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Abstract

We establish some weighted integral inequalities of Ostrowski, CebySev and Lupas type and give
applications for continuous probability density functions supported on infinite intervals.
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1. Introduction

For two Lebesgue integrable functions f, g : [a,b] — R, we define the Cebysev
functional:

b b b
C(fg)i= 5o [ fopa- o= [ fwar [ ewar
In 1935, Griiss [9] showed that
IC(f, &)l < §(M = m)(N = n), (1.2)
provided that there exist real numbers m, M, n, N such that
m< f(H)<M and n<g() <N foralmostalltce€ [a,b]. (1.3)

The constant }1 is best possible in (1.2) in the sense that it cannot be replaced by a

smaller quantity. A less known result, even though it was obtained by Cebysev [1] in
1882, states that

IC(f2 )l < I lsllg (b — @), (1.4)
provided that f”, g" exist and are continuous on [a, b] and || f’|lc = Sup,, 4 1f"(#)]. The

constant % cannot be improved in the general case. The CebySev inequality (1.4) also
holds if f, g : [a,b] — R are assumed to be absolutely continuous, f’, g’ € Lola, b]

and [|f"[lo = €ss sup,, " DI
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A mixture between the results of Griiss (1.2) and Ceby§ev (1.4) is the following
inequality obtained by Ostrowski [13] in 1970:

IC(f,8)| < §(b — a)(M ~ m)|lg'l|oo, (1.5)

provided that f is Lebesgue integrable and satisfies (1.3) while g is absolutely
continuous and g’ € Ly [a, b]. The constant % is best possible in (1.5). The case of
Euclidean norms of the derivative was considered by Lupasg [11], where he proved that

1
IC(f, @)l < pllf’llzllg’llz(b—a), (1.6)

provided that f, g are absolutely continuous and f’, g’ € L,[a, b]. The constant 1/7° is
best possible. For other inequalities of Griiss’ type, see, for example, [2-8, 10, 12].

In order to extend the above results to infinite intervals, we establish some weighted
integral inequalities of Ostrowski, Cebysev and Lupas type. We give applications for
continuous probability density functions supported on infinite intervals along with two
examples.

2. Weighted inequalities
We define, as above,

1 b )
Cw(f.g) = W) — @ f f(OgN (1) dt

1 b b
" [h(b) - k(@) f foh () dt f gk (1) dt,

where 4 is absolutely continuous and f, g are Lebesgue measurable on [a, b] and such
that the integrals exist. The following weighted version of Ostrowski’s inequality (1.5)
holds.

THeOREM 2.1. Let h : [a, b] — [h(a), h(D)] be a continuous strictly increasing function
that is differentiable on (a,b). If f is Lebesgue integrable and satisfies the condition
m< f(t) < M fort€la,b), g:la,b] = R is absolutely continuous on [a,b] and g’ |
is essentially bounded, that is, g' |’ € Ly[a, b], then

’

1
ICi (f- )l < S1A(b) = (@) )(M = m) 2.1

g
I g p),00

The constant % is best possible.

Proor. Assume that [c,d] C [a,b]. If g : [¢,d] — C is absolutely continuous on [c, d],
then g o h™' : [h(c), h(d)] — C is absolutely continuous on [/(c), h(d)] and using the
chain rule and the derivative of inverse functions yields

(g oh H@

o =1y — S -1 -1y —
(goh ) (@)= (g oh ))(h ) (2) W o @)

(2.2)
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for almost every z € [h(c), h(d)]. If x € [c, d], then taking z = h(x) gives
(g o () _ g'(x)

(W o " DY(h(x)) H(x)

Since g’ /I € Lu[c,d], it follows that (g o h™'Y € Lo.[h(c), h(d)] and

(goh™Y (@)=

’

8
h/

-
(g © A~ lltnce) naye0 = :
[c,d],00

Now, if we use Ostrowski’s inequality (1.5) for the functions f o A~! and g o h~! on
the interval [h(a), h(b)],

‘ 1 h(b)

h(b) — h(a) Jnw)
1 h(b)

 [h(b) = h(@P Jua
1
< g[h(b) — W(@)I(M = m)ll(g © h™"Y lincay coy).co. (2.3)

since m < f o h™'(u) < M for all u € [h(a), h(b)]. The change of variable ¢ = h™'(u),
u € [g(a), g(b)], gives u = h(t) and du = I’ (t) dt and so

foh™ (ugoh (u)du

h(b)

th_l(u)duf gOh_l(u)du
h(a)

h(b) b
f (f o K™Y u)du = f FOR (@),
h(a) a

h(b) b
f goh '(u)du= f g(ON (1) dt,
h(a) a

h(b)

b
foh™ g oh™ (u)du= f F(g®h (1) dt

h(a)

and
7

s
W lla.peo
By making use of (2.3) we then get the desired result (2.1).
The best constant follows by Ostrowski’s inequality (1.5). O

_1 7
ICg © 2™ Y lltnea) npyl,c0 =

If w:[a,b] > R is continuous and positive on the interval [a, b], then the
function W : [a, b] — [0, ), defined by W(x) := fa * w(s)ds, is strictly increasing and
differentiable on (a, b) and W’(x) = w(x) for any x € (a, b).

