
The Journal of Symbolic Logic

Volume 88, Number 4, December 2023

STRUCTURAL HIGHNESS NOTIONS

WESLEY CALVERT , JOHANNA N. Y. FRANKLIN , AND DAN TURETSKY

Abstract. We introduce several highness notions on degrees related to the problem of computing
isomorphisms between structures, provided that isomorphisms exist. We consider variants along axes
of uniformity, inclusion of negative information, and several other problems related to computing
isomorphisms. These other problems include Scott analysis (in the form of back-and-forth relations),
jump hierarchies, and computing descending sequences in linear orders.

§1. Introduction. The concepts of lowness and highness allow us to describe the
power of an oracle. While they were originally established in the context of degree
theory by Soare in the early 1970s [25], they have been generalized to other areas
of computability theory. In this paper, we investigate the application of highness to
computable structure theory.

A set is low in a given setting if using it as an oracle in that context yields results no
different from those obtained by using a computable set as an oracle. For instance,
a set A is low in degree theory if A′ ≡T 0′, and it is low for a particular randomness
notion if it cannot derandomize any random set [9]. Lowness has even been studied
in the context of learning theory [24].

Highness, on the other hand, has been studied in fewer settings. To define a
lowness notion, we only need a relativizable class such as the Δ0

2 sets or the Martin-
Löf random reals. To define a highness notion, we need some kind of maximality as
well. In the case of the Δ0

2 sets, this role is played by 0′; in the case of the Martin-Löf
random reals, we must turn to the idea of highness for pairs of randomness notions
and compare one class to another class containing it [13] since there is no natural
“maximally random” real.

In this paper, we discuss computable structure theory. Lowness was first studied
in this setting by Franklin and Solomon in [11] as lowness for isomorphism: a degree
d is low for isomorphism if, for any two computable structures A and B, the degree
d only computes an isomorphism between A and B if there is already a computable
isomorphism between them.1

The class of degrees that are low for isomorphism defies easy characterization.
No degree comparable to 0′ is low for isomorphism except 0. On the other hand,

Received September 16, 2021.
2020 Mathematics Subject Classification. 03C57, 03D28, 03D45.
Key words and phrases. highness for isomorphism, Scott rank, Harrison orderings, jump hierarchies,

traceability.
1Csima has also introduced the notion of lowness for categoricity [6], though it has not been

investigated in much depth as of yet.

© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic.
0022-4812/23/8804-0018
DOI:10.1017/jsl.2022.35

1692

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://orcid.org/0000-0002-1355-2694
https://orcid.org/0000-0002-7216-1562
www.doi.org/10.1017/jsl.2022.35
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2022.35&domain=pdf
https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1693

every 2-generic degree is [11]. Further work was done on this class by Franklin and
Turetsky [14] and then, once again, Franklin and Solomon [12], but these papers
only suggest that the class is more complicated than had been initially thought.
Nevertheless, it seems to be somewhat robust: Franklin and Turetsky have charac-
terized these degrees as those that are low for paths [15], and Franklin and McNicholl
have characterized them as those that are low for isometric isomorphism [10].

Turning to highness in the context of computable structure theory, we say that a
degree is high for isomorphism if it can compute an isomorphism between any two
isomorphic computable structures.

Definition 1.1. We call a degree d high for isomorphism if for any two computable
structures M and N with M∼= N , there is a d-computable isomorphism from M
to N .

Note that the degree of Kleene’s O is high for isomorphism. Indeed, O can
compute a path through the tree of partial isomorphisms of any two computable
structures for which such a path exists. Thus, in analogy with the Δ0

2 degrees, O is
the maximal object for isomorphism.

For a set X, we will take

OX = {e : {e}X is the graph of a binary relation that well-orders �}

and O = O∅. By standard results described, for instance, in [23], this is equivalent
to the usual definition involving notations for ordinals.

We also define a uniform version of highness for isomorphism in keeping with
uniform versions of other concepts in computable structure theory [7].

Definition 1.2. We call a degree d uniformly high for isomorphism if there is a
D ∈ d and a total computable f such that for any computable structuresMi

∼= Mj ,
the function {f(i, j)}D is an isomorphism fromMi toMj .

The primary focus of this paper is highness for isomorphism, but we also consider
several other structural highness notions. We begin in Section 2 with a discussion
of the types of degrees that are high for isomorphism. In Section 3, we turn to
Scott analysis in an attempt to characterize these degrees further, and in Section 4,
we consider degrees that are high for descending sequences, that is, those that
can compute a descending sequence in any computable ill-founded linear order. In
Section 4.2, we relate these notions to degrees that can compute jump structures on
arbitrary Harrison orders. We then consider a structural equivalent of enumerability,
“reticence,” and the reticent versions of all of the previously considered notions in
Section 5. In Section 6, we make some brief remarks on the relationships between
highness for isomorphism and randomness and genericity, and we conclude the
paper with some open questions in Section 7.

§2. Highness and uniform highness for isomorphism. We begin by noting the
following connection between the degrees that are high for isomorphism and those
that are uniformly high for isomorphism.

Proposition 2.1. If d is high for isomorphism, then d′′ is uniformly high for
isomorphism.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1694 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

Proof. Observe that {e}D being an isomorphism between Mi and Mj is a
Π0

2(D) property of e, i , and j: being total and surjective are Π0
2, and being injective

and being a partial isomorphism are Π0
1. Thus, given i and j,D′′ can iterate through

the es until it finds one giving an isomorphism and then output {e}D . �
Now we turn our attention to establishing a characterization of the degrees that

are (uniformly) high for isomorphism and proceed to some existence results.
We observe that if d is not high for isomorphism, then there is a Π0

1 class of
which it computes no element: the class of isomorphisms between some pair of
isomorphic computable structures.2 This leads to the following definition inspired
by the characterization of a Π0

1 class as the set of paths through some computable
tree.

Definition 2.2. We call a degree d high for paths if for every nonempty Π0
1 class

of functionsP , the degree d computes an element ofP . Similarly, a degree d is called
uniformly high for paths if there is a D ∈ d and a total computable f such that for
every nonempty Π0

1 class of functions Pi , the function {f(i)}D is an element of Pi .
As Σ1

1 classes are uniformly projections of Π0
1 classes in the sense that any Σ1

1 class
can be viewed as the projection on the first coordinate of the set of paths through a
Π0

1 subtree of (��)2, we could replace Π0
1 with Σ1

1 in this definition without changing
the class of degrees described. This gives us the following:

Observation 2.3. If d is (uniformly) high for paths, then it (uniformly) computes
an element of every nonempty Σ1

1 class, and conversely.

This allows us to make use, from time to time, of the following result (described,
for instance, in [23]).

Theorem 2.4 (Gandy Basis Theorem). Every nonempty Σ1
1 class has a member f

such that �f1 = �ck1 .

We now present a characterization of the degrees that are high for isomorphism
in terms of highness for paths; we will need the following notation for the proof.

Notation 2.5. If S,T ⊆ �<� are trees, we define S � T = {(�0, �1) : �0 ∈
S & �1 ∈ T & |�0| = |�1|} and give this a tree structure by (�0, �1) ⊆ (�0, �1) if
�i ⊆ �i for i < 2.

Note that we can identify S � T with a tree in �<� in an effective fashion.

Proposition 2.6. A degree is (uniformly) high for isomorphism if and only if it is
(uniformly) high for paths.

Proof. Suppose that d is (uniformly) high for paths. Given two isomorphic
computable structures, we construct the treeI of partial isomorphisms (to be precise,
nodes in the tree should encode both partial isomorphisms and their inverses), noting
that this tree is uniformly computable in the two structures. Now d computes a path
through I, which is an isomorphism.

The other direction follows from the proof of Theorem 2.18, but we give a
proof here as well. The reader familiar with the interplay between trees and linear

2By a Π0
1 class, we mean a Π0

1 subset of �� .

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1695

orders may recognize that these are substantially the same proof, but as trees are
more general objects than linear orders, this version is somewhat simpler. Let d be
(uniformly) high for isomorphism, and let T be a nonempty Π0

1 class of functions
generated by a computable tree T.

Our proof is based on rank-saturated trees of infinite rank [4, 8]; we will require
the following facts:

(1) There is a computable rank-saturated tree S of infinite rank that has a
computable path. (This follows from the proof of Lemma 1 in [8], beginning
with a Harrison order with a computable descending sequence; such an order
is constructed in the proof of Theorem 2.18.)

(2) Any two computable rank-saturated trees of infinite rank are isomorphic [8,
Proposition 2].

(3) If S is a computable rank-saturated tree of infinite rank and T is any
computable tree with a path, then T � S is a computable rank-saturated tree
of infinite rank [8, Proposition 1].

