced to the problem of understanding the
behaviour of products of commuting matrices. To study the general non-commutative case, we
introduce the Fourier joint spectral radius of a set of distributions Q1, . . . ,Qm on G relative to a
G-set X, defined as

ωX (Q1, . . . ,Qm) := max
ρj∈CX,ρj �=triv

(
jsr
(
Q̂1(ρj), . . . , Q̂m(ρj)

))
,

where the maximum is taken over the irreducible representations ρj of G appearing with non-
zero multiplicity in CX and the symbol jsr denotes the joint spectral radius of a set of matrices
(see Section 4.1 for preliminaries on joint spectral radii). Our next result proves that the Fourier
spectral radius captures the asymptotic worst case behaviour of the total variation distance to the
uniform distribution.

Theorem 1.6. For a word w=w1w2 . . .wN with wi ∈ [m] let Q(w) be the convolution Q(w) :=
Qw1 ∗ · · · ∗QwN . If qw := ∑g∈G Q(w)(g)eg ∈CG, then the following equality holds for every
G-set X,

lim
N→∞

(
max

x0,w:|w|=N
‖q(w) · ex0 − u‖TV

) 1
N =ωX (Q1, . . . ,Qm) ,

where the maximum is taken over all words w of length N and all initial states x0 ∈ X. Furthermore,
determining whether a set of distributions Q1, . . . ,Qm has the adversarial mixing property on X is
equivalent to determining whether the inequality ωX(Q1, . . . ,Qm)< 1 holds.

The computation of the jsr of a set of matrices is a rather difficult task and we expect this
difficulty to also extend to Fourier jsrs. For instance, it is known that it is undecidable whether
the jsr of a pair of matrices is at most one [BT] and it is not known whether checking if the strict
inequality holds is decidable. It is therefore a question of much interest to device methods for
estimating joint spectral radii (even with the knowledge that they are bound to fail in some cases).
Recent work by Ahmadi, de Klerk, and Hall [AdKH] gives a hierarchy of polynomial norms that
can be used to produce a sequence of converging upper bounds to the jsr of a set of matrices. In
the final section (Section 4.2) of this article we extend their results to norms on complex vector
spaces that are expressible as Hermitian sums of squares, allowing us to estimate Fourier spectral
radii via Hermitian semidefinite programming.

2. Preliminaries
2.1 Representation theory of finite groups
Throughout the article,Gwill denote a finite group. By a representation ofGwemean a pair (V , ρ)
where V is a finite-dimensional vector space over the complex numbers and ρ :G→GL(V) is a
group homomorphism. A morphism between the representations (V1, ρ1) and (V2, ρ2) is a lin-
ear map ψ :V1 →V2 with the property that ψ ◦ ρ1(g)= ρ2(g) ◦ψ for every g ∈G. A subspace
W ⊆V is an invariant subspace if ρ(g)(W)⊆W for all g ∈G. A representation (V , ρ) is irre-
ducible if its only invariant subspaces are 0 andW. An invariant inner product on a representation
V is a Hermitian inner product satisfying 〈ρ(g)(u), ρ(g)(v)〉 = 〈u, v〉 for all g ∈G and u, v ∈V .
Throughout the article, we will use the following fundamental facts about complex representations
of finite groups (see [[FH], Chapter 1] for proofs):

(1) Every finite group G has finitely many pairwise non-isomorphic irreducible representa-
tions, which we will denote by V1, . . . ,Vk.
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(2) The irreducible representations are the building blocks of all representations in the sense
that for any representation (�, ρ) there is an isomorphism of representations

�∼=
k⊕

j=1
Vmj
j ,

where the integers mj, called multiplicities, are uniquely specified. We write m(Vj,V) :=
mj.

(3) Every irreducible representation has an invariant inner product, unique up to multipli-
cation by a positive real number, and we fix a basis Bj for each Vj, orthonormal with
respect to this product. In this basis, the matrices [ρ(g)]Bj are unitary. If 〈, 〉 is an invariant
inner product on a representation �, then there is an orthonormal basis for �, compati-
ble with the isomorphism in (2), with respect to which the maps of the representation are
simultaneously block-diagonal of the form

[ρ�(g)]B =
k⊕

j=1

(
[ρVj(g)]Bj ⊗ Imj

)
,

where Imj is themj ×mj identity matrix.
(4) The character of a representation V is a function χV :G→C given by χV (g)= Tr(ρ(g)).

Characters are constant functions in the conjugacy classes of G and the characters of the
irreducible representations Vj form an orthonormal basis for such functions (under the
inner product 〈f , h〉 := ∑g∈G f (g)h(g)/|G|).

2.2 The group ring and the Fourier transform
The group algebra of G, denoted by CG, is the complex vector space with basis given by the sym-
bols {eg : g ∈G}, endowed with the multiplication eg · eh := eg·h, where the dot in the right-hand
side expression is the product in G. This is an associative and generally non-commutative alge-
bra of dimension |G|. If (�, ρ) is a representation of G, then there is a linear map φ :CG→
Hom (�,�) which sends

∑
ageg to the map sending w ∈� to

∑
agρ(g)(w). This map trans-

forms the product in CG into the composition of linear maps and makes � into a CG-module.
It is easy to see that there is a correspondence between CG-modules and representations of G.
In particular, the group algebra is itself a representation of G via left-multiplication by defining
ρCG(g)(eh)= eg · eh. The following are three very useful facts about this representation.

(1) The representation CG is isomorphic to the representation C[G] defined as the col-
lection of complex-valued functions f :G→C endowed with the contragradient action
ρ∗(g)f (x)= f (g−1x). We will use this isomorphism throughout. It is given explicitly by
mapping a function Q :G→C to the element q := ∑g∈G Q(g)eg .

(2) If q1 and q2 are the elements of CG corresponding to functions Q1 and Q2, then their
product q1q2 ∈CG corresponds to the convolution Q1 ∗Q2 of Q1 and Q2, defined as

Q1 ∗Q2(h)=
∑
g∈G

Q1(hg−1)Q2(g).

(3) There is an isomorphism of representations CG∼=⊕k
j=1 V

dim(Vj)
j and in particular

m(Vj,CG)= dim (Vj).
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(4) There is an isomorphism of algebras φ :CG→⊕k
j=1 Hom (Vj,Vj) called the Fourier

transform, which is the map sending a function f to the map
⊕k

j=1 f̂ (ρj), where

f̂ (ρj) :=
∑
g∈G

f (g)[ρj(g)]Bj .

See [[FH], Exercise 3.32] for basic properties of the Fourier transform.

3. Randomwalks on homogeneous spaces andmodules over group rings
A homogeneous space for G is a set X endowed with a transitive action of G. In this section,
we study random walks induced on X by random walks on G. More precisely, any probability
distribution Q on G and initial state x0 ∈ X define a stochastic process (hk)k≥1 on X, as follows:

(1) Let g1, g2, . . . be a sequence of independent and identically distributed random elements
of G having distribution Q.

(2) Define the random variable hj := gj . . . g2g1(x0).

There are two natural questions about the process hN :

(1) What is the distribution of hN?
(2) How does the distribution of hN vary as N grows? Since the action of G in X is transitive,

it should be fairly common (for instance whenQ assigns sufficiently large probability to all
elements of G) that the process mixes X evenly. More quantitatively we ask: What is the
total variation distance between the distribution of hN and the uniform distribution on X?