COROLLARY 2.2. Assume that w : [a, b] — (0, ) is continuous on [a, b], f is Lebesgue
integrable and satisfies the condition m < f(t) < M for t € [a,b], g :[a,b] > R is
absolutely continuous on [a,b] and g’'[/w is essentially bounded, that is, g'[/w €
Lola,b). Then

’ b
& f w(s)ds. (2.4)
Willla,bl,e0 Ja

1
|Cw(f’ g)l < g(M_ m)

The constant % is best possible.
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Remark 2.3. Under the assumptions of Corollary 2.2 and if there exists a constant
K > 0 such that |g’(#)| < Kw(¢) for almost all 7 € [a, b], then, by (2.4),

b
ICu(f, 9)l < %(M ~mK f w(s)ds.

We also have the following weighted version of Cebyéev’s inequality.

THEOREM 2.4. Let h : [a, b] — [h(a), h(b)] be a continuous strictly increasing function
differentiable on (a,b). If f, g : [a,b] — R are absolutely continuous on [a, b] and
f'IN, g |W € Lela,b), then

’

8

h/

fl

1
IC (f ) < 75 h(b) - h(a))? - (2.5)

la,b],c0 [a,b],oo.

The constant é is best possible.

The proof follows by the use of éebyéev’s inequality (1.4) for the functions f o A~}
and g o h~! on the interval [A(a), h(b)].

COROLLARY 2.5. Assume that w : [a, b] — (0, 00) is continuous on [a, b]. Suppose that
f, g : la, b] = R are absolutely continuous on [a, b] and f’|w, g’ /w € Lla, b]. Then

1 fl b 2
Cutf8) < 535 [u’h]m( f w(s)ds). 2.6)

7’

8

w

[a,b],c0
The constant % is best possible.

Remark 2.6. Under the assumptions of Corollary 2.5 and if there are constants K,
L > 0 such that |f'(#)| < Lw(?), |g’(¢)] £ Kw(¢) for almost all ¢ € [a, b], then, by (2.6),

I ‘ 2
Culr 91 < LK ( f wis)ds])

Finally, we have the following weighted version of Lupas’ inequality.

TueorEM 2.7. Let h : [a, b] — [h(a), h(D)] be a continuous strictly increasing function
differentiable on (a,b). If f, g : [a,b] — R are absolutely continuous on [a, b] and
FI2, 8 [(K)'? € Lyla, b), then

’

LN r g
ICw (f, 9 < = [A(b) — h(a)]. (2.7)
k(8 w2 [V 2 g pr 2l ()2 .2
The constant 1/n? is best possible.
Proor. From the identity (2.2),
h(b) O (o o ! 2
Sy g oh )u)
(g o k™Y @) du :f (& o b))
ﬁ(a) nay |(W o h=Y)(u)
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Make the change of variable t = h~' (1), u € [h(a), h(b)]. Then u = h(¢) and du = i’ (t)dt.

Therefore,
MOl (g o i) g P
fh(a) (W o h=")(u) f (1) H(h')l/2 [abl2
In a similar way,
"N e hw
~fh‘(a) (W o h=")(u) H(h’)l/2 [abl2

By making use of Lupas’ inequality (1.6) for the functions f o &~ and g o h~! on the
interval [A(a), h(b)],

h(b) L |
‘h(b) h(a) fh(a) foh™(goh™ (u)du

h(b) X h(b) |
- oh ™ (u)d oh™ (u)d
o A LT

1 -1y -1y
< ;H(f o ™Y i@y 218 © B iy nn 2[A(B) — h(a)],
which together with the above calculations produces the desired result (2.7). O

CoROLLARY 2.8. Assume that w : [a, b] — (0, 00) is continuous on [a, b]. Suppose that
f, g : la,b] — R are absolutely continuous on [a, b] and f’/wl/z, g’/wl/2 € Ly[a, b].

Then .
s f w(s)ds.
[a.b].2 Ja

wii2
3. Applications for probability density functions

’

£
wi/2

1
ICw(f. 8l < =)

[a,b],2

The constant 1/n? is best possible.

The above results can be extended for infinite intervals / by assuming that the
function f : I — C is locally absolutely continuous on /.

For instance, suppose that I = [a, o), w(s) > O for s € [a, c0) with f:o w(s)ds =1,
that is, w is a probability density function on [a, 00), f is Lebesgue measurable
and satisfies the condition m < f(f) < M for t € [a, ) and g : [a, c0) — R is locally
absolutely continuous on [a, o) with g’/w € Ly[a, c0). Define the functional

Cw(f,g)i=f W(t)f(t)g(t)dt—f W(t)f(t)dtf w(n)g(r)dr.