Then S and T � S are our two computable structures in some appropriate
language. Let f be a computable path through S. Since d can compute an
isomorphism between S and T � S, we have that d can carry f over to a path in
T � S and then project that down to a path in T as required. Furthermore, this
process is uniform in the isomorphism. �

2.1. Relationship between highness for isomorphism and benchmark Turing degrees.
We first note that the degrees that are high for isomorphism are necessarily strong:

Proposition 2.7. If d is high for isomorphism, then d computes every Δ1
1 set.

Proof. If X is Δ1
1, then {X} is a Σ1

1 class, and thus d computes X. �
Another perspective reinforces this insight.

Proposition 2.8. Kleene’s O is arithmetical over any degree high (or uniformly
high) for isomorphism. Furthermore, we have the following:

(1) If d is high for isomorphism, then O is Π0
3(d) and thus d(3) ≥ O.

(2) If d is uniformly high for isomorphism, then O is Σ0
2(d) and thus d(2) ≥ O.

Proof. Note that X = {(i, j) : Mi
∼= Mj} is a Σ1

1-complete set (folklore; see
[20]). However, if d is high for isomorphism with D ∈ d, then (i, j) ∈ X if and only
if ∃e [{e}D : Mi

∼= Mj], and the matrix of the right-hand side is Π0
2(D). Then Σ1

1
sets are Σ0

3(d), making O ∈ Π0
3(d).

If, instead, d is uniformly high for isomorphism as witnessed by D and f, then
we can strip off the opening existential quantifier from the previous argument:
(i, j) ∈ X if and only if {f(i, j)}D : Mi

∼= Mj . In this case, Σ1
1 sets are Π0

2(d),
making O ∈ Σ0

2(d). �
We now progress toward showing the existence of degrees strictly below O which

are high for isomorphism. To this end, we use the following known strengthening of
the Gandy Basis Theorem:

Lemma 2.9 (Folklore; see Exercise 2.5.6 in [5]). IfQ ⊆ �� is a nonempty Σ1
1 class,

there is an X ∈ Q with OX ≤T O. Furthermore, an index for a witnessing Turing
reduction can be uniformly obtained from an index for Q.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1696 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

Proof. Let

R = {(X,f) ∈ Q× (� ∪ {– 1})� : if f(e) = – 1, then {e}X is ill-founded,

and if f(e) = n > – 1, then {e}X ∼= {n}∅}.

Note that R is Σ1
1. In order to show that R is nonempty via the Gandy Basis

Theorem, we fix X ∈ Q with �X1 = �ck1 . Then for every e such that {e}X is well
founded, there is an n with {e}X ∼= {n}∅, so we define f(e) = n for such an n. For
e such that {e}X is ill founded, we define f(e) = – 1. Then (X,f) ∈ R.

AsR is a nonempty Σ1
1 class, there is some (X,f) ∈ R computable fromO. Then

e ∈ OX if and only if – 1 < f(e) ∈ O, and so OX ≤T O. Furthermore, the process
for constructing the Turing reduction is uniform from an index for Q. �

Since there is a Turing functional Φ with ΦOX = X for all X, we immediately
get X ≤T O uniformly for the X of the above lemma. This also follows from the
construction.

Note that our construction relativizes to provide the following:

Lemma 2.10. For any oracle A, if Q is a non-empty Σ1
1(A) class, there is an X ∈

Q with X ≤T OA and OA,X ≤T OA, and indices for these reductions can be found
uniformly from an index for Q independently of A.

We will also need some basic results about pointed perfect trees.

Definition 2.11. A pointed perfect tree is a function f : 2<� → 2<� such that
� ⊆ � if and only if f(�) ⊆ f(�) and such that for every X ∈ 2� , we have that
f(X) =

⋃
n f(X�n) computes f.

A uniformly pointed perfect tree is a pointed perfect tree f such that there is a
Turing functional Φ with Φf(X) = f for all X ∈ 2� .

If f is a pointed perfect tree and Y ∈ 2� , we define g = f ⊕ Y by

g(�) = f(� ⊕ Y�|�|),

and if f and g are pointed perfect trees, we define g ≤ f if range(g) ⊆ range(f).

Some explanation may be in order on the terminology. The literal “tree” in
question is the downward closure of the range of the function f, and under the
conditions described, this tree is, in fact, perfect in the sense that there is splitting
beyond any finite node. In several older papers the authors have consulted that use
this terminology, there seems to be no clear explanation of why the term “pointed”
has the meaning it is given here.

Lemma 2.12. If f is a (uniformly) pointed perfect tree, then the following hold:

(1) For any Y ∈ 2� , g = f ⊕ Y is a (uniformly) pointed perfect tree,
(2) Y ≤T g(X) for every X ∈ 2� , and
(3) Y ≤T g.

Proof. Certainly g is a function with the necessary extension condition. It
remains in point 1 to show the (uniform) computability of g from each g(X).
For any X, we have g(X) = f(X ⊕ Y), so g(X) computes f by assumption. The
pair (g(X), f) = (f(X ⊕ Y), f) computes X ⊕ Y and so computes Y, and (f,Y)

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1697

computes g. Since g computes g(0∞), it follows that Y ≤T g. All of this is uniform
if the reduction from f(X ⊕ Y) to f is. �

Note that the formula that says “f is a uniformly pointed perfect tree” is arithmetic
(the argument relies on the compactness of 2�). Note also that if f is a pointed
perfect tree, |f(�)| ≥ |�| for all �.

We are now ready to construct a high for isomorphism degree strictly below O.
Our proof is inspired by Jockusch and Simpson’s construction in [21] of a minimal
upper bound for Δ1

1 with a triple jump computable fromO, although we use strongly
hyperlow trees (i.e., trees f such that Of ≤T O) rather than their Δ1

1 trees.

Proposition 2.13. There is a degree d which is high for isomorphism with d(3) = O.

Proof. For a set X, we take X (3) = {e : ∃m [�z.{e}X (m, z) is total]}.
We build an O-computable sequence of uniformly pointed perfect trees f0 ≥

f1 ≥ ··· where Ofi ≤T O for each i (and the sequence of indices for the reductions
is computable in O). We alternate between working to force the triple jump and
coding the next required isomorphism.

We begin by setting f0 to be the identity: f0(�) = �.
Suppose we have defined fn with n = 2〈e, 0〉. Consider the class

Ue = {g : g is a uniformly pointed perfect tree & g ≤ fn
& ∃m [�z.{e}g(X)(m, z) is total for every X ∈ 2�]}.

This is arithmetic relative to fn (again, this relies on compactness) and thus is a
Σ1

1(fn) class. Thus Ofn can decide whether Ue is empty, and since Ofn ≤T O, so
can O.

If Ue is nonempty, there is a g ∈ Ue with Og ≤T Ofn ≤T O, and indices for the
relevant reductions can be obtained effectively. We thus let fn+1 = g, and we have
now forced e into the triple jump. By replacing g with ��.g(0n̂�), we may assume
that |fn+1(〈〉)| > n.

If Ue is empty, we let fn+1 = fn (again, adjusting to ensure |fn+1(〈〉)| > n). By
our actions at steps 2〈e,m + 1〉 for m ∈ �, we will force e out of the triple jump.

Now suppose instead that we have defined fn with n = 2〈e,m + 1〉. If Ue was
nonempty at step 2〈e, 0〉, then the triple jump is already forced at e, so we let
fn+1 = fn.

IfUe was empty at step 2〈e, 0〉, we know there are � and z such that {e}fn(�)(m, z)↑
for every � ⊇ �: if this were not the case, we could define an h as follows for a
contradiction.

• Let h(〈〉) = � for the first string � discovered with {e}fn(�)(m, 0)↓.
• For� ∈ 2<� and i < 2, leth(�̂i) = � for the first string� ⊇ h(�)̂i discovered

with {e}fn(�)(m, |�|+ 1)↓.
By assumption, h is total. Now we let g = fn ◦ h. Note that h ≤T fn, so g ≤T fn,
and for every X, g(X) = f(h(X)). Thus g is a uniformly pointed perfect tree, and
g ≤ fn ≤ f2〈e,0〉. Also, �z.{e}g(X)(m, z) is total for all X, and so g ∈ Ue contrary
to assumption. Therefore, there must be such a � and z. The set of such pairs (�, z)
is arithmetical in fn, and so Ofn ≤T O can uniformly find such a pair.

We define fn+1(�) = fn(�̂�). So {e}fn+1(X)(m, z)↑ for every X ∈ 2� , and we
have taken another step towards forcing the triple jump at e.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1698 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

Suppose instead we have defined fn with n = 2〈k,m〉+ 1. We will choose fn+1

able to compute an isomorphism between Mk and Mm if such an isomorphism
exists. Consider Vn = {r ∈ �� | r : Mk

∼= Mm}. This is a Σ1
1 class, and O can

therefore determine whether it is empty.
IfVn is empty, we definefn+1 = fn. IfVn is nonempty, then we note thatVn is also

a Σ1
1(fn) class. This means that there is an r ∈ Vn with Or,fn ≤T Ofn ≤T O, and

relevant indices can be obtained effectively. Let R be a set coding r in some effective
fashion, and let fn+1 = fn ⊕R. Then fn+1 ≤T (fn,R), and so Ofn+1 ≤T O.

