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Abstract

A Neumann subgroup of the classical modular group is by definition a complement of a maximal
parabolic subgroup. Recently Neumann subgroups have been studied in a series of papers by
Brenner and Lyndon. There is a natural extension of the notion of a Neumann subgroup in the
context of any finitely generated Fuchsian group F acting on the hyperbolic plane H such that
F\H is homeomorphic to an open disk. Using a new geometric method we extend the work of
Brenner and Lyndon in this more general context.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 E 28.

1. Introduction

(1.1) This note essentially consists of some remarks on a series of recent
papers by Brenner and Lyndon concerned with the Neumann subgroups of
the classical modular group; cf. [l]-[3]. We first recall their definition. Let
p = (x, y\x2 = yi = e) act as the modular group on the upper half plane H in
the standard way. Then the subgroup P = (z), where z = xy, is a maximal
parabolic subgroup of F and all such subgroups are conjugate. A subgroup
<J> of F is said to be non-parabolic if it contains no parabolic element. If 0
is a complement of P in T, that is (1) P n <J> = {e}, and (2) P • <J> = T, then
O is called a Neumann subgroup; cf. [1]. A Neumann subgroup is maximal
among non-parabolic subgroups; cf. [1, (2.8)].
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[2] Geometry of Neumann subgroups 351

(1.2) In connection with these subgroups, Brenner and Lyndon were led to
study transitive triples (£l,A,B) (cf. [2]) where Q is a countable set, A and B
are permutations of il of orders 2 and 3 respectively such that the group (C),
where C = AB, is transitive on Q. If (Q, A, B) is a transitive triple then F, as
in (1.1), acts on Q in the obvious way so that the subgroup P is transitive on
il. In particular Q. « F/O for a suitable subgroup <J> whose conjugacy class
is well-defined. Since P « Z it is clear that either P acts simply transitively
on Q, in which case Q is an infinite set, or else P acts ineffectively on Q in
which case ft is a finite set. In the first case O is a Neumann subgroup. In
the second case (F: <J>) < oo and O\H has only one cusp. Such a subgroup
was called cycloidal by Petersson [9]. Thus the study of transitive triples
amounts to a simultaneous study of Neumann and cycloidal subgroups of F.
For the earlier work on Neumann subgroups see [8], [6], [13], and also [7,
pages 119-122].

(1.3) A principal result in [1] which extends Theorem 2 of [13] is a
structure-and-realization theorem for Neumann subgroups. Similar and more
general results were proved by Stothers [10]—[12]. The proof in [1] is based
on a correspondence between transitive triples and Eulerian paths in cuboid
graphs, that is, the graphs with vertex-valences at most 3. For the triples
associated with torsion-free Neumann-or-cycloidal subgroups the correspon-
dence is one-to-one, but in general to make the correspondence one-to-one
one would need to put an extra structure on the cuboid graphs. The same
method is used in [3] to produce maximal-among-non-parabolic subgroups
which are not Neumann.

(1.4) In this note we extend this work to

(1.4.1) r = r j F , , r ( = (x,-)»Zm,, 2 < m , , M < o c .
1=1

Except for F « Z2 * 1i, these groups can be realized as discrete subgroups
of the orientation-preserving isometries of the hyperbolic plane H such that
F\H has finite area, and x, acts as a rotation through angle In/mi around its
fixed point. Then the element u = x\Xi • • xn is parabolic.

(1.5) The above remarks are meant only for motivation. In the follow-
ing, hyperbolic geometry will not be used explicitly. We start with F as
in (1.4.1). Let u — X\---xn. The conjugates of uk, k ^ 0 are called the
parabolic elements of F. Let P = {u). A subgroup of F is called parabolic if
all of its non-identity elements are parabolic. Clearly the maximal parabolic
subgroups are precisely the conjugates of P. A subgroup of F is called non-
parabolic if it contains no parabolic element. A complement O of P in F
is called a Neumann subgroup. Thus, for a Neumann subgroup O one has
( i ) P n O = {e}, and (ii) P <D = F. The latter implies (ii)' \P\T/Q\ = 1.
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352 Ravi S. Kulkarni [3]

Conversely, if (ii)' holds and (F: <J>) = oo then O is a Neumann subgroup.
If (ii) holds and (F: O) < oo then as in [5], O is called a l-cycloidal sub-
group. (In the correspondence between subgroups of the Fuchsian groups
and holomorphic maps among Riemann surfaces, the 1-cycloidal subgroups
precisely correspond to meromorphic functions on closed Riemann surfaces
with a single pole; these functions may be considered as generalizations of
polynomial maps; cf. [5].) One sees (cf. (2.1)) that a Neumann subgroup is
maximal among non-parabolic subgroups.