We will address the questions above using the module CX over the group ring CG defined by
an action, borrowing the maxim of modern commutative algebra of placing a greater emphasis
on modules. The material is organized as follows: Section 3.1 introduces the basic theory, Section
3.2 contains the resulting convergence bounds and clarifies their relationship with previous work,
Section 3.3 discusses random walks on tabloids, illustrating how tools from combinatorial rep-
resentation theory can be used for estimating mixing rates. Finally, Section 3.4 discusses the
application of mixing rates for obtaining ‘statistical’ descriptions of homogeneous spaces and a
detailed analysis of the space of travelling salesman tours.

For use throughout the section, recall that the total variation distance between two probability
distributions P and Q on X is given by

‖P −Q‖TV := max
A⊆X

|P(A)−Q(A)| = 1
2
∑
x∈X

|P(x)−Q(x)|.

3.1 Randomwalks andmodules over the group ring
LetCX be a vector space with basis given by the set of symbols S := {ex : x ∈ X}. The action ofG on
X makes CX into a CG-module via the map φ :CG→Hom(CX,CX) given by φ(eg)(ex) := eg(x).
We will denote this action by eg · ex. The following proposition shows that the module structure
can be used to compute the distributions of our random walks.

Lemma 3.1. If Q is a probability distribution on G and T is a probability distribution on X, then the
equality ∑

x∈X
P{W = x}ex = q · t
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holds, where q := ∑g∈G Q(g)eg , t := ∑x∈X T(x)ex, andW := g(z) is the random variable obtained
by choosing g ∈G and z ∈ X independently with distributions Q and T, respectively. In particular,
the distribution of hN is given by qN · ex0 ∈CX.

Proof. The independence between g and z implies the following equality for any α ∈ X

P{W = α} =
∑
x∈X

∑
g∈G:g(x)=α

Q(g)T(x).

It follows that∑
α∈X

P{W = α}eα =
∑
α∈X

∑
x∈X

∑
g∈G:g(x)=α

Q(g)H(x)eα =
∑
x∈X

∑
g∈G

Q(g)H(x)eg(x) = q · t.

The last claim follows from the associativity relation (q1q2) · h= q1 · (q2 · h), which holds for all
q1, q2 ∈CG and h ∈CX because CX is a CG-module. �

The previous lemma is useful because it allows us to use the representation theory of CX
to compute the probability distribution of hN . Henceforth, we endow CX with the Hermitian
inner product which satisfies 〈ex, ey〉 = δxy. This product is invariant because G acts on X by
permutations.

Lemma 3.2. Let Q be any complex-valued function on G and q := ∑g∈G Q(g)eg . There exists an
|X| × |X| unitary matrix W such that

W[φ(q)]SW∗ =
k⊕

j=1
Q̂(ρj)⊗ Im(Vj,CX),

where Q̂ denotes the Fourier transform of Q.

Proof. Since the inner product we defined in CX is G-invariant, we can use it to construct an
orthonormal basis B forCX compatible with the decomposition ofCX =⊕Vm(Vi,CX)

i as a repre-
sentation of G. Letting W be the change of basis matrix from the basis S= {ex:x ∈ X} to the basis
B, we see thatW is unitary and that for every g ∈G the equality

W[ρCX(g)]SW∗ =
k⊕

j=1
[ρj(g)]Bj ⊗ Im(Vi,CX)

holds. Since φ is linear, we conclude that

Wφ(q)W∗ =
∑
g∈G

Q(g)
k⊕

j=1
[ρj(g)]Bj ⊗ Im(Vi,CX)

=
k⊕

j=1

⎛⎝∑
g∈G

Q(g)[ρj(g)]Bj

⎞⎠⊗ Im(Vi,CX),

which agrees with the claimed formula by definition of Fourier transform. �
Remark 3.3. In order to use Lemma 3.2, it is extremely useful to be able to decompose CX into
irreducibles. This process is often simplified by the following two facts:

(1) If x0 ∈ X is any point and H ⊆G is the stabilizer of x0, then the permutation module CX
is isomorphic to the induced representation of G defined by the trivial representation of H
[[FH], Example 3.13].
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(2) In particular, the multiplicities with which the irreducible representations Vj appear in
CX are determined by the Frobenius Reciprocity Theorem [[FH], Corollary 3.20], which
implies that

m(Vj,CX)= 1
|H|
∑
h∈H

χVj(h).

3.2 Mixing rates
For any G-homogeneous space X, we let u ∈CX be the element corresponding to the uniform
distribution, that is, u := 1

|X|
∑

x∈X ex. Note that uG · exi = u for every xi ∈ X. We endow CX with
the total variation norm ‖h‖TV := 1

2
∑

x∈X |h(x)| and endow Hom (CX,CX) with the Frobenius
norm ‖A‖Fb := Tr(AA∗). We are now ready to prove Theorem 1.1, our main tool for establish-
ing convergence estimates on homogeneous spaces. The key observation behind the proof is that
even though the total variation norm is not unitarily invariant, it can be bounded on average by
a unitarily invariant norm. This allows us to choose the convenient orthonormal basis for our
operators by means of Lemma 3.2.

Proof of Theorem 1.1. The equality∑
x∈X

‖q · ex − u‖22 = ‖φ(q)− φ(uG)‖2Fb

holds, since both sides equal the sum of the squares of the entries of the matrix φ(q)− φ(eG). Since
the Frobenius norm is unitarily invariant, we can compute the right-hand side of this equality in
any orthonormal basis. In particular, using the basis from Lemma 3.2 yields

‖φ(q)− φ(uG)‖2Fb =
k∑

j=1
m(Vj,CX)‖Q̂−U(ρj)‖2Fb,

where U is the uniform distribution on G. For any probability distribution Q on G, we know that
Q̂(triv)= 1 and for the uniform distribution U we know that Û(ρj)= 0 for all ρj �= triv. We thus
conclude that the following equality holds∑

x∈X
‖q · ex − u‖22 =

∑
Vj �=triv

m(Vj,CX)‖Q̂(ρj)‖2Fb. (1)

The Cauchy−Schwarz inequality and the fact that ‖ • ‖2 ≤ ‖ • ‖1 imply that for every x ∈ X we
have

1
4
‖q · ex − u‖22 ≤ ‖q · ex − u‖2TV ≤ 1

4
|X|‖q · ex − u‖22. (2)

Averaging the inequalities in (2) over X, we obtain

1
4|X|

∑
x∈X

‖q · ex − u‖22 ≤ 1
|X|
∑
x∈X

‖q · ex − u‖2TV ≤ 1
4
∑
x∈X

‖q · ex − u‖22.

Combining these inequalities with identity (1) we complete the proof of the two inequalities in
our main claim.

Furthermore, if ‖q · ex‖22 is independent of x, then the same is true of ‖q · ex − u‖22, since
this quantity equals ‖q · ex‖2 − 2〈q · ex, u〉 + ‖u‖22, which is independent of x because 〈q · ex, u〉 =
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1/|X| for all x. As a result, for every x ∈ X we have

‖q · ex − u‖22 = 1
|X|
∑
y∈X

‖q · ey − u‖22

and we can replace the leftmost and rightmost terms in (2) for averages, yielding

1
4|X|

∑
y∈X

‖q · ey − u‖22 ≤ ‖q · ex − u‖2TV ≤ 1
4
∑
y∈X

‖q · ey − u‖22.