By construction, |fn+1(〈〉)| > n for every n = 2〈e, 0〉. We let

D =
⋃

n=2〈e,0〉
fn+1(〈〉).

Then for every n, D = fn(X) for some X, so ifMk
∼= Mm, we can let n = 2〈k,m〉.

Furthermore, for the r chosen at step n, we have

r ≡T R ≤T fn ⊕R = fn+1 ≤T D,

and thus D computes an isomorphism betweenMk andMm.
Furthermore, e ∈ D(3) precisely when Ue is nonempty by construction. Since the

construction is O-computable, D(3) ≤T O. By Proposition 2.8, d = deg(D) is the
desired degree. �

From this result, combined with Proposition 2.1, we immediately obtain the
following.

Corollary 2.14. There is a degree d which is uniformly high for isomorphism with
d′ = O.

It is worthwhile to contrast the state of our knowledge for the jumps of degrees
high for isomorphism with those uniformly high for isomorphism. Certainly both
classes are closed upwards in the Turing degrees. Proposition 2.8 tells us that a
degree high for isomorphism is at most three jumps below O, and we have an
example showing that this is tight. On the other hand, the same proposition tells us
that a degree uniformly high for isomorphism is at most two jumps below O, but
the best example we have is only one jump below O. We can, at least, rule out one
nonexample.

Proposition 2.15. If d is high for isomorphism with d(3) = O, then d′ is not
uniformly high for isomorphism.

Proof. If d′ were uniformly high for isomorphism, then by Proposition 2.8, O
would be Σ0

2(d′) and thus Σ0
3(d). As d is high for isomorphism,O is Π0

3(d), and soO
would be Δ0

3(d), contradicting d(3) = O. �

It is perhaps natural to wonder whether O is the only bound of all degrees below
O which are high for isomorphism. We might also ask whether there is a least degree
which is high for isomorphism. The next result resolves these questions.

Proposition 2.16. There exist degrees d1 and d2, each uniformly high for isomor-
phism, with di �T O such that d1 ⊕ d2 ≡T O, and any d ≤T d1, d2 is hyperarithmetic.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1699

Proof. We will construct, effectively in O, two degrees d1 and d2, each of which
enumerates � – O, and such that d1 ⊕ d2 ≡T O. By Theorem 5.2, these degrees will
be uniformly high for isomorphism.

Let 〈·, ·〉 be a bijection of �2 with � – {2k : k ∈ �}. We first define an operator
R on 2<� by setting R(�) to be the set of n such that there is k with �(〈k, n〉) = 1,
and we set �1,0 = �2,0 = ∅. We will maintain that R(�1,s), R(�2,s) ⊂ � – O, and we
will arrange that

⋃
s R(�1,s) =

⋃
s R(�2,s) = � – O.

At stage 5s , we search, using oracleO, for some � ∈ 2<� extending �1,5s such that
ϕ�s (s)↓ andR(�) ∩ O = ∅. If such a � exists (a Σ1

1 condition), we set �1,5s+1 = � and
�2,5s+1 = �2,5s ∪ {(2k5s , 1)} for the least k5s > |�2,5s |. Otherwise, we set �1,5s+1 = �1,5s
and �2,5s+1 = �2,5s ∪ {(2k5s , 0)}. At stage 5s + 1, we act similarly, exchanging the
roles of �1 and �2.

At stage 5s + 2, we let n5s+1 be the least such that

n5s+1 ∈ (� – O) ∩ (� – R (�1,5s+2))

and find the least k5s+2 such that 〈k5s+2, n5s+1〉 > |�1,5s+2|. We set

�1,5s+3 = �1,5s+2 ∪ {(〈k5s+1, n5s+1〉, 1)}
and �2,5s+3 = �2,5s+2. At stage 5s + 3, we act similarly, again exchanging the roles of
�1 and �2.

At stage 5s + 4, we let s = 〈e1, e2〉. Fix the least k1 > |�1,5s+4| and k2 > |�2,5s+4|.
We search, using oracle O, for some �1 extending �1,5s+4 and �2 extending �2,5s+4

with �1(2k1) = �2(2k2) = 1 and R(�1) ∩ O = R(�2) ∩ O = ∅ and some m with
Φ�1
e1 (m)↓�= Φ�2

e2 (m)↓. If such �1 and �2 exist (a Σ1
1 condition), we set �1,5s+5 = �1

and �2,5s+5 = �2.
If no such pair exists, we instead search for a split above just �1,5s+4. If there

are strings �1, �2 both extending �1,5s+4 with �1(2k1) = �2(2k1) = 1 and R(�1) ∩ O =
R(�2) ∩ O = ∅ and some m with Φ�1e1(m)↓�= Φ�2e1(m)↓, then we let

�1,5s+5 = �1,5s+4 ∪ {(2k1 , 0)}
and

�2,5s+5 = �2,5s+4 ∪ {2k2 , 1)}.

Otherwise, we let �1,5s+5 = �1,5s+4 ∪ {(2k1 , 1)} and �2,5s+5 = �2,5s+4 ∪ {(2k2 , 0)}.
We now let Di =

⋃
s∈�
�i,s for each i. We note that, by construction, each Di

enumerates (� – O) and is computable from O; indeed, O can compute D′
i , since

when we find at stage 5s that there is no � which both forces convergence and
maintains disjointness fromO, we commit to never allowing ϕDis (s) to converge. By
a standard argument, D1 ⊕D2 can compute the sequence (�1,s , �2,s)s∈� . Thus the
join can compute O, as n ∈ O if and only if n �∈ R(�1,5(n+1)).

Finally, we argue that if X ≤T D1, D2, then X is hyperarithmetic. Fix s = 〈e1, e2〉
with X = ΦD1

e1 = ΦD2
e2 . Then we must not have found the desired strings �1, �2 at

stage 5s + 4. Suppose we found the subsequent strings �1, �2 and the corresponding
m instead. Then D2(2k2) = 1 and ΦD2

e2 (m)↓, so there is some initial segment of
D2 witnessing this convergence and extending �2,5s+4. There is some j such that
Φ
�j
e1 (m) �= ΦD2

e2 (m), which gives us a pair �1, �2, contrary to the above.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1700 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

So we did not find �1 and �2, meaning that D1(2k1) = 1. Thus, for any m and any
� extending �1,5s+4 with �(2k1) = 1 and R(�) ∩ O = ∅, we have

Φ�e1(m)↓⇒ Φ�e1(m) = ΦD1
e1 (m) = X (m).

Thus X (m) = 1 if and only if there is such a � with Φ�e1(m) = 1, and X (m) = 0 if
and only if there is such a � with Φe1 = �(m) = 0. These are both Σ1

1 conditions, so
X is Δ1

1. �

2.2. High for a restricted class of isomorphisms. In the definition of highness for
isomorphism, we considered isomorphisms between any two computable structures.
We will now restrict our attention to isomorphisms of a particular class of
computable structures, namely presentations of the Harrison order �ck1 (1 + Q);
a similar analysis was done in the context of lowness for isomorphism by Suggs [26].

Definition 2.17. A degree d is high for isomorphism for Harrison orders if d
computes an isomorphism between any two computable linear orders of order type
�ck1 (1 + Q). We define uniformly high for isomorphism for Harrison orders in the
natural way.

Our goal is to show that this is the same class of degrees previously considered and
thus that Harrison orders are universal in the context of highness for isomorphism
(i.e., restricting attention from all structures to Harrison orders gives no loss of
generality), much as, e.g., computable Polish spaces are in the context of lowness
for isomorphism [10].

Theorem 2.18. The degrees which are (uniformly) high for isomorphism for
Harrison orders are precisely the degrees which are (uniformly) high for isomorphism.

We begin with the following lemma, recalling Notation 2.5.

Lemma 2.19. S � T has an infinite path if and only if both S and T do. Moreover, if
S and T are computable, then a path through S � T uniformly computes paths through
S and T, and the join of a path through S with a path through T uniformly computes a
path through S � T .

Proof. A sequence ((�i0, �
i
1))i∈� is a path through S � T if and only if (�i0)i∈� is

a path through S and (�i1)i∈� is a path through T. �
Proof of Theorem 2.18. The backwards direction is immediate. For the other

direction, we will show that (uniform) highness for isomorphism for Harrison
orders implies (uniform) highness for paths. Specifically, given a computable tree
T generating a Π0

1 class, we will uniformly exhibit a pair of computable linear
orders such that if [T] is nonempty, then the linear orders are both of order type
�ck1 (1 + Q), and we will give a uniform process to compute an element of [T] from
an isomorphism between the orders. This will suffice to establish the result.