(1.6) Let F be as in (1.4.1). For O < F, in [4] we attached a diagram X&
and its thickening X* with canonical projections X& —• Xr, X«D —* Xp. Here
Xo is an orientable surface with non-empty boundary dX*. One may think
of Xp as "F\H with the cusp cut off. This makes the "cuspidal infinity"
more tangible—for example, one gets the following useful characterizations:
4> < F is Neumann (respectively 1-cycloidal) if and only if dX^ is connected
and non-compact (respectively connected and compact). Pinching each cir-
cle in XQ, to a point one obtains a graph Y& whose structure suggests the
notion of an (mi , . . . , mn)-semiregular graph; cf. (2.4). If O is a Neumann
subgroup then the image of dX& in Y<& is a special type of Eulerian path
which we simply call admissible. This provides a natural explanation of the
initially intriguing Brenner-Lyndon correspondence between Neumann and
1-cycloidal subgroups of the modular group and the Eulerian paths in cuboid
graphs. A natural extension of their results is as follows: the conjugacy classes
of Neumann (respectively l-cycloidal) subgroups ofT are in one-to-one cor-
respondence with the admissible Eulerian paths in (mi , . . . , mn)-semiregular
graphs.

(1.7) For F as in (1.4.1) and O < F we have by Kurosh's theorem,

1=1

where Fr denotes the free group of rank r and <J>,; = Zd, d\mit are con-
jugates to subgroups of F,. In (1.7.1) we assume that O// £ {e} with the
understanding that if 7, is empty then Yl*eJj O,-_,- = {e}. Let

(1.7.2) n(d) = #{O,, = Zmtld), d\mi,d<mi.

The numbers r,(rf) may be possibly infinite. In Section 4 we prove a structure-
and-realization theorem for Neumann subgroups. For example, if at most one
mt is even, then O as in (1.7.1) is realizable as a Neumann subgroup if and
only if either (1) r = oo or (2) r is an even integer and r,(l) = oo for at least
n - 1 values of i. If there are two even m,'s there is a curious new family
of Neumann subgroups (cf. (2.11)) of which there is no analogue in the
case of the modular group. This family makes the full structure theorem a
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[4] Geometry of Neumann subgroups 353

bit complicated, but the underlying geometric idea is simple. For details see
Section 4.

(1.8) Finally in Section 5 we give some geometric constructions of sub-
groups which are maximal, or maximal with respect to some additional prop-
erties such as Neumann, 1-cycloidal, non-parabolic but non-Neumann,

I wish to thank W. W. Stothers for drawing my attention to [2].

2. Preliminaries

(2.0) Throughout this section let F, F,, xt, u be as in (1.4) and (1.5). We
use the terminology introduced there.

(2.1) PROPOSITION. A Neumann subgroup is maximal among non-parabolic
subgroups.

PROOF. Let O be a Neumann subgroup of F, and P = (u). SoP acts simply
transitively on F/O. The isotropy subgroup of P at aO is P n a®a~l = {e}.
So fl"'Pa n O = {e}, that is, O is a non-parabolic subgroup. If *F is a
subgroup of F which properly contains O then P acts transitively but not
simply transitively on F/4*. But since P R J Z , this means that the P-action on
F/»F is ineffective and |iy»F| < oo. Hence P n Y / {e}, that is, 4* contains
parabolic elements. So <J> is maximal among non-parabolic subgroups.

(2.2) As in [4], let Xr be a diagram for F and Xr its thickening

(2.2.1)
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354 Ravi S. Kulkarni [5]

In the thickening each circle with m < oo is replaced by a disk and each
segment is replaced by a rectangular sheet. These pieces are attached as shown
in the figure so as to form a compact orientable surface with boundary. The
case of a circle with m — oo does not occur in this paper. In that case a circle
would be replaced by an annulus.

A building block of type / has the form

V
(2.2.2) d edges

and is denoted by Bj(d). A diagram X# is built out of such #,(</)'s and there
is a canonical projection X® —> Xp. The thickening of Bt{d) is

(2.2.3) B , (d) = d arms

The thickening Xo of X® is built out of B,(rf)'s. Notice that X* is an ori-
entable surface with boundary <9X<i>. There is a canonical projection p: X& —>
Xp and also a "thinning" map X«D —» X& (the restriction p\intx^: intXo —•
int Xp is a branched covering of surfaces; if F is realized as an orientation-
preserving, properly discontinuous group of homeomorphisms of R2 then
/'lintx* is equivalent to the canonical map O\R2 —• F\R2). The shape of
Bj(d) may be described as "a closed disk with d arms." Each of the dotted
edges at the end of an arm is its half-outlet; together they form an outlet. In
X& the outlets come in groups of n. So we may use the obvious and suggestive
terminology of an angle formed by the half-outlets. For example the interior
angle formed by the half-outlets of an arm is 2n/n. In X* one half-outlet
of an arm of a B,(*) is joined at half-outlet of arm of B,+1(*), where the
subscript / is counted mod n. In the sequel, it will be important to keep in
mind that

(2.2.4) dBj(d) = {Bj(d) n dXp} U {the outlets}.