This result, combined with (1), completes the proof. �
Remark 3.4. There are two cases where the condition that ‖q · ex‖2 be independent of X occurs
automatically because q · ex2 is obtained from q · ex1 by rearranging the order of the coefficients
for every x1, x2 ∈ X. This happens

(1) If X =G because the set of coefficients of q · ex for any x is exactly the set of values of Q.
(2) If Q is constant on conjugacy classes of G. This holds because the equality q · ex2 =∑

g∈G Q(g)eg(x2) =
∑

y∈X cyey implies that cy equals the sum of the Q-probabilities of the
set A of g ∈G with g(x2)= y. It follows that if rx1 = x2, then the conjugates r−1gr for g
in A are the group elements which map x1 to r−1y. Since Q is conjugation-invariant, we
have that cy is the coefficient of r−1y in q · ex1 . We conclude that q · ex1 is a permutation of
q · ex2 .

Remark 3.5. More generally, it can be shown that if T is a subgroup of G which acts transitively
on X and Q is a probability distribution which is constant on the conjugacy classes of T, then:

(1) The convolution Q(N) is also constant on the conjugacy classes of T and
(2) ‖q · ex‖2 is independent of x ∈ X.

So in this case the bound from Theorem 1.1 holds for every initial state x0 ∈ X.

Remark 3.6. The proof of Theorem 1.1 uses the same approach as that of the celebrated Upper
Bound Lemma [[D], pag. 24] for random walks on a group G. The lemma was introduced in the
early 80s and is still a key tool in the state-of-the-art analysis of Markov chains (see for instance
[B, BN]).

The use of averaging allows us to extend the result to arbitrary homogeneous spaces, increasing
the range of applications, and to improve the coefficients in the inequality by replacing dim (Vj)
with the typically smallerm(Vj,CX).

Remark 3.7. Theorem 1.1 should be compared with the Upper Bound Lemma for homogeneous
spaces (UBLH) from [[D], pag. 53]. The UBLH applies to random walks defined by distributions
Q on G which are right-invariant under the subgroup H ≤G which stabilizes x0 ∈ X (i.e., the dis-
tributions are forced to satisfy Q(gh)=Q(g) for all h ∈H) and the bound depends on the Fourier
transforms of the induced distributions on X and not on the Fourier transforms of the original
distributions. Due to the restriction to right-H-invariant distributions and the presence of Fourier
transforms of induced distributions, the UBLH has a smaller range of applicability than Theorem
1.1. On the other hand, the UBLH gives inequalities valid for every initial state x0, albeit at the
cost of using larger constants than the m(Vj,CX) of Theorem 1.1. It follows that the Theorems
are strictly incomparable and that it may be more convenient to use one or the other, depending
on the intended application.

Proof of Corollary 1.2. Theorem 1.1 provides us with lower and upper bounds for the average of
the squared total variation over the starting points of X. The average of a set of real numbers is at
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least the smallest one and at most the largest one, proving the existence of the good and bad initial
states r and s in X. �
Remark 3.8. Theorem 1.1 and Markov’s inequality imply that the relation

∣∣{x ∈ X:‖qNex − u‖TV ≥ α}∣∣≤ |X|
4α2

∑
Vj �=triv

m(Vj,CX)‖Q̂(ρj)N‖2Fb

holds for every α > 0, allowing us to prove that most (and even all, when the right-hand side
is < 1) initial states mix well. In the special case where Q is right-invariant under the stabilizer
of a point x0 ∈ X, this inequality is weaker than the UBLH, which provides a bound for every
initial state. However, the inequality above applies to arbitrary (not necessarily right-invariant)
distributions Q.

3.3 Example: Randomwalks on tabloids
Fix positive integers n, a, b with a≥ b and a+ b= n. Suppose we have a set of n of cards and that
these are placed face up forming a single row. We permute the cards by independently sampling
permutations according to a fixed distributionQ on Sn, and acting with these permutations on the
row of cards. After N stages, we split the row of cards into two disjoint sets A and B, consisting
of the first a cards and the remaining b cards, respectively (reading the row of cards from left to
right). We ask: How near-uniform is the set A, or equivalently, how random is the set partition
(A, B)? In this section, we define random walks on tabloids, which generalize this problem, and
discuss tools suitable for their analysis.

3.3.1 Preliminaries: partitions, tableaus, and tabloids
A partition of a positive integer n is a nonincreasing sequence λ1 ≥ λ2 ≥ · · · ≥ λk with n=∑ λi.
Partitions are partially ordered by the dominance ordering, defined as λ≤μ if

∑
i≤j λi ≤

∑
i≤j μi

for all j= 1, . . . , n. A tableaux with shape λ is a finite collection of boxes, arranged in left-justified
rows of sizes λ1, . . . , λk, and containing the integers 1, . . . , n without repetitions. Two tableaus of
the same shape λ are row-equivalent if the sets of elements in each of their corresponding rows
coincide. A tabloid is a row-equivalence class of tableaus.

Example 3.9. The sequence λ := (3, 3, 2, 1) is a partition of 9. The following two tableaus are
row-equivalent and therefore members of the same tabloid.

This tabloid is encoded by the ordered set partition ({1, 2, 3}, {4, 5, 6}, {7}, {8}), which keeps
track of the set of elements in each row.

A generalized tableaux of shape λ is a tableaux T of shape λ filled with elements of {1, . . . , n}
where repetitions are allowed. The content of such a tableaux is a vector (μ1, . . . ,μn), where μi
is the number of copies of the integer i appearing in T for i= 1, . . . , n. A semi-standard tableaux
is a generalized tableaux where the labels are weakly increasing along rows and strictly increasing
along columns.
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Example 3.10. If we fix the content μ= (2, 2, 1) then the set of all semi-standard tableaus of
shapes (3, 2) and (4, 1) with content μ are given by

3.3.2 Conjugation-invariant distributions and randomwalks on tabloids
Continuing with the example introduced at the beginning of Section 3.3, any partition λ of n hav-
ing k parts allows us to partition our row of n cards into k sets (A1, . . . ,Ak) where A1 consists of
the first λ1 cards, the set A2 consists of the next λ2 cards (those in positions λ1 + 1, . . . , λ1 + λ2
along the row), A3 consists of the next λ3 cards, etc. We can then ask: how near-uniform is the
resulting set partition (A1, . . . ,Ak) after N stages of our random walk? In this section, we address
this problem when the distribution Q is constant on conjugacy classes by applying the tools intro-
duced in the article. Our main result is Corollary 3.14, which gives bounds on the mixing rate of
the process described in the first paragraph, that is, when λ is any partition with at most two parts.

To begin the analysis, note that ifX denotes the set of tabloids of shape λwith the natural action
of Sn by permutations (see Section 3.3.1 for basic definitions), then the process above coincides
with the random walk on the homogeneous space X defined by the probability distribution Q on
Sn. The corresponding permutation module CX is well-known and plays a distinguished role in
Young’s construction of the irreducible representations of the group Sn (see [[S], Chapter 2]). It is
common in the literature to refer to these modules as the permutation modules Mλ and we will do
so throughout this section. The following theorem [[S], Theorem 2.11.2] describes their structure,
where Sλ denotes the irreducible representation of Sn corresponding, via Young’s construction, to
the partition λ (see [[S], Definition 2.3.4] for an explicit description of Sλ).