First, we fix a Harrison order H, i.e., a computable linear order of order type
�ck1 (1 + Q) with no descending hyperarithmetic sequence. Let L = H(1 + Q). Note
that L ∼= H: it is easy to see that (1 + Q)(1 + Q) has a least element and is otherwise
a countable dense linear order without endpoints, whence (1 + Q)(1 + Q) ∼= 1 + Q;
and multiplication of linear orders is associative. Furthermore, there is a computable

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1701

embedding
 : Q ↪→ L: fix some h ∈ H, and define
(q) = (h, q). Let S be the tree of
finite descending sequences inH.

Now fix a computable tree T.

Claim 2.20. If T has an infinite path, then KB(S � T), the Kleene–Brouwer
ordering on S � T , has order type �ck1 (1 + Q) + 1, where the final element is 〈〉, the
root of S � T .

Proof of claim. We fix n ∈ � extendable to an infinite path through T and
note that KB(S � T) ∼=

(∑
i∈� Li

)
+ 1, where Li is the Kleene–Brouwer ordering

of the subtree extending the ith child of the root. As none of these subtrees have
a hyperarithmetic path, each Li is either well founded or has order type �ck1 (1 +
Q) + α for some (possibly empty) well order α. To establish the claim, it suffices
to show that there are infinitely many i such that Li is ill founded. However, each i
corresponding to a pair (a, n) with a in the ill-founded part of H is extendible to a
path through S � T , and so such an Li is ill founded. As there are infinitely many
such a, the claim follows. �

Note that S has the property that if � ∈ S is extendible to an infinite path, then
� has infinitely many immediate children in S. It follows that S � T has the same
property.

Let K be the order made from KB(S � T) by removing the root 〈〉. Then L and
K are our two orders of order type �ck1 (1 + Q). Observe that if � ∈ S � T , then
{� ∈ S � T : � ⊃ �} is a computable, convex set in K.

Suppose now that f : L ∼= K. We recursively construct a sequence (�n)n∈� of
elements of S � T with �n ⊂ �n+1 and maintain the inductive assumption that f ◦

maps a nontrivial interval of Q into {� ∈ S � T : � ⊃ �n} (and thus that this interval
of K is ill founded, and so �n is extendible to a path through S � T). We begin with
�0 = 〈〉.

Suppose we have defined �n. Then we let (αm)m∈� enumerate the immediate
children of �n. Observe that

⊔
m{� ∈ S � T : � ⊇ αm} partitions {� ∈ S � T : � ⊃

�n}, each component of the partition is convex in the ordering of K, and the
components are arranged with order type � (in the ordering of K). So there
must be rationals q0 < q1 and an m withf(
(q0)), f(
(q1)) ∈ {� ∈ S � T : � ⊇ αm}.
We search for such an m and define �n+1 = αm. Now, we can observe that
{� ∈ S � T : � ⊃ �n+1} contains the open interval from f(
(q0)) to f(
(q1)), and so
the inductive assumption is maintained.

Thus f uniformly computes (�n)n∈� , which is a path through S � T , and therefore
it gives a path through T. This completes the proof. �

§3. Scott analysis. As we consider our intuition for what might make a degree
high for isomorphism, we naturally look to the possibility of back-and-forth
arguments: the reason that the countable dense linear order without endpoints
is computably categorical is that we can computably find the necessary extensions
for a partial isomorphism.

A sweeping generalization of this condition is given by the so-called back-and-
forth relations.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1702 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

Definition 3.1. LetA and B be structures, and let ā and b̄ be finite tuples of the
same length in A and B, respectively. We then define the following relations:

(1) We say that (A, ā) ≤1 (B, b̄) if and only if every finitary Σ1 formula true of b̄
in B is true of ā in A.

(2) For α > 1, we say that (A, ā) ≤α (B, b̄) if and only if for every finite d̄ ⊆ B
and every < α there is some finite c̄ ⊆ A such that (B, b̄d̄) ≤ (A, āc̄).

In some cases—for instance, the countable dense linear order without endpoints—
these are easy to compute. In general, they are not. For instance, among computable
ordinals, these relations specify the place of each element of ā in its copy of �α for
some appropriate α. These relations are discussed in detail in [1, 3].

It is reasonable to hope that the degrees which are uniformly high for isomorphism
would be exactly those degrees which can uniformly compute all of these relations.
Although this does not turn out to be true, we believe the concept is interesting and
that the separation gives important information about both classes.

Definition 3.2. We say that a degree d is Scott complete if and only if there is an
algorithm which, given indices for a computable structure A and a Harrison order
H, will give an index for a d-computable function b : (A<�)2 ×H → {0, 1} with the
following properties (we abbreviate b(ā, b̄, x) = 1 by ā ≤x b̄):

(1) If 1 is the least element of H, then ā ≤1 b̄ if and only if every finitary Σ1

formula true of b̄ is true of ā.
(2) If x ∈ H is not the least element, then ā ≤x b̄ if and only if for every finite
d̄ ⊆ A and every y < x there is some finite c̄ ⊆ A such that b̄d̄ ≤y āc̄.

While we do not explicitly name the uniformity in this definition (having nothing
to say at this point about a nonuniform variant), it is germane to note that the
notion of Scott completeness belongs to the family of “uniform” highness notions we
explore in this paper. Since we know that no degree can be both high for isomorphism
and low for �ck1 , the following result separates the two classes.

Proposition 3.3. There is a degree which is Scott complete and low for �ck1 .

Proof. The two conditions of Definition 3.2 can be applied in the context of any
linear order L. Moreover, for any structure A and any linear order L, there always
exists a sequence (≤x : x ∈ L) satisfying these conditions, since we can always take
the standard back-and-forth relations for the greatest well-founded initial segment
of L, and equality thereafter.

Now consider the set S of all triples (e, i, b) where e is the index for a computable
structure, i is the index for a linear order, and b is a function satisfying the conditions
of Definition 3.2. The set of selectors � : N2 → 2� such that for every (e, i) we have
(e, i, �(e, i)) ∈ S is now a Σ1

1 class. By the Gandy Basis Theorem, this class has an
element which is low for �ck1 . �

The key difference is that a sequence (≤x : x ∈ L) always exists for any structure
A and any linear order L. In contrast, Σ1

1 classes do not always have elements, and
pairs of structures do not always have isomorphisms between them.

As the proof shows, Scott completeness follows from computing an element of a
particular Σ1

1 class, and thus by Proposition 2.6, highness for isomorphism implies

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1703

Scott completeness. We will find, however, that combining Scott completeness with
an additional property gives a characterization of the degrees that are high for
isomorphism (Theorem 4.48).

§4. Computing descending sequences. Now we consider the task of finding
descending sequences in linear orders. The reader familiar with the theory of
computable ordinals and the Kleene–Brouwer ordering may expect this to be the
same as the task of finding paths through trees and thus the same as that of finding
isomorphisms, but this turns out not to be the case.

Definition 4.1. IfL is a linear order, a tight descending sequence in L is an infinite
descending sequence which is unbounded below in the ill-founded part of L, i.e., if
f is a tight descending sequence and g is any descending sequence, then for every n
there is an m with f(m) <L g(n).

Definition 4.2. A degree d is high for (tight) descending sequences if any
computable ill-founded linear order L has a d-computable (tight) descending
sequence.

Degrees that are uniformly high for (tight) descending sequences are defined
analogously.

As the descending sequences through a computable linear order form a Π0
1 class,

it follows by Proposition 2.6 that (uniform) highness for isomorphism implies
(uniform) highness for descending sequences. We will show that this implication is
strict. As the set of indices for computable ill-founded linear orders is Σ1

1-complete,
Proposition 2.8 holds for (uniform) highness for descending sequences in place of
(uniform) highness for isomorphism, so the separation will not follow from a simple
jump analysis. In the nonuniform case, the separation turns out to be related to the
question of exactly which degrees can be coded into the descending sequences of a
linear order; we begin by introducing some notation.

Notation 4.3. For � a nonempty finite sequence, let l(�) = �(|�| – 1) be the last
element of �.

For � = (�0, ... , �n–1) a collection of finite sequences, write l(�, i) for l(�i).
For a linear order L, letW (L) denote the (possibly empty) greatest well-founded

initial segment.

Lemma 4.4. If L is an infinite computable linear order, then either L has a
computable descending sequence or it has a 0′-computable ascending sequence.