(2.3) Pinching each circle in XQ to a point one gets a graph Y&. Again one
has a canonical projection denoted by p: Y<& —> Yr. Notice that the terminal
vertices, that is, the vertices of valence 1, of J* are precisely the images of m,
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[6] Geometry of Neumann subgroups 355

in XQ. The vertices adjacent to terminal vertices will be called sub-terminal
vertices. Now

(2.3.1)

has n + 1 vertices—the image of m, is numbered /, and the "base-vertex" is
numbered 0. So the vertices of Y# are divided into n + 1 disjoint subsets:

(2.3.2) a, = {v\p(v) has number /} .

The structure of Y<p motivates the following

(2.4) DEFINITION. Let n and m\,...,mn be positive integers, each at least
2. An (mi,...,mn)-semiregular graph is a connected graph G whose vertices
are divided into n + 1 disjoint subsets a,, i = 0 , 1 , . . . , n, such that

(a) v € a, implies valence v = n (respectively a divisor of mi) if / = 0
(respectively if i > 1),

(b) each edge of G has one end in ao and the other in a,, i > 1,
(c) given v e ao and / > 1, there is a unique edge joining v to a vertex in

a,.
Clearly Y&, as in (2.3), is an (mi , . . . , mn)-semiregular graph.
If n = 2 (respectively some m, is even), then the vertices in ao (respec-

tively certain vertices in a,) have valence 2, and if convenient may well be
not counted as vertices. Thus for example, not counting the vertices in ao,
an (mi,m2)-semiregular graph is a bipartite graph. Again if G is a (2,k)-
semiregular graph such that all vertices in ai (respectively a2) have valence
2 (respectively k), then not counting the vertices either in a0 or in a\, one
has a fc-regular graph in the usual sense. Thus if T = Ti * Z^, and O < T is
torsion-free then Y<p may be considered as a fc-regular graph. In particular,
corresponding to torsion-free subgroups of the modular group one gets cubic
graphs.

(2.5) REMARK. Let G be an (mi,...,mn)-semiregular graph. Then the
edges at a vertex in ao come equipped with a natural cyclic order. Now
suppose at each vertex v € a,, / > 1, we specify some cyclic order among
the edges incident with v. Then we may replace each v e a,, i > 1, by a
circle and attach the v-ends of the edges incident at v to the circle consistent
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with the prescribed cyclic order, and obtain a diagram X. This diagram has
a canonical projection p: X —> Xr; see the proof of [4, Theorem 1]. X may
be considered as X& for a subgroup O whose conjugacy class is well defined.
Thus G is isomorphic to YQ for some <J> < F.

(2.6) Taking a base point in dXp we may represent u = x\ • • xn by the
oriented boundary dXr. Now p~'(dXr) = 3X<p, so the components of X*
are in one-to-one correspondence with the double cosets P\F/®. If C is a
component of dX^ and P\c' C —»• dXr has degree d (possibly infinite), then
d is the number of points in the corresponding P-orbit in F/O. In particular
C is non-compact if and only if d — oo, which is if and only if the P-action
on the corresponding orbit is effective. Clearly one gets

PROPOSITION. ( l ) O i s a non-parabolic subgroup if and only ifdXq, has no
compact component.

(2) O is a Neumann {respectively l-cycloidal) subgroup if and only ifdXq,
is connected and non-compact (respectively connected and compact).

(2.7) We recall some elementary facts from the topology of surfaces. Let M
be any connected surface possibly with non-empty boundary. A connected,
compact subsurface S of M is said to be tight if M — int S has no compact
component. Notice that if 5" is a compact subsurface then M — S has only
finitely many components. So if S is compact and connected then Si —
Su{compact components of M - int S} is a tight subsurface. It is now clear
that M admits an exhaustion by tight subsurfaces, that is, a sequence Si,
i = 1,2,..., of tight subsurfaces such that 5, c int 5,+i and M = U, 5,.

Now suppose that the fundamental groups of M based at * is finitely
generated. So there exist finitely many based loops C, such that n\(M,*) =
([C,]), where [C,] denotes the homotopy class of Q. One says that an arc-
connected subset A of M carries n\ if the canonical map n\(A) —> n\(M)
is surjective. Clearly any arc-connected subset A containing \JQ carries n\.
Now let S be a tight subsurface which contains |J Q. In this case in fact the
canonical map 7ti(S) —> ni(M) is an isomorphism and it is easy to see that
each component of M - 5 is either a cylinder or a disk. If dM ^ 0 these
cylinders or disks may also have non-empty boundary.