Lemma 3.11 (Young’s rule). Letμ be a partition of n. The following isomorphism of representations
holds

Mμ ∼=
⊕
λ:λ≥μ

(
Sλ
)⊕Kλμ ,

where the sum runs over the partitions λ of n with λ≥μ in the dominance ordering of partitions
and Kλμ is the Kostka number of (λ,μ), that is, the number of semi-standard tableaus of shape λ
and content μ.

In order to understand the behaviour of Markov chains defined by conjugation-invariant prob-
ability distributions, we need to express such distributions as sums of characters. To this end,
we will use orthogonality of characters together with Frobenius’ remarkable character formula
[[FH], Theorem 4.10], which gives a combinatorial description of the characters of Sλ. Recall that
the conjugacy class of a permutation σ ∈ Sn is specified by its cycle type, namely the sequence
(n1, . . . , nn), where nj equals the number of j-cycles appearing in the unique decomposition of σ
as a product of disjoint cycles.

Lemma 3.12 (Frobenius character formula). If λ= λ1 ≥ λ2 ≥ . . . λn ≥ 0 is a partition of n then
the value of the character of Sλ in the conjugacy class (n1, . . . , nn) is given by the coefficient of the
monomial x(λ) in the polynomial� · Pn ∈C[x1, . . . , xn], where

Pn(x) :=
n∏
j=1

(xj1 + · · · + xjn)nj ,� :=
∏

1≤i<j≤n

(
xi − xj

)
,

and (λ)= (λ1 + n− 1, λ2 + n− 2, . . . , λk + n− k, . . . , λn−1 + 1, λn).
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Lemma 3.13. Let λ= a≥ b be a partition of n. If Ck denotes the conjugacy class of a k-cycle in Sn,
then

χSλ(Ck)=
[(

n− k
a

)
−
(
n− k
a+ 1

)]
+
[(

n− k
b

)
−
(
n− k
b− 1

)]
and furthermore,

dim (Sλ)=
(
n
a

)
−
(

n
a+ 1

)
=
(
n
b

)
−
(

n
b− 1

)
.

Proof. Since � is the determinant of the Vandermonde matrix with i, j entry given by xjn−i+1 we
know that

�=
∑
σ∈Sn

sgn(σ )xσ (1)−1
n . . . xσ (n)−1

1

and in particular, only two terms have exponents which are componentwise smaller than (λ)=
(a+ n− 1, b+ n− 2, n− 3, n− 4, . . . , 1, 0), namely

xn−1
1 xn−2

2 xn−3
3 . . . x2n−2x

1
n−1x

0
n and − xn−2

1 xn−1
2 xn−3

3 . . . x2n−2x
1
n−1x

0
n.

Since PCk(x)=A(x)(xk1 + · · · + xkn), where A(x)= (x1 + · · · + xn)n−k, we conclude from
Frobenius’ character formula and the observation from the previous paragraph that χSλ(Ck) is
given by

[P(x)](a,b) − [P(x)](a+1,b−1),

where we have removed the n− 2 trailing zeroes in our notation for exponents. Since P(x) factors,
this quantity equals

[A(x)](a−k,b) + [A(x)](a,b−k) −
(
[A(x)](a−k+1,b−1) + [A(x)](a+1,b−k−1)

)
.

Each of these coefficients can be computed by the multinomial theorem, yielding
(n−k

b
)+ (n−k

a
)−

(
(n−k
b−1
)+ (n−k

a+1
)
). Similarly, the dimension of Sλ is given by the value of its character at the identity

element, given by

[(x1 + · · · + xn)n](a,b) − [(x1 + · · · + xn)n](a+1,b−1),

proving the claim. �
The following corollary estimates the rate of convergence to the uniform distribution of the

pure-cycle random walk on the set of disjoint pairs (A, B) of sizes a and b, respectively, with
A∪ B= [n]. An explicit illustration of these upper bounds (for n= 52 and λ= 26≥ 26 is shown
in Figure 1).

Corollary 3.14. Let Q be the probability distribution which samples k-cycles uniformly. If CX
is the permutation module corresponding to a partition λ= a≥ b with a+ b= n and q(N) :=∑

g∈G QN(g)eg ∈CG, then for any x0 ∈ X, the quantity ‖q(N) · ux0 − uX‖2TV is bounded above by

1
4

b∑
t=1

([(n−k
n−t
)− ( n−k

n+1−t
)]+

[(n−k
t
)− (n−k

t−1
)])2N

((n
t
)− ( n

t−1
))2N−1 .

Proof. By Lemma 3.11, the decomposition of CX into Sn-irreducibles is given by CX =⊕b
t=0 S(a+b−t,t) and in particular, no representation appears with multiplicity greater than one.

For notational convenience we writeVt := S(a+b−t,t) throughout this proof. Since the distribution

https://doi.org/10.1017/S0963548322000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000311


410 E. Moreno and M. Velasco

Figure 1. Upper bound for total variation to uniformity for λ : 26≥ 26 with n= 52 (the number of cards on a regular deck)
and k= 2, 3, 4, 5 (y axis in standard (left) and logarithmic (right) scales). The set X has around 4.9× 1014 elements.

Q is constant on conjugacy classes, it can be written uniquely as a sum of irreducible charac-
ters, and we determine its coefficients at with respect to the characters χVt for t = 0, . . . , b. By
orthogonality of characters we have

at = 〈Q, χVt 〉 = 1
|Sn|
∑
g∈G

Q(g)χVt (g)=
1

|Sn|χVt (τ ),

where τ is any k-cycle. By Lemma 3.13 we know that

at = 1
|Sn|
([(

n− k
a+ b− t

)
−
(

n− k
a+ b+ 1− t

)]
+
[(

n− k
t

)
−
(
n− k
t − 1

)])
and that dim (Vt)=

(n
t
)− ( n

t−1
)
. The claim now follows from Corollary 1.3. �

Remark 3.15. The previous corollary shows that Theorem 1.1 can be applied more generally than
the Upper Bound Lemma on Sn, since selecting a transposition uniformly at random does notmix
Sn (because only even transpositions can be reached in even stages), while it does converge to the
uniform distribution on the homogeneous space X.

3.4 A concentration inequality
In this section we prove Theorem 1.4 and illustrate its applicability by analysing random walks on
travelling salesman tours.