Proof. Suppose L has no computable descending sequence. Then L must have
a least element, as otherwise we can construct a computable descending sequence
(an)n∈� by setting a0 to be any element and then, given an, searching for an element
less thanan to getan+1. For anx ∈ L that is not the greatest element ofL, by applying
the same argument to {y ∈ L : x <L y}, we see that x must have an immediate
successor. Let z be the least element of L, and for x ∈ L not the greatest element,
let s(x) be its immediate successor. Then z, s(z), s(s(z)), ... is a 0′-computable
ascending sequence. �

It is not hard to construct an ill-founded computable linear order such that
every descending sequence computes ∅′. Similarly, one can construct n ill-founded

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1704 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

computable linear orders such that every degree computing a descending sequence
through each of them computes ∅(n). This turns out to be the best that is possible.

Proposition 4.5. If L0, ... ,Ln–1 are computable ill-founded linear orders and
X �∈ Δ0

n+1, then there are descending sequences f0, ... , fn–1 through L0, ... ,Ln–1,
respectively, such that X �≤T f0 ⊕ ··· ⊕ fn–1.

Proof. The proof proceeds by induction on n.
First, suppose there is k > 0 such that at least k of the linear orders have a

descending 0(k)-computable sequence. If k = n, the theorem follows. Otherwise,
without loss of generality,Ln–k, ... ,Ln–1 have descending 0(k)-computable sequences
fn–k, ... , fn–1. Then, as X �∈ Δ0

n–k+1(0(k)), by the inductive hypothesis relative to
0(k) there are descending sequences f0, ... , fn–k–1 through L0, ... ,Ln–k–1 such that
X �≤T f0 ⊕ ··· ⊕ fn–k–1 ⊕ 0(k), and thus X �≤T f0 ⊕ ··· ⊕ fn–1.

Now suppose there is no such k. We use forcing in which a condition is a tuple
(�0, ... , �n–1) such that for i < n, �i is a finite descending sequence through Li , and
if �i is nonempty, l(�i) �∈W (Li). We say that (�0, ... , �n–1) extends (�0, ... , �n–1) if
each �i extends �i . Note that in general the set of conditions is properly Σ1

1. Clearly,
a sufficiently generic filter for this notion of forcing gives a tuple (f0, ... , fn–1) such
that fi is an infinite descending sequence through Li for i < n. We will show that a
sufficiently generic filter gives f0 ⊕ ··· ⊕ fn–1 �≥T X .

For Φ a functional and � = (�0, ... , �n–1), we will write Φ� for Φ�0⊕···⊕�n–1 .
Suppose � is a condition and Φ is a Turing functional. We must show that � has

an extension � with � � [Φf0⊕···⊕fn–1 �= X]. If there is an extension � and an m with
Φ�(m)↓�= X (m), then we are done, and if there is an m and a � � � such that for all
� � �, Φ�(m)↑, then we are also done. Now let us suppose towards a contradiction
that neither of these hold.

Denote by Si the set of finite descending sequences in Li . Let

D =

{
(α0, ... , αn–1) ∈

n–1∏
i=0

Si : αi ⊇ �i

}
;

D is certainly computable. We will use α, , �, � for elements of D, in contrast with
�, �, � for conditions, and as before, we will write Φα for Φα0⊕···⊕αn–1 .

For α, ∈ D, we write α � if l(α, i) ≤Li l(, i) for all i < n; we further write
α⊥ if α �� , �� α, and, for each i < n, l(α, i) �= l(, i). We define extension on
D in the natural fashion.

We construct uniformly Σ0
1(0′) sets (Ak)k∈� , each a subset of D, as follows.

• A0 = {�}.
• If we see α ∈ D satisfying the following:

– α extends some element of Ak ;
– Φα(k)↓;
– There are no ,

′ ∈ D and m ∈ � with α � , α � ′ and Φ(m)↓�=
Φ

′
(m)↓; and

– α⊥� for every � already enumerated into Ak+1;
then we enumerate α into Ak+1.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1705

Claim 4.6. For every k and α ∈ Ak , for some i < n, l(α, i) �∈W (Li).

Proof. Suppose not and fix an α for which this fails. Then for every condition
�, α � �. Observe that

X (m) = b ⇐⇒ ∃ ∈ D [(α �) ∧Φ(m) = b].

This holds because if X (m) = b, then by assumption on �, a condition � � � with
Φ�(m) = b exists, and this is our witnessing . Then the existence of the � forX (m)
and α ∈ Ak implies there cannot exist a witnessing

′
for b �= X (m).

Thus X is computable, contrary to assumption. �

Claim 4.7. If Am is finite for every m ≤ k, then Ak contains a condition (and in
particular, Ak �= ∅).

Proof. We proceed by induction on k. The result for k = 0 is immediate.
Now consider the inductive case k + 1. By the inductive hypothesis, we can fix

a condition α = (α0, ... , αn–1) ∈ Ak . As |Ak+1| is finite, we fix bi <Li l(α, i) for
each i < n such that for every � ∈ Ak+1, if l(�, i) �∈W (Li), then bi <Li l(�, i). Let
α′ = (α0̂b0, ... , αn–1̂bn–1). We can see thatα′ is a condition. By the previous claim,
� �� α for any � ∈ Ak+1.

By our assumption on �, there is a condition � � α′ with Φ�(k + 1)↓. There
cannot be ,

′ ∈ D andm ∈ � blocking �’s enumeration into Ak+1, as both would
be conditions extending �, and one of them would force Φf0⊕···⊕fn–1(m)↓�= X (m)
contrary to assumption on �.

Eventually we will locate �. As l(�, i) ≤Li bi for i < n, it cannot be that there is
a � ∈ Ak+1 such that � � �. Thus if there is � ∈ Ak+1 such that ¬(�⊥�), it must be
that � � �, and thus � is a condition, so � is the desired element of Ak+1. Otherwise,
� will be enumerated into Ak+1 and � is the desired element of Ak+1. �

Note that if n = 1, then the α⊥� condition on Ak+1 implies each Ak+1 is
a singleton. It follows that, contrary to assumption, L0 has a 0′-computable
descending sequence. Henceforth, we assume n > 1.

Claim 4.8. There is a k such that Ak is infinite.

Proof. Suppose not and consider the tree T of finite sequences � such that for all
k < |�|, �(k) ∈ Ak , and for k < |�| – 1, the sequence �(k + 1) extends �(k). Note
that a path through T gives a tuple (g0, ... , gn–1) such that gi is a descending sequence
through Li extending �i for i < n and such that Φg0⊕···⊕gn–1 = X is total. Also, as
the Aks are finite and uniformly Σ0

2, the class [T] is effectively compact relative to
0′′. Thus X ∈ Δ0

3 contrary to assumption. �

Now we can fix k such that Ak is infinite. For i < n, let Bi = {l(α, i) : α ∈ Ak}.
Note that for α, α′ ∈ Ak , since α⊥α′, we have that l(α, i) �= l(α′, i) for all i < n.
Thus each Bi is infinite. Furthermore, each Bi is Σ0

2.

Claim 4.9. Each of the Lis has a 0(n)-computable descending sequence, contrary
to assumption.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1706 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

Proof. Fix i and define a sequence c0, ... , cn–1 enumerating {0, ... , n – 1} as
follows:

• cn–1 = i ;
• Having defined cj+1, ... , cn–1, by assumption there is

r ∈ {0, ... , n – 1} \ {cj+1, ... , cn–1}

such thatLr has no 0(j+1)-computable descending sequence. Let cj be such an r.

We now recursively build a sequence of injective functions hj : � → Ak and sets
Cj ⊆ Bcj for j < n – 1 such that hj is 0(j+2)-computable andCj is Σ0

j+2 and infinite.
We construct them as follows:

• C0 = Bc0 .
• For j < n – 1, given Cj ⊆ Bcj ⊆ Lcj , give Cj the ordering induced by Lcj .

Then Cj is 0(j+1)-computably isomorphic to a 0(j+1)-computable linear order.
By Lemma 4.4 relative to 0(j+1) and the fact thatLcj has no 0(j+1)-computable

descending sequence, there is some 0(j+2)-computable ascending sequence
through Cj . Each element of this sequence comes from some unique α ∈ Ak ,
so let hj list these elements of α in the order given by the ascending sequence.
That is, the ascending sequence is

l(hj(0), cj) <Lcj l(hj(1), cj) <Lcj ··· .

• For j < n – 2, given hj , let

Cj+1 = {l(hj(m), cj+1) : m ∈ �}.
As hj is injective and distinct elements of Ak give distinct elements of Bcj+1 ,
Cj+1 is infinite.

We observe that for j < n – 1, range(hj+1) ⊆ range(hj). Thus, there is some injective
g : � → � such that hj+1 = hj ◦ g. By thinning the ascending sequence which gives
rise to hj+1, we may assume that g is ascending. This can be done without affecting
the complexity of hj+1.

It follows that for all m0 < m1 and j < n – 1, we have

l(hn–2(m0), cj) <Lcj l(hn–2(m1), cj).