(2.8) We apply the considerations in (2.7) to X<i>. Let S be a tight subsur-
face of X<j). Then for each building block B,(rf) we see that a component of
SnBj(d) is also tight. Let 5j be the union of S and all B,(*/)'s which intersect
S in a subset with non-empty interior. Then Si has the additional property

(2.8.1) dSi = (Si n ax*) u A,

where A is the union of the half-outlets on some arms of the building blocks.
Now suppose <J> is as in (1.7.1). Then its free part Fr may be identified with
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ni(Y<t>) or 7Ti(X<t>) (see the discussion in [5, Section 2]. Suppose that r < oo.
So there exist tight subsurfaces of X* which carry n\\ cf. (2.7). We call a
tight subsurface characteristic if it carries n\ and has the additional property
stated in (2.8.1).

From the above discussion it is clear that ifr < oo, X<D admits an exhaustion
by characteristic subsurfaces.

(2.9) PROPOSITION. Let O as in (1.7.1) be a Neumann subgroup ofY and
r < oo. Let S be a characteristic subsurface ofX&. Then OS is connected and
contains exactly one pair of half-outlets making an exterior angle 2n/n; cf.
(2.2). Moreover int(X«D — S) is homeomorphic to an open disk and d(X® — S)
has two components, each homeomorphic to an open interval.

PROOF. Since 5 is characteristic, we have dS = {S n dX*} U A, where
A is a union of half-outlets. Since dS is compact, dX& is connected and
noncompact (cf. (2.6)) we see that each component of dS must intersect A
as well as dX^,. Notice that the half-outlets in A come in pairs—each pair
forms a connected arc, and different pairs form disjoint arcs.

First we claim that dS is connected. Suppose C\, Cj are two disjoint com-
ponents of dS. Since C\, C2 contain points of dX®, and dXo is connected,
there is an arc e c 9X* joining a point p\ in C\ to a point j?2 in Q- But since
S is connected there is an arc ft c S joining p\ to pi and passing though a
base-point *. But then a U j ! forms a based loop whose homotopy class is
clearly not contained in n\(S, *). This would contradict that S carries n\. So
dS is connected.

(2.9.1)

Next suppose, if possible, that there are two pairs of half-outlets, each pair
forming an arc. Then dS - A has two components which must be connected
by an arc c 9X*, and we get a contradiction exactly as above.

Next suppose that the pair W\, wi of half-outlets makes an exterior angle
strictly greater than 2n/n (see the figure in (2.9.1)). Then the arms A\, At in
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X^-int 5 incident with W[ and Wi are distinct. Again since dX*p is connected,
the components ai , c*2 of A\ n dXq, are joined by an arc a C <?X<D. Clearly
af\S — 0. Now dA\ u a forms a Jordan curve outside S. Since S1 carries
n i this Jordan curve must bound a disk. But then X<j> — intS would have
a compact component and 5 would not be tight. This contradiction shows
that the exterior angle formed by W\, wi must be 2n/n, and so w\ u wi is an
outlet of an arm lying outside intS1. This arm connects X<D - mXS to S. In
particular X* - intS has only one component. From the remarks in (2.7) it
is now clear that int(X<p - int S) is homeomorphic to a disk and d (Xq> - int S)
has two components each sharing one endpoint of dS - A.

(2.10) The above proposition may be used to get an intuitive understanding
of a Neumann subgroup O with r < oo. Let S\ c 52 c • • • be an exhaustion
of X<D by characteristic subsurfaces. Each Sk+\ - intS^ is homeomorphic to
a closed disk. Also each S^ has exactly one pair of half-outlets with exterior
angle 2n/n. Inserting an appropriate B,(l) in this outlet we obtain a new
diagram S^ « X<pA where O^ is a 1-cycloidal subgroup. Thus we get a sequence
Ofc, A: = 1,2,..., of 1-cycloidal groups so that X*t contains some B,(l) and
X<Dt+1 is obtained from X ^ by removing some B,(l), and inserting some
Bj(d), d > 1, together with some outer building blocks so that the union
of the newly inserted building blocks is a subset homeomorphic to a closed
disk. We express this by saying that 3> is obtained by unfolding a sequence of
l-cycloidal subgroups O*.

(2.11) We shall now describe a special "unfolding" of a single 1-cycloidal
subgroup. It will be important in the structure theory of Neumann subgroups
in Section 4. Suppose we have two m,'s, say ma, mt,, which are even integers.
Let O0 be a 1-cycloidal subgroup so that X<D0 contains either 5a(l) or Bb(l),
say the first. Then we can obtain a Neumann subgroup O as follows, which
is best described by its diagram X<t>.

Suppose

(2.11.1)

Let

(2.11.2) x ^
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[10] Geometry of Neumann subgroups 359

Here all the unlabelled building blocks in the newly inserted portion are
5,(l)'s, i / a, b. We shall say that O is a simple (ma, m^-unfolding of a
\-cycloidal subgroup OQ.