Proof of Theorem 1.4. Let EQN ( • ) denote the expected value with respect to the distribution
of the process after N stages. By the triangle inequality and the definition of total variation, the
following inequalities hold∣∣∣∣∣EU(f )− 1

M

M∑
i=1

f (Zj)

∣∣∣∣∣≤ ∣∣EU(f )−EQN (f )
∣∣+ ∣∣∣∣∣EQN (f )− 1

M

M∑
i=1

f (Zj)

∣∣∣∣∣
≤ ‖QN −U‖TV +

∣∣∣∣∣EQN (f )− 1
M

M∑
i=1

f (Zj)

∣∣∣∣∣
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and we conclude that

P

{∣∣∣∣∣EU(f )− 1
M

M∑
i=1

f (Zj)

∣∣∣∣∣≥ ε
}

≤ P

{∣∣∣∣∣EQN (f )− 1
M

M∑
i=1

f (Zj)

∣∣∣∣∣≥ β
}
,

where β = ε − ‖QN −U‖TV. Since β > 0, the right-hand side is bounded by 2 exp (−Mβ2/2)
from Hoeffding’s inequality for bounded random variables [[H], Theorem 2], proving thebreak
claim. �
Example 3.16. Suppose X is the set of tours through a fixed set of cities 1, . . . , n and let (x) be
the total distance travelled in tour x. The set X has (n− 1)! elements and finding a tour of least
total length is the classical travelling salesman problem (TSP), of much interest in combinatorial
optimization. It is often desirable to know the average cost EU(f ) of functions f among all possible
tours. This is especially challenging if the function depends nonlinearly on the tour. When f is
bounded, Theorem 1.4 gives us a natural approach for obtaining such estimates via simulations,
together with error bars on such estimates. In this example we give some nonlinear functions
whose averages are of interest for the TSP and show some combinatorial techniques that can be
used for obtaining the necessary total variation bounds.

Motivated by the simulated annealing approach [[M], Section 4.4.3] for solving the TSP,
define for a fixed real number β the probability distribution πβ(x) on X, given by the formula
πβ(x)= e−β(x)/Cβ , where Cβ(x) := ∑x∈X πβ(x) is the associated partition function. Note that
πβ(x) assigns higher probability to shorter tours and it is easy to see that in the limit β → ∞ the
πβ(x)-average length

β :=
∑
x∈X

(x)πβ(x)

converges to the length of the shortest tour.
To estimate β define the functions aβ(x) := (x)e−βx, cβ(x)= e−β(x) and the numbers Aβ :=

EU[a(x)], Cβ := EU[b(x)], and note that β =Aβ/Cβ . It is natural to estimateAβ and Cβ via their
sample averages

Âβ := 1
M
∑M

j=1 aβ(Zj) Ĉβ := 1
M
∑M

j=1 cβ(Zj)

which are easily computable with simulations. The convexity of the function y/x in the positive
orthant, together with Theorem 1.4, now imply the following corollary, which gives error bounds
on these estimates. In the expressions below, D is any upper bound on the length of tours (for
instance the sum of the n largest pairwise distances among cities).

Corollary 3.17. Let ε, η > 0 be real numbers. Choose N large enough so that

‖Q(N) −U‖TV < εe−2βD

D2

and choose M large enough so that

2 exp

⎛⎜⎝−
M
(
εe−2βD

D2 − ‖Q(N) −U‖TV
)2

2

⎞⎟⎠<η.
If we use M independent samples of the N-th stage of the random walk defined by the distribution
Q to compute the estimates Âβ , Ĉβ , then the following inequalities hold with probability at least
1− 2η

−2ε + Âβ
Ĉβ

≤ β = Aβ
Cβ

≤ Âβ
Ĉβ

+ 2ε.
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In order to use the previous corollary one needs good total variation bounds. For conjugation-
invariant probability distributions Q, such bounds follow from Corollary 1.3 provided we have
good estimates of the involved multiplicities. We now illustrate such multiplicity calculations
assuming, for simplicity, that n is a prime number.

The stabilizer of the cycle (1, 2, . . . , n) is the cyclic subgroup Z/nZ generated by the cycle
(1, 2 . . . , n). By primality of n, this subgroup is contained in only two conjugacy classes of Sn,
namely that of the identity and that of a single n-cycle c.

By Remark 3.3, we conclude that for any partition λ of n we have

m(Sλ,CX)= 1
n
(
dim (Sλ)+ (n− 1)χSλ(c)

)
.

We then use the hook length formula and the Murnaghan-Nakayama rule to compute the terms
in the right-hand side of the expression above. Recall that a hook in a partition λ is a choice of a
box in the corresponding Young diagram together with all boxes to the right in the same row and
all boxes below in the same column. The total number of boxes in a hook is called its length. A
skew-hook in a partition λ is a connected collection of boundary boxes in its Young diagramwhose
removal leaves a smaller Young diagram. The total number of boxes in a skew-hook is called its
length. There is a bijective correspondence between hooks and skew-hooks which preserves length
(illustrated in [[FH], Problem 4.45]).

The hook length allows us to compute the dimensions of the Sλ using the remarkable hook
length formula [[FH], Formula 4.12]

dim(Sλ)= n!∏
h Hook Length(h)

,

where the product is taken over all hooks contained in λ. Furthermore, the value of a character
χSλ(g) can be computed from the Murnaghan-Nakayama rule, which states [[FH], Problem 4.45]
that if g = jh, where j is anm-cycle and h is a permutation disjoint from j, then

χSλ(g)=
∑

(−1)r(μ)χSμ(h).

Above, the sum is taken over all partitions μ of n−m obtained from λ by removing a skew-hook
of lengthm and r(μ) is the number of vertical steps in the skew-hook.

In our special case, g = c is a cycle of length n and λ is a partition of n. Therefore, the
Murnaghan-Nakayama rule implies that χSλ(c)= 0 unless λ contains at least one hook of length n.
This occurs only if λ is itself a hook, meaning that λ is a partition of the form 1+ a, 1b, where a
and b are positive integers with 1+ a+ b= n. For such partitions the sum above becomes

χSλ(c)= (−1)b + (−1)b−1 + · · · + (−1)0,

so the absolute value of χSλ(c) is bounded by one. Furthermore, the hook length formula gives
dim(Sλ)= (n−1

b
)
, and we conclude that the inequality

m(Sλ,CX)
dim (Sλ)

≤ 1
n

(
1+ n− 1(n−1

a
))

holds for every partition. In particular, for every representation other than the trivial and the sign
representations (which occur when a= n and b= 0 respectively), we have

m(Sλ,CX)
dim (Sλ)

≤ 1
n

(
1+ n− 1(n−1

a
))≤ 2

n
.

For the trivial and alternating representations, direct calculation shows that the equalities
m(S1n ,CX)=m(S(n),CX)= 1 hold. These observations allow us to leverage existing mixing rate
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estimates for conjugation-invariant randomwalks on Sn to obtain improvedmixing rate estimates
for X. Applying the well-known transposition walk estimates from [[D], Theorem 5], we obtain
the following corollary, which provides the total variation bounds needed for Corollary 3.17.

Corollary 3.18. For a prime number n, let X be the set of tours of cities 1, . . . , n, and let Q be
the probability distribution on Sn given by Q(id)= 1/n and Q(τ )= 2/n2 for all transpositions τ . If
q=∑g∈Sn Q(g)eg , then the following inequality holds for every initial state x0 ∈ X and every stage
N = n log (n)

2 + cn for c> 0

‖q(N) · x0 − u‖2TV ≤ 2a2e−4c

n
+ (2/n− 1)2N

4
,

where a is a universal constant (i.e., independent of the values of n and N).

Remark 3.19. When using Corollary 3.17, one is given ε, β > 0, D equals the sum of the n largest
pairwise distances among cities, and one wishes to choose N so that ‖Q(N) −U‖TV ≤ εe−2βD/D2.
Note that guaranteeing this bound via Corollary 3.18 requires choosingN = n log (n)

2 + cn for a suf-
ficiently large multiple c=Kn of n. More precisely, the bound is satisfied when there is a quadratic
dependence of N on n (a similar statement holds forM).