As hn–2(m0)⊥hn–2(m1), it must be true that

l(hn–2(m0), i) >Li l(hn–2(m1), i).

As hn–2 is 0(n)-computable, this is a 0(n)-computable descending sequence in Li . �
This completes the proof of Proposition 4.5. �
Lemma 4.10. If L is a computable ill-founded linear order with no arithmetic tight

descending sequences, then for every n there is an a ∈ L \W (L) such that {z ∈ L :
z <L a} has no Δ0

n descending sequences.

Proof. Suppose not, and fix an n for which this fails. Then

L \W (L) = {a : a bounds a Δ0
n descending sequence}

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1707

is arithmetic, and as it has no least element, there is an arithmetic tight descending
sequence in L. �

Porism 4.11. If L0, ... ,Ln are ill-founded linear orders without arithmetic tight
descending sequences and X is not arithmetic, then a sufficiently generic filter for the
forcing notion described in the proof of Proposition 4.5 will give tight descending
sequences through the Li such that the join of these sequences does not compute X.

Proof. Clearly a sufficiently generic filter gives a tight descending sequence.
Given a condition � and a functional Φ, we may first extend � such that each
l(�, i) bounds no Δ0

n+1 descending sequence in Li . By the arguments given, � can
be extended to a � such that � � Φf0⊕···⊕fn–1 �= X . �

Proposition 4.5 demonstrates the limit of what can be coded into the descending
sequences of finitely many linear orders. We consider the result to be of independent
interest, but the proof also serves as an opportunity to develop the tools we will
need to show a similar result for degrees that are high for descending sequences in
Theorem 4.12.

4.1. Degrees that are high for descending sequences.

Theorem 4.12. If X is not arithmetical, there is a degree that is high for tight
descending sequences and does not compute X.

Proof. Let {Le : e ∈ �} be a listing of the computable ill-founded linear orders
without arithmetic tight descending sequences. This cannot be an effective listing,
but its true complexity will not be relevant. We will construct a degree above ∅(m)

for every m ∈ �, and thus so long as it also computes a tight descending sequence
in each Le , it will be high for tight descending sequences.

We construct our degree via forcing. Here, a condition is a pair (�0, �1) satisfying
the following:

• �0 : �2 → � and �1 : � → � × {0, 1} are finite partial functions; and
• If �1(n) = (e, 0), then � = �x.�0(n, x) is a finite descending sequence inLe that

is extendible to an infinite descending sequence.

A condition �′ = (�′0, �
′
1) extends � = (�0, �1) if the following hold:

• �′0 extends �0 and �′1 extends �1;
• If �1(n) = (m, 1), then for � = �x.�0(n, x) and �′ = �x.�′0(n, x), we have
�′(x) = ∅(m)(x) for all x ∈ dom(�′) \ dom(�).

Given a filter F for this notion of forcing, we let f =
⋃

(�0,�1)∈F
�0. If F is sufficiently

generic, then for every m there is an n and a (�0, �1) ∈ F with �1(n) = (m, 1), and for
this n, �x.f(n, x) =∗ ∅(m). Thus, f will bound every arithmetic set. Furthermore,
if F is sufficiently generic, then for every e there is an n and a (�0, �1) ∈ F with
�1(n) = (e, 0). For this n, �x.f(n, x) will be a tight descending sequence through
Le . It follows that f is high for descending sequences.

Suppose we have a condition � and a Turing functional Φ. We wish to argue that
� can be extended to force Φf �= X . Let m = max

{
m′ : ∃n ∈ dom(�1)

[
�1(n) =

(m′, 1)
]}

. Let E =
{
e : ∃n ∈ dom(�1)

[
�1(n) = (e, 0)

]}
. Then any � extending � is

committed to writing sets =∗ ∅(m′) for somem′ ≤ m on some finitely many columns

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1708 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

of �0 and to writing descending sequences through Le for e ∈ E on other columns
of �0, but is unconstrained on the remaining columns of �0.

Let n = |E|. By Lemma 4.10, we may first extend the descending sequences coded
in �1 such that none of them can be extended to Δ0

n+m+1 descending sequences. Now,
working relative to ∅(m), the main argument in the proof of Theorem 4.5 shows that
we can extend to such a � (we are in the “no such k” case in the proof of that
theorem).

Thus for a sufficiently generic filter, Φf �= X , and the degree of f is our desired
degree. �

This stands in contrast with the high for isomorphism degrees, which compute all
Δ1

1 sets (Proposition 2.7).

Corollary 4.13. There is a degree which is high for tight descending sequences
but not high for isomorphism.

Of course, the above result is heavily nonuniform. We now turn our attention to
the uniform case, where we will show that we can separate the uniform and non-
uniform notions, but not merely by looking at computation of hyperarithmetical
degrees. Toward this end, we begin with the following technical result.

Lemma 4.14. Fix (Un)n∈� an effective listing of Σ1
1 subsets of �. A degree d is

uniformly high for descending sequences if and only if there is a d-computable partial
function f : � → � such that if Un is nonempty, then f(n)↓≥ minUn.

Proof. Suppose d is uniformly high for descending sequences. We construct f as
follows. On input n, for eachm ∈ �, we let Tm be a computable tree having a path if
and only ifm ∈ Un. We take Lm to be the Kleene–Brouwer ordering of Tm, soUn is
nonempty if and only ifL = L0 + L1 + ··· is ill founded. We ask d to provide us with
a descending sequence in L as in the definition of uniformly high for descending
sequences. If d produces an output, we define f(n) = m, where m is such that the
first element of the putative descending sequence occurs in Lm.

If Un is truly nonempty, then d will produce output, and the first element of this
output will bound a descending sequence, and so some Lm′ with m′ ≤ m will be ill
founded and thus m′ ∈ Un.

Now suppose d computes such an f. Given an ill-founded linear order L, we con-
struct a descending sequence as follows. First, we fix n0 such that Un0 = L \W (L).
This is nonempty by assumption, and so f(n0)↓ with {0, ... , f(n0)} ∩Un0 �= ∅.
Let a0 be the L-rightmost element of {0, ... , f(n0)}; this gives us a0 ∈ Un0 .

Given ai ∈ Un0 , we fix ni+1 such that Uni+1 = {x ∈ Un0 : x <L ai}. This is
nonempty by assumption, so f(ni+1)↓ with {0, ... , f(ni+1)} ∩Uni+1 �= ∅. Let ai+1

be the L-rightmost element amongst those {0, ... , f(ni+1)} which are to the left of
ai ; this gives us ai+1 ∈ Uni+1 .

Now the sequence (ai)i∈� is a descending sequence in L and is uniformly
computable from f and an index for L. �

Theorem 4.15. If d is uniformly high for descending sequences and b is PA over d,
then b is uniformly high for isomorphism.

Proof. Fix a computable ill-founded tree T. We show how to uniformly prune
T to a d-computable, finitely branching tree (with a d-computable bound on the

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1709

branches). Then, as b is PA over d, it will uniformly compute a path through said
tree.

We fix f as in Lemma 4.14 and proceed recursively. First, we define n0 such that
Un0 = {m ∈ � : 〈m〉 is extendible in T}. Given n0, ... , nk–1, we then define

Tk = {� ∈ 2k : (∀i < k)�(i) ≤ f(ni)}
and, then, nk such that

Unk = {m ∈ � : (∃� ∈ Tk)�̂m is extendible in T}.
Inductively, using the properties of f, each Tk contains a string extendible in T. Then
the tree {� ∈ T : (∀i < |�|)�(i) ≤ f(ni)} is our pruned tree. �

Corollary 4.16. If d is uniformly high for descending sequences, then d computes
every Δ1

1 set.

Proof. Fix X ∈ Δ1
1, and suppose d does not compute X for a contradiction.

By the cone avoidance basis theorem [17], there is a b that is PA over d which
does not compute X. But then b is uniformly high for isomorphism, contradicting
Proposition 2.7. �

Thus, we cannot separate uniform highness for descending sequences from
highness for isomorphism simply by looking at the sorts of degrees they compute as
we did for the nonuniform case. Nevertheless, they are separate classes of degrees.
The remainder of this section is devoted to separating these classes, though we will
need to develop a number of tools first.

4.2. Computing jump hierarchies. Given a computable linear order L, a jump
hierarchy onL is a function h : L → 2� such that for allx ∈ L, h(x) =

⊕
y<Lx

h(y)′.
For every computable well order, of course, an initial segment of the standard
hyperarithmetical hierarchy constitutes a jump hierarchy [23]. There are, however,
linear orders which do not admit a jump hierarchy, and this property is not invariant
under isomorphism. In particular, there are Harrison orders with jump hierarchies
and those without.

The terminology for jump hierarchies varies in the literature. A jump hierarchy is
sometimes called a jump structure or a Turing jump hierarchy.