(2.12) REMARK. Let <D as (2.7.1) be a Neumann subgroup with r = oo.
Then X* contains no characteristic subsurface. But it is not difficult to see
that still X<p admits an exhaustion Sk,k= 1,2..., by tight subsurfaces which
satisfy the property stated in (2.8.1) and such that dSk may contain several
pairs of half-outlets. Filling these pairs by suitable B,( 1 )'s we obtain Sk « X^
where Q>k is a 1-cycloidal subgroup. In this sense O can still be considered
as an "unfolding of a sequence of 1-cycloidal subgroups."

3. Eulerian paths

Let G be a graph. Each edge of G can be directed in two ways and so
corresponds to two directed edges, each of which is the inverse of the other.
A path in G is reduced if it contains no consecutive pair of inverse edges.
An Eulerian path in G is a path which contains each directed edge once and
which is reduced except at the terminal vertices.

(3.2) Let G be a (mi , . . . , w«)-semiregular graph; cf. (2.4). An admissible
path in G is a path in which the vertices occur in the following consecutive
order:

(3.2.1) •••V\WXv2w2--- , v, <= a0, w, € ak+i,

where k is some fixed integer and ak+i = a,, where j is the unique positive
integer such that 1 < j < n, k + i = j(n).

(3.3) THEOREM. Let Y be as (1.4.1). Then the conjugacy of Neumann
(respectively l-cycloidal) subgroups ofT are in one-to-one correspondence with
the admissible Eulerian paths in infinite (respectively finite) (m\,...,mn)-
semiregular graphs.

PROOF. Let O be a Neumann (respectively 1-cycloidal) subgroup T. Then
Yq> is an (m\,...,mn)-semiregular graph. Since <J> is Neumann (respectively
1-cycloidal), Y<t> is infinite (respectively finite). Now orient X$; this also
orients 9X*. If A is an arm of a building block of X$ then A n 8X4, consists
of two edges, which, under the canonical projection XQ—*XQ—> YQ, project
onto a pair of mutually inverse directed edges. It follows that the image of
dX<D in r<t> is an admissible Eulerian path.

https://doi.org/10.1017/S1446788700033085 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033085


360 Ravi S. Kulkarni [11]

Conversely, let G be an infinite (respectively finite) (mi,...,mn)-semi-
regular graph, and E an admissible Eulerian path in G. Let v e a,, / > 1.
Introduce a cyclic order among the (undirected) edges incident with v as fol-
lows: an edge / cyclically follows e if and only if in E the directed edge e
ending in v follows the directed edge / beginning at v. By the remark in
(2.5) we can construct an infinite (respectively finite) diagram X which cor-
responds to a conjugacy class of a subgroup O. But the existence of E also
shows that dX is connected and is non-compact (respectively compact) so O
is Neumann (respectively 1-cycloidal).

It is easy to see that this establishes the one-to-one correspondence asserted
in the theorem.

4. A structure theorem

(4.0) Throughout this section F is as in (1.4.1) and O is as in (1.7.1) and
we use the notation used there. If F ss Z2 * Z2 it is easy to see that the two
conjugacy classes of subgroups isomorphic to Z2 precisely consist of all the
Neumann subgroups in F. Henceforth we shall assume that F £ Z2 * Z2.

(4.1) PROPOSITION. Ifr = 00 then <S> is realizable as a Neumann subgroup.

PROOF. The details of this proof are similar to (and simpler than) those
of [5, Theorem (1.5)], which deals with the case of 1-cycloidal subgroups.
So we shall be brief. First of all, the diophantine condition (see [5, (3.2)]),
needed there is no longer necessary since the "difficulties can be thrown off
to infinity." Recall that for d\mi, d < mi

which may be infinite. We set r,(w,) = 00. Choose r,-(</) copies of 5,(rf)'s; cf.
(2.2.2). The objective is to construct a diagram X with these building blocks
so that X has infinite genus and dX is connected and non-compact. Using
all B[(*)'s and some of the B2(*)'s construct a complex H homeomorphic
to the closed upper half space so that dH contains infinitely many pairs of
half-outlets. (Note. That H contains infinitely many pairs of half-outlets is
obvious for n > 3. For n = 2 this would fail exactly when m\ = 2 = m.2.
We have explicitly excluded this case in (4.0).) Now attach the remaining
building blocks appropriately at these half-outlets so as to get X with the
required properties.
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[12] Geometry of Neumann subgroups 361

(4.2) PROPOSITION. //"<> with r < oo is realizable as a Neumann subgroup
then r is an even integer.

PROOF. Indeed, Fr « KI(XQ). If 5 is a characteristic subsurface, we ob-
served in (2.7), (2.8) that ni(S) « 7Ti(X«j>) and S is a compact orientable
surface with one boundary component. So r = 2g where g is a genus of S.