4. Switched randomwalks
If Q1, . . . ,Qm are probability distributions on G and X is a G-set, then a choice of initial state
x0 ∈ X determines a dynamical system which we call a switched random walk on X. The switched
random walk is a family of random variables h(w)k , as w ranges over all words w1w2 . . . with wi ∈
[m] and k ∈N, which describe the state of our system at time k when the mixing strategiesQi have
been switched according to the word w (i.e., where strategy Qwi has been used at stage i for i≤ k).
More formally, the switched random walk starting at x0 ∈ X is constructed as follows:

(1) Sample [m]×N independent elements of G with gi,j having distribution Qi.
(2) For each word w1w2 . . .wN of length N, having letters wi ∈ [m], and for k= 1, . . . ,N, let

hwk := gwN ,N . . . gw2,2gw1,1(x0).

We say that the switched random walk converges to the uniform distribution if X gets evenly
mixed as time passes, regardless of the initial state x0 ∈ X and the order in which the Qi have been
chosen. Quantitatively, this means that

lim
N→∞

(
max

x0∈X,w:|w|=N
‖qw · ex0 − u‖TV

)
= 0,

where qw is defined as the product qw1qw2 . . . qwn and qj := ∑g∈G Qj(g)eg , so that qw · ex0 encodes
the distribution of hwN .

Remark 4.1. Note that we are interested in studying the worst case mixing behaviour of the
dynamical system, in which the probability distributions Qi are chosen adversarially. This case
is very different in nature from the ‘typical’ random walk, by which we mean selecting one of the
matrices uniformly at random at each stage. The latter case reduces to the standard random walk
with probability distribution Q := ∑m

i=1 Qi and can be studied with the techniques described in
the previous sections.

In this section, we address the problem of convergence of switched random walks. We define
the Fourier joint spectral radius relative to X of a set of distributions Q1, . . . ,Qm, denoted by
ωX(Q1, . . . ,Qm), and prove Theorem 1.6, which shows that this quantity captures the long-term
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behaviour of switched random walks (see Section 4.1). The effective estimation of Fourier jsrs is
discussed in the final section 4.2.

4.1 Fourier joint spectral radii.
If A1, . . . ,Am are a set of n× n matrices with complex entries, then their joint spectral radius,
introduced by Rota and Strang in [RS], is defined as

jsr(A1, . . . ,Am) := lim
N→∞ max

w:|w|=N
‖Aw1Aw2 . . .AwN‖ 1

N .

It is known that this limit always exists and that its value is independent of the chosen matrix
norm.

Definition 4.2. The Fourier joint spectral radius of the distributions Q1, . . . ,Qm on G relative to
X is the number

ωX(Q1, . . . ,Qm) := max
triv�=ρj∈CX

{
jsr
(
Q̂1(ρj), . . . , Q̂m(ρj)

)}
,

where the maximum is taken over all nontrivial irreducible representations ρj of G that appear in
the module CX and jsr denotes the joint spectral radius of a set of matrices.

Next, we prove Theorem 1.6, which establishes that the worst case asymptotic behaviour of
the switched random walk determined by the probability distributions Q1, . . . ,Qm is encoded in
their Fourier joint spectral radius. Note that the mixing rate of the worst case behaviour is an
upper bound for that of the typical behaviour of the switched random walk, where at each step the
distribution is chosen uniformly at random from the set {Q1, . . . ,Qm}.
Proof of Theorem 1.6. Since any two norms in a finite-dimensional vector space are equivalent,
we know that there exist positive constants C1 and C2 such that the following inequality holds for
every word w of length N and every x0 ∈ X

C1‖q(w) · ex0 − u‖2 ≤ ‖q(w) · ex0 − u‖1 ≤ C2‖q(w) · ex0 − u‖2.
Therefore, the equality in the Theorem is equivalent to

lim
N→∞

(
max

x,w:|w|=N
‖q(w) · ex0 − u‖2

) 1
N =ωX (Q1, . . . ,Qm) .

For any word w of length N, the inequality

max
x0∈X

‖q(w) · ex0 − u‖2 ≥
√∑

x∈X ‖q(w) · ex − u‖22
|X| = ‖q(w) − uG‖Fb√|X|

holds, and by the submutiplicativity of the Frobenius norm, so does the following

max
x0∈X

‖q(w) · ex0 − u‖2 ≤ ‖q(w) − uG‖Fb.
The equality of the Theorem is therefore equivalent to

lim
N→∞

(
max

w:|w|=N
‖q(w) − uG‖Fb

) 1
N =ωX (Q1, . . . ,Qm) .

By Lemma 3.2 and by the orthogonal invariance of the Frobenius norm, we know that for every
word w of length N the following equality holds

‖q(w) − uG‖2Fb =
∑

Vj �=triv
m(Vj,CX)‖Q̂(ρj)w1Q̂(ρj)w2 . . . Q̂(ρj)wN‖2Fb.
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Taking Nth roots on both sides and letting R denote the number of irreducible representations
of G appearing in CX, we obtain the inequality

‖q(w) − uG‖
1
N
2 ≤

(
R max
ρj �=triv

m(Vj,CX)
)1/2N

(
max

triv�=ρj∈CX
max

w:|w|=N
‖Q̂(ρj)w1Q̂(ρj)w2 . . . Q̂(ρj)wN‖2Fb

)1/2N
,

and therefore

max
w:|w|=N

‖q(w) − u‖
1
N
2 ≤

(
R max
ρj �=triv

m(Vj,CX)
)1/2N

(
max

triv�=ρj∈CX
max

w:|w|=N
‖Q̂(ρj)w1Q̂(ρj)w2 . . . Q̂(ρj)wN‖2Fb

)1/2N
.

Letting N → ∞, we obtain

lim
N→∞

(
max

w:|w|=N
‖q(w) − u‖2

)1/N
≤ωX(Q1, . . . ,Qm).

For the opposite inequality, note that for every irreducible representation Vt appearing in CX
and every word w of length N we have

‖Q̂(ρt)w1Q̂(ρt)w2 . . . Q̂(ρt)wN‖Fb ≤ ‖q(w) − uG‖Fb.
Therefore, taking Nth roots, maximizing over w, and letting N → ∞, we obtain

jsr
(
Q̂1(ρt), . . . , Q̂m(ρt)

)
≤ lim

N→∞ max
w:|w|=N

‖q(w) − uG‖1/N2 .