In any case, computing a jump hierarchy on a long linear order is a strong
standard for a degree. For instance, no hyperarithmetical degree can compute a
jump hierarchy on any Harrison order. This gives rise to the following definition.

Definition 4.17. We say that a degree d is jump complete if and only if there is
an algorithm which, given an index for a computable Harrison order which admits
a jump hierarchy, will compute such a hierarchy from oracle d.

Proposition 4.18. Every degree which is uniformly high for isomorphism is jump
complete.

Proof. Given a Harrison orderH, the set of jump hierarchies onH is a Σ1
1 class.

A degree that is uniformly high for isomorphism can compute an element of such a
class as long as it is nonempty. �

Proposition 4.19. There is a degree that is Scott complete but not jump complete.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1710 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

Proof. By Proposition 3.3, there is a degree that is Scott complete and low for
�ck1 . On the other hand, Harrington (unpublished; see [18]) showed that the set
of computable linear orders admitting jump hierarchies is Σ1

1-complete, and so the
same argument as in Proposition 2.8(2) shows that if d is jump complete, then
d′′ ≥T O. �

Jump hierarchies are interesting in their own right, but they will also be an
important tool to separating uniform highness for descending sequences from
highness for isomorphism. In particular, in Corollary 4.47 we will construct a degree
d which is uniformly high for descending sequences and a linear order L admitting
jump hierarchies, and such that d does not compute any jump hierarchy on L. This
gives the following.

Proposition 4.20. There is a degree that is uniformly high for descending sequences
but not jump complete.

4.3. Π1
1-tracing of majorized classes. We continue developing the tools necessary

for our intended separation result. Here, we consider traceability.

Definition 4.21. For �, � ∈ �≤� , we say that � majorizes � if for every x ∈
dom(�) ∩ dom(�), �(x) ≥ �(x).

The following is an effectivization of results surrounding Laver forcing in set
theory (see [2, Section 7.3.D]).

Definition 4.22. An order is a nondecreasing function h : � → � such that
h(0) > 0 and lims h(s) = ∞.

For h an order and f ∈ �� , an h-trace of f is a sequence (Vn)n∈� such that for
all n, |Vn| ≤ h(n) and f� n ∈ Vn.

An h-trace (Vn)n∈� is Π1
1 if the Vns are uniformly Π1

1.

Our goal is the following:

Lemma 4.23. If P ⊂ �� has compact closure, Φ is a Turing functional, andf ∈ ��
is such that for every g majorizing f, Φg ∈ P , then for every computable order h, there
is an element of P with a Π1

1 h-trace.

The proof of this lemma will require a number of ingredients. We begin with the
following definitions.

Definition 4.24.

(1) A Laver tree with stem � is a tree T ⊆ �<� with � ∈ T such that for every
� ∈ T with � �⊂ �, there are infinitely many n ∈ � with �̂n ∈ T .

(2) A stemless Laver tree is a Laver tree with stem 〈〉.
(3) A set A ⊆ T covers T if every path through T meets an element of A.

Notation 4.25. If T is a Laver tree with stem � and � ⊇ � is on T, then

T� = {� ∈ T : � ⊇ �} ∪ {� : � ⊆ �}.
Observe that T� is a Laver tree with stem �, and also that if T is a stemless Laver

tree, then for every f ∈ �� there is a g ∈ [T] majorizing f. Our intention is to build
a Π1

1 sequence (Vn)n∈� and a stemless Laver tree T such that for every g ∈ [T] with
Φg total, (Vn)n∈� is an h-trace for Φg .

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1711

Definition 4.26. Suppose T is a Laver tree with stem � and A ⊆ T is upwards
closed in T. Let L be a linear order with distinguished least and greatest elements,
respectively 0 and∞, and a successor function +1 (with∞+ 1 = ∞). An (A,L, T)
Laver ranking is a function r : {� ∈ T : � ⊆ �} → L satisfying the following:

• r(�) = 0 if and only if � ∈ A;
• r(�) = ∞ if and only if r(�̂n) = ∞ for almost every n; and
• Otherwise, r(�) = lim inf�̂n∈T [r(�̂n) + 1].

Note that this definition cannot be satisfied by an r for which {r(�̂n) : n ∈ �} is
unbounded inL \ {∞}, as then the third point would say r(�) = ∞, while the second
would require r(�) �= ∞. Observe that for L countable, the collection LR(A,L, T)
of (A,L, T) Laver rankings is an arithmetic class relative to A,L and T.

Lemma 4.27. For any Laver tree T with stem � and A ⊆ T upwards closed, an
(A,�1 ∪ {∞}, T) Laver ranking exists.

Proof. We construct an increasing sequence of partial functions (rα)α<�1 . We
begin by defining r0(�) = 0 for � ∈ A and r0(�)↑ for � �∈ A.

Having defined r for < α, we let r<α =
⋃
<α r . If r<α(�)↓, then we define

rα(�) = r<α(�). If r<α(�)↑ but there are infinitely many n such that �̂n ∈ T and
r<α(�̂n)↓, then we define rα(�) = α. Otherwise, we leave rα(�) undefined.

By cardinality considerations, there is � < �1 such that r� = r�+1. We define
r(�) = r�(�) for � ∈ dom(r�) and r(�) = ∞ for � �∈ dom(r�).

Clearly r is as required. �

Let ṙA,T be the (A,�1 ∪ {∞}, T) Laver ranking just constructed. Lemmas 4.34
and 4.35 will imply that it is unique. Observe that for sufficiently large countable �,
ṙA,T is an (A, � ∪ {∞}, T) Laver ranking as well. This Laver ranking tells us about
the existence of Laver trees.

Definition 4.28. For T a Laver tree with stem � and A ⊆ T upwards closed,
define TA recursively:

• If � ⊆ �, then � ∈ TA;
• If � ∈ TA with � ⊇ � and �̂n ∈ T with ṙA,T (�̂n) < ṙA,T (�) <∞, then
�̂n ∈ TA;

• If � ∈ TA with � ⊇ � and � ∈ A, then for every �̂n ∈ T , �̂n ∈ TA; and
• If � ∈ TA with � ⊇ � and �̂n ∈ T with ṙA,T (�̂n) = ṙA,T (�) = ∞, then
�̂n ∈ TA.

We now present some basic facts about these TAs.

Lemma 4.29. If T is a Laver tree with stem � and ṙA,T (�) = ∞, then no element of
[TA] meets A.

If T is a Laver tree with stem � and ṙA,T (�) <∞, then TA is covered by A ∩ TA.
In either case, TA is a Laver tree with stem �, and for all � ∈ TA with � ⊇ �,

ṙA,T (�) = ṙA,TA(�).

Proof. Suppose ṙA,T (�) = ∞. By induction on |�|, if � ⊆ � ∈ TA, then ṙA,T (�) =
∞. As TA ∩ A = ∅, all � ⊇ � on TA have ṙA,TA(�) = ∞.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1712 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

Now suppose ṙA,T (�) <∞. Then for any g ∈ [TA], ṙA,T is decreasing along g
after � until it reaches 0. For � ∈ TA with � ⊇ �, by induction on ṙA,T (�), ṙA,T (�) =
ṙA,TA(�). �

Lemma 4.30. For any A ⊆ T , range (ṙA,T) \ {∞} is closed downwards.

Proof. Fix ≤ α and � with ṙA,T (�) = α. We must show that there is a �
with ṙA,T (�) = . We construct a sequence � = �0 ⊂ �1 ⊂ ··· with ≤ ṙA,T (�i+1) <
ṙA,T (�i).

Suppose we have defined �i . If ṙA,T (�i) = , we are done. Otherwise, there is an
n with ≤ ṙA,T (�în) < ṙA,T (�i). Define �i+1 = �în for such an n.

By the well-foundedness of the ordinals, this sequence must terminate in a �i with
ṙA,T (�i) = . �

We will sometimes abuse notation by writing ṙA,T whenA �⊆ T , in which case this
should be understood as ṙA∩T,T . This will not be a problem because of the following
two lemmas.

Lemma 4.31. Let T be a Laver tree with stem �, and let A ⊆ B ⊆ T . Then for all
� ⊇ � with � ∈ T , ṙB,T (�) ≤ ṙA,T (�).

Proof. This follows by induction on ṙA,T (�). �
Lemma 4.32. Let T0 ⊆ T1 be Laver trees with a common stem �, and let A ⊆ T1.

Then for all � ⊇ � with � ∈ T0, ṙA,T1(�) ≤ ṙA,T0(�).

Proof. This follows by induction on ṙA,T0(�). �
We would like to construct our trace (Vn)n∈� using ṙA,T for various A and T, but

we lack an effective way to directly reason about ṙA,T . We will show, however, that
it suffices to reason about (A,L, T) Laver rankings, where L is a Harrison order.