(4.3) PROPOSITION. Let <I> with r = 2g < oo be realizable as a Neumann
subgroup. Then either

(1) r,(l) = oo for > n - 1 values ofi, or,
(2) (A) r,-(l) = oo, r,(rf) < oo for « - 2 va/wes o/ / / a,ft, say,

(B) r,(2) = oo, r,-(rf) < oo, d ±2 for i = a, b,
(C) <I> w a simple (ma, mb)-unfolding of a 1-cycloidal subgroup;

tf (2.11).

PROOF. Let Si c 52 C • • • be an exhaustion of X<D by characteristic sub-
surfaces. Let Dk = Sk+i - intSk, k — 1,2, As observed in (2.10), Dk is a
closed disk and

(4.3.1) dDk = {Z)A:naX4,}u{the two pairs of half-outlets in dSk\JdSk+l}.

The projection of Dk in Y& has the following two possible forms.

(4.3.2)

\ / c . \ /

Here 0\, Oi are the projections of the pairs of half-outlets in dDk and C is
the shortest path joining O\ to 02. (Since Dk is homeomorphic to a closed
disk, C is unique.) The large dark vertices are in |Ja , , i > 1, and the small
ones are in c*o. The two forms are distinguished by the following fact. In
(4.3.3) all vertices in a0 lie on C—hence each is subterminal (cf. (2.3)) and
is incident with n - 2 terminal vertices. In (4.3.2) there are some vertices in
QO which do not lie on C, and so there are some subterminal ones among
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them which are incident with n - 1 terminal vertices. Now each terminal
vertex is an image of a 5,(1) and hence contributes to r,-(l). So it follows
that r,(l) = oo for at least n - 2 values of /. Suppose if possible that there
actually exist two distinct values a, b of i such that ra{\) < oo, rb(\) < oo.
Then the infinitely many building blocks Ba(l)'s and B6(l)'s are contained in
some characteristic subsurfaces S^. But then for k > ko, Dk is necessarily of
the form (4.3.3) and the building blocks with two arms in Dk are necessarily
Ba(2)'s and Bfe(2)'s. Since X^ is compact it follows that r,(rf) < oo for d ^ 1,
/ ^ a, b, as well. Finally the discussion in (2.11) shows that in this case O
must be an (ma, m^-unfolding of a suitable 1-cycloidal subgroup.

(4.4) PROPOSITION. Let r = 2g < oo, and suppose r,(l) — oo for at least
n - 1 values ofi. Then O is realizable as a Neumann subgroup.

PROOF. Suppose r,(l) = oo for / ^ l. The objective is to construct a
diagram X with rt(d) copies of 5,(rf)'s, d < mi, and any (possibly infinite)
number of copies of 5,(/w,)'s so that the thickening diagram X is an orientable
surface of genus g with dX connected and noncompact. Now using finitely
many 5,(rf)'s we can clearly construct a complex S whose thickening S is a
compact, orientable surface of genus g such that dS is connected. (Note.
if (wi,/«2) ^ (2.2) or if g = 0 we can do this using only 5,(*/)'s, / < 2.
Otherwise we shall need to use Bi(d)% i < 3. Here again we are using
the assumption that T £ 12 * Z2.) Now using all the remaining B\(dys and
5,(/)'s, i >2, f ¥" 1> construct a connected complex V whose thickening V
is an orientable surface of genus g such that d\ is connected, and contains
infinitely many pairs of half-outlets where the infinitely many B,(l)'s, / > 2,
can be inserted to form X. Clearly dX is connected and X = Xy where *F is
a Neumann subgroup isomorphic to O.

(4.5) Combining (2.11), (4.1)-(4.4), we get the following

STRUCTURE THEOREM. Let T be as in (1.4.1), F ^ Z2 * Z2 and <J> be given as
an abstract group as in (1.7.1). Then O is realizable as a Neumann subgroup
ofT if and only if one of the following three conditions holds:

(1) r = oo;
(2) (A) r is an even non-negative integer,

(B) r,(l) = oo for >n- I values ofi;
(3) (A) r is an even non-negative integer,

(B) r,(l) = oo, rt(d) < oo, d ^ 1, for n - 2 values ofi ^ a, b say,
(C) r,(2) = oo, rt(d) < oo, d ^ 2 for i = a,b,
(D) there exists 4>o, realizable as a l-cycloidal subgroup such that O
w a simple (ma, mb)-unfolding o /
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(4.6) REMARK. Suppose O is as in (1.7.1) and (3) (A)-(C) are satisfied.
Let 4*0 be the finite free product of Fr and O,y « Zm./rf, i ^ a,b and d ^ 1, or
i = a, b,d ^ 2. If O is realizable as a Neumann subgroup then Oo referred to
in (3) (D) is isomorphic to 4*0*00 where ©o is a finite free product of groups
conjugate to F,, i £ a, b, or conjugate to the subgroups of Ya (respectively
Yb) isomorphic to Za/2 (respectively T-b/i)- Moreover Oo must contain at least
one factor isomorphic to Ya or Yb. From the way X9o would be constructed
(cf. (2.11)) it is clear that there are only finitely many possibilities for 0o,
and hence, also only finitely many possibilities for <J>0. Now [5, Theorem
(1.5)] gives an effective procedure for deciding whether any of these <J>o can
be realized as a 1-cycloidal subgroup. Thus one has an effective procedure
for deciding readability of O as a Neumann subgroup.