We conclude that the right-hand side is bounded below by ωX(Q1, . . . ,Qm), proving the equality
in the theorem. Since the total variation distance between two probability distributions is bounded
by one, the equality

lim
N→∞

(
max

x,w:|w|=N
‖q(w) · ex0 − u‖TV

) 1
N =ωX (Q1, . . . ,Qm)

implies that ωX(Q1, . . . ,Qm)≤ 1, . We will show that Q1, . . . ,Qm has the adversarial mixing
property if and only if the strict inequality holds. If ωX(Q1, . . . ,Qm)< 1 and α is any real number
with ωX(Q1, . . . ,Qm)<α < 1, then there exists an integer N0 such that for every initial x0 ∈ X
and every word w of length N ≥N0 we have

‖q(w) · ex0 − u‖TV ≤ αN .
This proves the convergence to the uniform distribution, since αN converges exponentially to
zero. Conversely, if ωX(Q1, . . . ,Qm)= 1, then there exists a representation ρt appearing in CX
such that jsr(Q̂1(ρt), . . . , Q̂m(ρt))= 1. By [[B], Theorem 2], lim supmaxw �(

∏
wi Q̂wi(ρt))= 1,

where �(A) denotes the magnitude of the largest eigenvalue of the matrix A. As a result,
given ε > 0, there exists a sequence of integers nj and words wj of length nj such that
ˆQwj
1
(ρt) · · · ˆQwj

nj
(ρt) has an eigenvalue of size at least (1− ε) and therefore its Frobenius norm

is at least 1− ε. By Corollary 1.2, for every such word there exists an initial state xj ∈ X such that

‖q(wj) · exj − u‖TV ≥
√
(1− ε)2

4|X| .
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Since X is finite, there is an initial state x∗ which appears infinitely many times among the xj′s, and
we conclude that the switched random walk determined by Q1, . . . ,Qm starting from x∗ does not
converge. �

At this point the sceptical reader may wonder whether the theory is trivial in the sense that the
equality ωX(Q1, . . . ,Qm)=maxj (ωX(Qj)) holds in general (case in which switching the random
walk can never be worst than permanently using some of its defining distributions). The following
example shows that this is not the case even for 3× 3 doubly stochastic matrices.

Example 4.3 (Non-triviality). Consider the following two probability distributions in S3

Their action in the permutation moduleM(2,1) is given by the matrices

M1 =

⎛⎜⎜⎜⎜⎜⎝
3/8 1/4 3/8

3/8 3/8 1/4

1/4 3/8 3/8

⎞⎟⎟⎟⎟⎟⎠ ,M2 =

⎛⎜⎜⎜⎜⎜⎝
1/4 1/4 1/2

3/8 3/8 1/4

3/8 3/8 1/4

⎞⎟⎟⎟⎟⎟⎠ .

Their Fourier jsr relative toM(2,1) is equal to the jsr of their Fourier transforms in the representa-
tion S(2,1), namely the matrices:

N1 =
⎛⎜⎝ 0.0625 0.108253

−0.108253 0.0625

⎞⎟⎠ , N2 =
⎛⎜⎝ −0.125 0

−0.216506 0

⎞⎟⎠ .

Their spectral radii � satisfy �(N1)= 0.125, �(N2)= 0.125 and �(N1N2)= 0.03125. As a result
�(N1N2)>max (�(N1),�(N2))2 and therefore

ωM(2,1) (M1,M2)≥�(N1N2)1/2 >max
i
(�(Ni))=max

(
ωM(2,1) (M1),ωM(2,1) (M2)

)
.

Remark 4.4. The example above notwithstanding, there are cases beyond the trivial situation of
commuting matrices where switching does not make mixing more elusive. For instance, if the Qi
are symmetric distributions, in the sense thatQi(g)=Qi(g−1) for all g ∈G, then thematrices Q̂i(ρj)
are Hermitian and in particular, their spectral radius coincides with their operator norm ‖Q̂i(ρj)‖
(matrices with this property are called radial and have been classified [GZ]). Since the operator
norm is submultiplicative, for any word w of length N we have the inequality

‖Q̂wi(ρj) · · · Q̂wN (ρj)‖1/N ≤max
t

‖Q̂t(ρj)‖,
which implies that the equality

ωX(Q1, . . . ,Qm)=max
j

(
ωX(Qj)

)
holds for every G-set X and for symmetric distributions Q1, . . . ,Qm or, more generally, for
distributions whose Fourier transforms are radial.

Remark 4.5. By Birkhoff’s Theorem, the convex hull of permutation matrices coincides with the
set of doubly stochastic matrices. It follows that doubly stochastic matrices are precisely the possi-
ble random walks onM(n−1,1) induced by a distribution Q on Sn. SinceM(n−1,1) = triv⊕ S(n−1,1),
it follows that for a single distribution the number ωM(n−1,1) (Q) coincides with the SLEM (second
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Figure 2. The ball of V with radius 1/4 contains the images under N1 and N2 of the unit ball of V .

largest eigenvalue in magnitude) of the chain studied in [BDX, BDPX] for the design of fast-
mixing chains.We can think of Fourier spectral radii as a generalization of this quantity for several
distributions and arbitrary symmetries (see Figure 2).

4.2 Estimation of Fourier jsrs
The computation of the jsr of a given set of matrices is a surprisingly difficult problem. As men-
tioned in the introduction, it is known to be undecidable whether the jsr of a pair of matrices is
bounded by one and it is unknown whether checking if it is strictly bounded by one is decid-
able. Nevertheless, the seminal work of Parrilo and Jabjabadie [PJ], Ahmadi and Jungers [AJ] and
Ahmadi, de Klerk and Hall [AdKH], among others, has provided us with sum-of-squares algo-
rithms which are capable of approximating jsrs to arbitrary accuracy (albeit at an often significant
computational effort which cannot be predicted in advance as the undecidability results show). In
this section, we extend the results of [AdKH] to polynomial norms expressible via Hermitian sums
of squares, allowing us to estimate join spectral radii for matrices with complex entries, the case
of interest for the computation of Fourier jsrs. Note that the extension is not completely trivial,
since a norm on the underlying real vector space of Cn is not generally a complex norm because
the equality ‖λx‖ = |λ|‖x‖ needs to hold for arbitrary complex numbers λ.

We begin by explaining the general approach for the estimation of jsrs via sums of squares.
Recall that the jsr of a set A1, . . . ,Am of n× nmatrices with complex entries is a limit which can
be computed using any matrix norm. If we use a matrix norm ‖ • ‖op which is induced by a norm
‖ • ‖ on vectors inCn, then the submultiplicativity of induced norms implies that the inequality

jsr(A1, . . . ,Am)≤max
j

‖Aj‖op
holds. A basic result of Rota and Strang [RS] states that such inequalities give arbitrarily good
estimates for jsr’s in the sense that

jsr(A1, . . . ,Am)= inf‖•‖

(
max

j
‖Aj‖op

)
,

as the infimum runs over all norms in Cn.
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Over the real numbers, we know from results of [AdKH] that arbitrary norms can be uniformly
approximated by polynomial norms (i.e., by norms of the form V(x)= f 1/2d(x), where f is some
sum-of-squares form of degree 2d). This proves that the optima over polynomial norms V of
increasing degrees satisfying V(Aix)≤ γV(x) would eventually prove that a real number γ is an
upper bound for the jsr of A1, . . . ,Am when this is indeed the case. The following lemma extends
this result to the complex numbers, proving that all norms on a complex vector space can be
approximated via norms defined by Hermitian sums of squares (i.e., sums of squared norms of
complex polynomials).

Theorem 4.6 (Complex polynomial norms). Let ‖ • ‖ be a norm in Cn. There exists a sequence
{F2d}d∈N of Hermitian sums of squares

F2d(z) :=
N(2d)∑
i=1

wi|〈z, yi〉|2d

for N(2d) ∈N, points yi ∈Cn, and real positive weights wi for i= 1, . . . ,N(2d), which satisfy the
following properties:

(1) The function n2d(z) := F2d(z)
1
2d is a norm in Cd.

(2) The inequality n2d(z)≤ ‖z‖ holds for z ∈Cd.
(3) The sequence n2d(z) converges to ‖z‖ uniformly on compact subsets of Cd.