Then, from (2.1),

|C (3.1
[a,00),00
Moreover, if f'/w € Lo[a, o), then, by (2.5),
1 4 ’
Cotrigl < =L g (3.2)
12 w [a,00),00 w [a,00),00
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If f//w'/?, g’ Jw'/? € Ly[a, =), then, by (2.7),
f/

wii2

’

8
wii2

(3.3)

1
|Cw(f’ g)l < 7?

[a,),2 [a,oo),Z.

In probability theory and statistics, the beta prime distribution (also known as the
inverted beta distribution or beta distribution of the second kind) is an absolutely
continuous probability distribution defined for x > 0 with two parameters ¢ and 3,
having the probability density function

x4+ x)F

Ba.p)

Wog(x) =

where B is the beta function

1
B(a,p) := f N1 =0ftdr fora,p>0.
0
The cumulative distribution function is

Wep(x) = Lyj1+0(a, B),
where [ is the regularised incomplete beta function defined by

B(z; a,B)
B(a,p)
Here B(-; @, B) is the incomplete beta function defined by

I(a.p) =

74
B(z; @, ) ::f A -0fldr fora,B,z>0.
0
Consider the functional

Coap(fog) = B@.p) fo (14 07 F(g (o) di

- f ) N1+ 0P @) de f ) N1+ 1) Pg(r) dt,

0 0
where @, > 0. By (3.1)-(3.3), for £(¢) = ¢,

ICsap(f:9) < §(M —m)B*(@.Plg"'*(1 + £)**||[0.00).0-
provided that m < f(f) < M for t € [0, c0) and g’¢'~(1 + £)**# € L., [0, o). Therefore,
ICh.ap(fs O < 5B @B E A+ O Pllo.c0)0llg" €7 (1 + O llj0.00).005
provided that f/€1=%(1 + £)**, g’€'=*(1 + £)**F € L [0, o) and

1 ) (1
IChap(fs0)l < pBS(a,ﬁ)llf CORA + O P10 00y
X 1" ¢+ O P10 00y 2,

provided that f/¢1-972(1 + £)@P/2 | g (1=02(] 4 £)@B2 € [,]0, 00).
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Similar results can be stated for probability distributions that are supported on the
whole axis R = (-0, 00). Namely, if / = (-0, ), f:R — C is locally absolutely
continuous on R and w(s) > 0 for s € R with f w(s)ds = 1, that is, w is a probability
density function on (—co, ), f is Lebesgue measurable and satisfies the condition
m < f(t) < M for t € (—o0,0) and g : (—o0,0) — R is locally absolutely continuous
on (—oo, 00) with g’ /w € Ly (—00, 0), then, by considering the functional

00

Cw(f,g)i=f W(t)f(t)g(t)dt—f W(t)f(t)dtf w(n)g(r) dt,

we find that
Culf. )l < = | (3.4)
W ll(~00,00),00
Moreover, if f'/w € Lo (—00, ), then
1 4 ’
Cuth 0l < —|2 = (3.5)
121w (—00,00),00 1 W ll(=00,00),00
and, if f//w'/?, g’ /w'/? € Ly(—c0, oo) then
J g
ICw(f, 8l < ) (3.6)
f § 1/2 (—00,00),2 W1/2 (—00,00),2

We illustrate these results with an example. The probability density of the normal
distribution on (—co, ) is

1 x —p)?
exp(—( ’l;) ) x €R,
V2o 20
where u is the mean or expectation of the distribution (and also its median and mode),
o is the standard deviation and o is the variance. The cumulative distribution

function is

Wyo2(X) 1=

Wy (x) = 1 + 1erf( \/_)
o

where the error function erf is defined by
2 X
erf(x) = — f exp(—tz) dt.
Vi Jo

Consider the functional

o0 Y
Crou(fo8) = V2r0 f exp~ S5 g ar

[l 5 [ o

with the parameters ¢ and o as above. By (3.4)—(3.6),

>
(—00,00),00

(f—uf)

1
ICrrulfs 91 < (M = m)(V2re)? s

g’eXp(
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provided that m < f(f) < M for t € (=0, ) and g’ exp((£ — p1)*/(20?)) € Loo(—00, ).
Moreover, if f’ exp((£ — u)?/20?) € Loo(—0, o), then

1
ICnou(f> ) < E(x@«r)“

M)

202 M )

202

1 eXP( 4 eXp(
(—00,00),00 (—00,00),00

Finally, if £’ exp((€ — p)?/20%), g" exp((€ — p)?/20°%) € Ly(—00, ), then

- py? C-p?
Croulf. 8l < —(x/_ o’ |f exp(( - ) g exp(( £ ) :
200 2 (=00,00),2 20’2 (—00,00),2
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