(4.7) REMARK. The condition (3) (D) is not a consequence of (3)(A)-(C).
For example, take F = Z4 * Z4 and O = Y[* Z2 (infinite product). Write O as

=oo.

It is easy to see that (3)(A)-(C) hold, but O is not realizable as a Neumann
subgroup.

(4.8) REMARK. We should point out two possible interpretations for the
phrase "<J> as in (1.7.1) is realizable as. . .". If m,'s are pairwise coprime
then there is a unique value of / for a finite factor of <t> to be conjugate to
a subgroup of F,. If two or more AM,'S have common factors then there may
be a choice for a finite factor of O to be interpreted as a particular <J>,7. In
our statement of the structure theorem we have tacitly assumed that these
choices have already been made. Thus if <J> is only given as an abstract group
there may be a bit more freedom first to put it in the form (1.7.1) and then
realize as a

(4.9) REMARK. The condition (3)(C) of course requires that ma and mb

are even integers. So if there is at most one A/,- which is an even integer then
the condition (3) is not applicable.

5. Maximal subgroups

(5.0) In [3] and [13] there are constructions of subgroups of the classical
modular group which are maximal among nonparabolic subgroups, and which
are different from the ones discovered by Neumann [8], or which are not
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Neumann subgroups in the sense of (1.1). These constructions are rather
elaborate and require a very careful analysis. In terms of the diagrams X®'s
one can give such constructions more readily, and in fact one may construct
maximal, or maximal and Neumann, or maximal and 1-cycloidal, or maximal
and non-parabolic but not Neumann... subgroups.

(5.1) Let F be as in (1.4.1) and O < F. A symmetry of X<D is simply a
branched-covering-transformation of p: Xq, —• Xp, that is, a homeomorphism
a: X* —* X«D such that

(5.1.1)

commutes. Then a preserves orientation and carries building blocks into
building blocks.

Notice that in an unbranched covering space a non-identity covering trans-
formation has no fixed points. But in a branched covering it is not necessarily
so.

We say that X^ has no fixed-point-free symmetry if every non-identity sym-
metry of X<i) has a fixed point.

Notice also that a symmetry a: X<D —> X<D induces maps (again denoted by)
u i l j - t ^ m and a: Y® —> 7<p, and these maps commute with the thinning
map and the canonical projection X® —• Y&.

(5.2) Orient X<j>; this also orients dX&. Let C be a component of dX&. The
pattern along C is simply the finite or doubly infinite sequence of B,(rf)'s one
meets along C while walking in the "positive" direction. Notice that a block
Bj(d) with d > 1 (see the picture in (2.3)), is counted k times in the patterns
along C if C contains k "circular arcs" on B,(rf), that is, the components
dBj(d) - d{Uarms}.

The pattern is finite if and only if C is compact and in that case the number
of terms in the pattern is a multiple of n. We say that the pattern along C
is not periodic if either (1) C is noncompact and the pattern has no finite
period or (2) C is compact, the pattern contains an elements, a e Z>0, and
(in the cyclic order) the pattern has no period strictly less than an.

(5.3) Let B = Bj(d) be a building block of X<p. The neighbors of B are the
building blocks at the end of the paths containing two edges emanating from
B. So, in all B has d(n — 1) neighbors.
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(5.4) THEOREM. Let Y be as in (1.4.1) where all mCs are primes. Let <D < Y
be as in (1.7.1). Assume that (1) each B « B,{m,) in Xq, has a Bj(mj)for each
j / / as a neighbor, and (2) either (a) r = 0 and X® /zos no fixed-point-free
symmetry or (b) the patterns along different components ofdXq, are pairwise
distinct and none is periodic. Then O is maximal.

PROOF. Suppose O < *F < Y, and consider the branched covering q: X® ->
Xy. Suppose Xy contains a branch point. Since m,'s are assumed to be primes
this means that there is a building block B c X® such that B « 5,(m,) and
?(fl) « 5,(1). But then (1) implies that q{X®) = Xr, that is, *¥ = Y.