Proof. Let B⊆Cn be the unit ball for ‖ • ‖ and let B◦ be its polar set
B◦ := {y ∈Cn:‖y‖∗ ≤ 1},

where ‖y‖∗ := supx∈B |〈x, y〉| is the norm dual to ‖ • ‖. Let dy denote the Lebesgue measure inCn

and define the measure μ(A) := 1
Vol(B◦)

∫
B◦∩A dy. Since μ has compact support, the generalized

Tchakaloff Theorem–complex case of Curto and Fialkow [[CF], Theorem 3.1] implies that for
every degree 2d there existNi(2d) ∈N, points yi ∈ B◦ and positive weights wi for i= 1, . . . ,Ni(2d)
such that for every polynomial f (z, z) of degree 2d the equality∫

Cn
f (z, z)dμ(z)=

N(2d)∑
i=1

wif (yi, yi)

holds. In particular, for every x ∈Cn we have

F2d(x) :=
∫
Cn

|〈x, y〉|2ddμ(z)= 1
Vol(B◦)

∫
B◦

|〈x, y〉|2ddy=
N(2d)∑
i=1

wi|〈x, yi〉|2d,

proving that F2d(x) is a sum of Hermitian squares. Furthermore, if 0= F2d(α), the integral expres-
sion implies that 〈α, y〉 = 0 for all y ∈ B◦, so ‖α‖ = 0. As a result, the linear map φ :Cn →CN(2d)

sending x to (〈x, yi〉)i is injective. It follows that the function n2d(x) := F2d(x)
1
2d , which is obtained

from the 2d-norm (
∑ |ai|2d)2d inCN(2d) by composition with the injective linear map φ, is auto-

matically a norm onCd, proving (1). For (2), note that the inequality 〈x, y〉 ≤ ‖x‖‖y‖∗ bounds the
integral form of F2d(x) from above by ‖x‖2d, yielding the inequality n2d(x)≤ ‖x‖ for all x ∈Cn.
It remains to show (3). Let S (resp S∗) be the unit sphere for the norm ‖ • ‖ (resp. for the norm
‖ • ‖∗). Given ε > 0, the compactness of S implies that there exist finitely many centres a1, . . . aM
in S such that balls of norm ‖ • ‖ with radius ε centred at the ai cover S. For each i, let bi ∈ S∗ be
such that 〈ai, bi〉 = 1 and define B◦

i := {y ∈ B◦:‖y− bi‖∗ ≤ ε}. We claim that for every ε > 0 there
exists d such that n2d(x)≥ 1− 3ε for every x′ ∈ S simultaneously, proving (3). To verify this claim,
take x′ ∈ S and assume i is such that ‖x′ − ai‖< ε. For every y′ ∈ B◦

i we have
|〈x′, y′〉| = |〈ai, bi〉 + 〈x′, y′〉 − 〈ai, bi〉| ≥ 1− |〈x′, y′〉 − 〈ai, bi〉| ≥ 1− 2ε,
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where the last inequality holds because

|〈x′, y′〉 − 〈ai, bi〉| = |〈x′, y′ − bi〉 + 〈x′ − ai, bi〉| ≤ ‖y′ − bi‖∗ + ‖x′ − ai‖ ≤ 2ε.

We conclude that for every x′ with ‖x′‖ = 1 we have

n2d(x′)≥ (1− 2ε)
(

min
i=1,...,m

Vol(B◦
i )

Vol(B◦)

) 1
2d

and the right-hand side can be made larger than 1− 3ε by choosing a sufficiently large d. �
The previous theorem shows that norms defined by sums of powers of Hermitian squares of

linear forms are sufficiently general so as to approximate all norms. Now we will consider a relax-
ation which has the advantage of being expressible via Hermitian semidefinite programming.
To this end, let γ ≥ 0 be any real number, let L(z) be a Hermitian polynomial in the variables
z1, z2, . . . , zn, and assume that the following conditions are met:

(1) L(z) is a Hermitian sum-of-squares of forms of degree d in z1, . . . , zn. In particular, L is
real-valued in Cn.

(2) There exists ε > 0 such that L(z)≥ ε‖z‖2d.
(3) For every (z,w) ∈Cn ×Cn, the inequality w∗HL(z)w≥ 0 holds, where HL(z) denotes the

(Hermitian) Hessian matrix of L(z).
(4) The inequalities L(Ajz)≤ γ 2dL(z) hold.

Theorem [[AdKH], Theorem 2.1] and condition (1), which guarantees the correct behaviour
for scalar multiplication, imply that V(z) := L(z)

1
2d is a complex norm. By (4), its induced

operator norm proves that jsr(A1, . . . ,Am)≤ γ . Conversely, if jsr(A1, . . . ,Am)< γ , then there
exists an integer d such that F2d(z) from Theorem 4.6 satisfies items (1),(3) and (4) with strict
inequalities, so the set of L’s satisfying the above inequalities strictly are able to guarantee that
jsr(A1, . . . ,Am)< γ when this is the case. Quillen’s positivity theorem [[BPT], Theorem 9.50],
which states that every strictly positive byhomogeneous form f (z, z) becomes a sum of Hermitian
squares (HSOS) when multiplied by ‖z‖2r for some sufficiently large integer r, can now be used to
construct the desired hierarchy of Hermitian semidefinite programmes. More precisely, we have
proven.

Corollary 4.7. If jsr(A1, . . . ,Am)< γ , then there exist integers r, d> 0 and a real number ε > 0
such that the following Hermitian semidefinite programme is feasible:

(1) L(z) is a Hermitian sum-of-squares of forms of degree 2d in z1, . . . , zn.
(2) There exists ε > 0 such that ‖z‖2r(L(z)− ε‖z‖2d) is HSOS.
(3) The function ‖(z,w)‖2rw∗HL(z)w is HSOS, where HL(z) denotes the (Hermitian) Hessian

matrix of L(z).
(4) The functions ‖z‖2r(γ 2dL(z)− L(Ajz)) are HSOS.

Conversely, any L(z) satisfying the conditions above defines a norm V(z) := L(z)
1
2d which

provides a proof that jsr(A1, . . . ,Am)≤ γ .
Our final example illustrates the sum-of-squares approach for estimating Fourier jsrs. The val-

ues of the characters of the symmetric group are rational numbers and therefore we can limit
ourselves to real sums of squares when computing Fourier jsrs for distributions on Sn.

Example 4.8. We wish to estimate the Fourier spectral radius of the distributions Q1,Q2 defined
in Example 4.3 relative to CS3. In the sign representation ρsgn the Fourier transforms satisfy

https://doi.org/10.1017/S0963548322000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000311


420 E. Moreno and M. Velasco

Q̂1(ρsgn)= 1/4 and Q̂2(ρsgn)= 0, so we know that

ω(Q1,Q2)=max
(
1
4
, jsr(N1,N2)

)
,

where N1 and N2 are the Fourier transforms on the irreducible representation S(2,1), computed
explicitly in Example 4.3. To estimate the jsr of N1 and N2 we solve the optimization problem
above. This problem constructs a polynomial F(x) of degree 2d = 4 such that V(x) := F(x)

1
2d is a

norm which certifies that the inequality jsr(N1,N2)≤ 0.25 holds, proving that ω(Q1,Q2)= 1/4.
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