Now suppose *F ̂  F. Hence 9 is unbranched. Under the condition (2a),
X«p is simply connected. But then q is the universal (in particular regular)
covering of Xy. Since we assumed that X̂> has no fixed-point-free symmetry
it follows that degree q = 1, and O = *F. Under the condition (2b) we see
that tflax* is a homeomorphism. Also clearly q~l(dXy) = dX<t>. So again
degree q — degree q\ox» = 1 and O = *¥. Hence O is maximal.

(5.5) REMARKS. (1) Clearly there are many varieties of sufficient sets of
conditions for maximality in terms of X^s. For instance one may assume
that all but finitely many building blocks of X<D have the property stated in
(1) and then "mess up" the diagram near these finitely many blocks.

(2) If n > 2 or two m,'s > 3 the conditions in (5.4) are easy to ensure.
The condition that X<p has no fixed-point symmetry is ensured if we have a
compact subsurface S c X& satisfying the condition (2.8.1) such that S is
homeomorphic to a closed disk and the pattern of the building blocks in S
does not repeat in X&, or at least the "distances" among its repetitions do not
repeat. Then any symmetry of X* would leave S invariant and would have
a fixed point by Brouwer's theorem.

(3) If n = 2 and some m, = 2 then the direct application of (5.4) produces
only finitely many examples, all of finite index. But excluding the degenerate
case F ss Z2 * Z2 one may first pass to an appropriate 1-cycloidal subgroup in
F and then apply the above considerations. For example let Y = Z2 * Z3, and
let <I>o C F, 4>0 « Z3 * Z3 whose diagram is

(5.5.1)
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Consider O c On whose diagram is

(5.5.2)

Clearly O is a Neumann subgroup of On, and in fact maximal in O. Also
clearly O is a Neumann subgroup of F. As a subgroup F, the diagram of

O is obtained from (5.5.2) by sticking in fi/y on each edge. If we do

this sticking and then replace one —fin)—(3J by —(%) we obtain a new

Neumann subgroup of F which is clearly not contained in On. It would
be also maximal in F. Making the pattern in (5.52) doubly infinite in the
obvious way one obtains a subgroup Oi C On for which dX^l contains two
components both noncompact. This O[ is not Neumann and it is maximal
among nonparabolic subgroups in On and also in F but it is not maximal.
For clearly Oi < *Pi < On, where

(5.5.3)

so Oi is not maximal. On the other hand if Oi < *¥ < On, then q: X*, —• Xy
must be unbranched; see the argument in (5.4). Now X*, is simply connected
so q must be a regular covering. One sees that the only symmetries of X*,
are the obvious "horizontal" translations, and so Xy is compact, that is,
(On: W) < oo. So *F contains parabolic elements. Thus Oi is maximal among
non-parabolic subgroups. On the other hand one may start with a doubly

(?) non-periodic. Theninfinite version of (5.5.2) where the attachment of ( ?

one would obtain a maximal-and-non-parabolic subgroup of O0 which is not

Neumann. By sticking in —(

obtain such subgroups also in F.

somewhere (as described above) one would

https://doi.org/10.1017/S1446788700033085 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033085


[ 18] Geometry of Neumann subgroups 367

References

[ 1 ] J. L. Brenner and R. C. Lyndon, 'Nonparabolic subgroups of the modular group', J. Algebra
77(1982), 311-322.

[2] J. L. Brenner and R. C. Lyndon, 'Permutations and cubic graphs', Pacific J. Math. 104
(1983), 285-315.

[3] J. L. Brenner and R. C. Lyndon, 'Maximal nonparabolic subgroups of the modular group',
Math. Ann. 263(1983), 1-11.

[4] R. S. Kulkarni, 'An extension of a theorem of Kurosh and applications to Fuchsian groups',
Michigan Math. J. 30 (1983), 259-272.

[5] R. S. Kulkarni, 'Geometry of free products', Math. Z. 193 (1986), 613-624.
[6] W. Magnus, 'Rational representations of Fuchsian groups and nonparabolic subgroups of

the modular group', Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. 119 (1973), 179-189.
[7] W. Magnus, Noneuclidean tesselations and their groups, (Academic Press, New York, 1974).
[8] B. H. Neumann, 'Uber ein gruppen-theoretisch-arithmetisches problem', Sitzungsber.

Preuss. Akad. Wiss. Math.-Phys. Kl. 10 (1933).
[9] H. Petersson, 'Uber einen einfachen typus von untergurppen der modulgruppe', Arch. Math.

4(1953), 308-315.
[10-12] W. W. Stothers, 'Subgroups of infinite index in the modular group I—III', Glasgow Math.

J. 20 (1979), 103-114, ibid. 22 (1981), 101-118, ibid. 22 (1981), 119-131.
[13] C. Tretkoff, 'Nonparabolic subgroups of the modular group', Glasgow Math. J. 16 (1975),

90-102.

Department of Mathematics
City University of New York
33 W. 42nd Street
New York, New York 10036-8099
U.S.A.

https://doi.org/10.1017/S1446788700033085 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033085