For L an ill-founded linear order, it may be that no (A,L, T) Laver ranking exists
(in particular, the lim inf required by the definition may not exist). We can put
various conditions on what such a ranking will look like when it does exist, though.

Notation 4.33. For a linear order L with least and greatest elements 0 and ∞,
respectively, letW (L) be the maximal well-founded initial segment of L \ {∞}. We
identifyW (L) with an initial segment of the ordinals in the standard fashion (such
identification being unique), writing, for example, r(�) = α when r(�) ∈W (L) and
[0, r(�))L has order type α.

Lemma 4.34. For r an (A,L, T) Laver ranking, there is no� such that r(�) ∈W (L)
with r(�) < ṙA,T (�).

Proof. Suppose not. We construct a sequence of strings � = �0 ⊂ �1 ⊂ ··· with
r(�i+1) < r(�i) for a contradiction, maintaining the inductive assumption that
r(�i) < ṙA,T (�i). Clearly this holds for i = 0.

Suppose we have defined �i . As ṙA,T (�i) > r(�i), it is clear that ṙA,T (�i) �= 0, and
thus �i �∈ A. As r(�i) <∞, there are infinitely many n such that r(�în) < r(�i),
whereas for almost every n, ṙA,T (�în) ≥ r(�i). We can therefore define �i+1 = �în
for an n satisfying both of these. �

Note that this implies that if ṙA,T (�) = ∞, then r(�) �∈W (L).

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1713

Lemma 4.35. For r an (A,L, T) Laver ranking, if ṙA,T (�) <∞, then r(�) ∈W (L)
and r(�) = ṙA,T (�).

Proof. We show by induction on ṙA,T (�) that r(�) ∈W (L) with r(�) ≤ ṙA,T (�).
For ṙA,T (�) = 0, this is immediate.

For 0 < ṙA,T (�) <∞, there are infinitely many n with ṙA,T (�̂n) < ṙA,T (�). By
the inductive hypothesis, r(�̂n) ∈W (L) with r(�̂n) = ṙA,T (�̂n) < ṙA,T (�). By
the definition of rankings, r(�) <∞. Thus these �̂n witness that r(�) ∈W (L)
with r(�) ≤ ṙA,T (�).

The result then follows by Lemma 4.34. �

Lemma 4.36. If A and T are hyperarithmetic, then for every � with ṙA,T (�) <∞,
ṙA,T (�) < �ck1 .

Proof. Suppose not. We know that for some countable �, ṙA,T is an (A, � ∪
{∞}, T) Laver ranking with ṙA,T (�) ≥ �ck1 . By Lemma 4.35, for any (A,L, T)
Laver ranking r, we have that r(�) ∈W (L). Thus a computable linear order K is
well founded if and only if there exists a countable linear orderL, an (A,L, T) Laver
ranking r, and an embedding K ↪→ [0, r(�))L. However, this is a Σ1

1 definition of
well-foundedness. �

Lemma 4.37. If H has order type �ck1 (1 + Q) + 1 with least and greatest elements
0 and ∞, respectively, then for any hyperarithmetic A and T, there is an (A,H, T)
Laver ranking.

Proof. We can identifyW (H) with �ck1 and see that ṙA,T is an (A,H, T) Laver
ranking. �

Letting a computable H be as in Lemma 4.37 and continuing the identification
of W (H) with �ck1 , we observe that for hyperarithmetic A and T, the relation
{(�, α) : ṙA,T (�) = α} has a Π1

1 definition:

ṙA,T (�) = α ⇐⇒ ∀r ∈ LR(A,H, T) [r(�) = α].

Moreover, for each < �ck1 , {(�, α) : α < ∧ ṙA,T (�) = α} is (A⊕ T)(2+3)-
computable, and in fact uniformly so. We can observe that if � ∈ T is such that
ṙA,T (�) = α <∞, then (T�)A is hyperarithmetic relative to A and T and uniformly
so given α.

We are now ready to prove Lemma 4.23.

Proof of Lemma 4.23. Without loss of generality, we define h(n) = n + 1. (We
are working in Baire space and thus can compress via pairing without affecting the
compactness of the closure.) Fix (�n)n∈� an effective listing of�<� such that �i ⊂ �j
implies i < j, and thus �0 is the empty string 〈〉. Assume this listing has the property
that for all � and b, �̂b occurs earlier in the listing than �̂(b + 1).

We perform a construction of length �ck1 , enumerating partial functions k :
�<� → �<� and �m : (m + 1) → �m form ∈ �. We will also define hyperarithmetic
treesTn,m for some n ≤ m. We adopt the notationA� = {� : � ⊆ Φ�}, and for n > 0,
�–
n is the parent of �n.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1714 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

We will ensure the following properties hold:

• k is injective, order preserving, and length preserving, and its domain is
downwards closed. Furthermore, for any � such that k(�) is defined, k(�)
majorizes �.

• If �n majorizes f, then k(�n) is defined, as are �m(n) for all m ≥ n.
• For n ≤ m, �m(n)↓ if and only if Tn,m is defined.
• For n ≤ m, if �m(n)↓, then ṙA,T (k(�n)) <∞ for T = Tn,m and A = A�m(n).
• For every n ≤ m such that Tn,m is defined, Tn,m is a Laver tree with stem k(�n).
• If Tn,m is defined for n < m, then Tn,m–1 is defined and Tn,m = (Tn,m–1)A for
A = A�m(n).

• For any n > 0, suppose that �j = �–
n . If k(�n)↓, then Tj,n–1 is defined and

k(�n) ∈ Tj,n–1. If Tn,n is defined, then Tn,n =
(
Tk(�n)
j,n–1

)
A

for A = A�n(n).

This essentially describes the construction. We begin with k(〈〉) = 〈〉, �0(0) = 〈〉,
and T0,0 = �<� .

For n > 0, let �j = �–
n . We wait to see if k(�j) and Tj,n–1 are ever defined. If this

happens, we then define k(�n) to be the nth child of k(�j) on Tj,n–1.
For n ≤ m withm > 0, ifm = n, we then let �j = �–

n and let T = Tk(�n)
j,n–1 ; ifm > n,

we let T = Tn,m–1 (including when n = 0). We wait until T is defined and then
search for � ∈ �m such that ṙA,T (k(�n)) <∞ for A = A�; if we see such a �, we
define �m(n) = � and Tn,m = TA for A = A�.

Most of the stated properties of the construction are immediate.

Claim 4.38. For m ≤ n, if �m(n)↓, then ṙA,T (k(�n)) <∞ for T = Tn,m and A =
A�m(n).

Proof. This is immediate from the construction except in the case m =
n = 0. We handle this case by observing that A�0(0) = A〈〉 = �<� , and so
ṙA,T (k(�0)) = 0. �

Claim 4.39. k is injective, and if k(�) is defined, then k(�) majorizes �.

Proof. This follows by induction on |�|. The case � = 〈〉 is immediate.
Suppose k(�j) is defined, and let �n = �ĵb. Note that n > b. Then, if k(�n) is

defined, it is the nth child of k(�j) onTj,n–1, so k(�n) = k(�j)̂c for some c ≥ n > b.
By induction, k(�n) majorizes �n.

Now suppose �n′ = �ĵb′ is another child of �j such that n′ > n and thus b′ > b.
If k(�n′) is defined, it is the n′th child of k(�j) on Tj,n′–1 ⊆ Tj,n–1, and thus it is
the (≥ n′)th child of �j on Tj,n–1. It follows that k(�n′) �= k(�n). By induction, k is
injective. �

Claim 4.40. If �n majorizes f, then k(�n) is defined, as is �m(n) for all m ≥ n.

Proof. This follows by induction on |�n|. Note that k(�0) and �0(0) are explicitly
defined at the start of the construction.

For n > 0 with �n majorizing f, let �j = �–
n . By induction, k(�j) and Tj,n–1 are

eventually defined, so k(�n) is defined.
Now, we do a subinduction on m ≥ n (if n = 0, we restrict ourselves to m > n).

Let T be as given in the definition of �m(n). By induction, T is eventually defined.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1715

Let � = �m–1(n) if m > n and � = �j(n – 1) if m = n. Note that [T] is covered by
A� by construction.

As P has compact closure, there are only finitely many y with [�̂y] ∩ P �= ∅. We
list these as y0, y1, ... , ys–1. Let Ai = A�̂yi and, towards a contradiction, suppose
ṙAi ,T (k(�n)) = ∞ for every i < s . Now we define a sequence of Laver treesT = Q0 ⊇
Q1 ⊇ ··· ⊇ Qs by Qi+1 = (Qi)Ai . By Lemmas 4.31 and 4.32, ṙAi ,Qi (k(�n)) = ∞ for
all i < s , and thus [Qs] is disjoint from Ai for all i < s . However, �n majorizes f
and k(�n) majorizes �n, so k(�n) can be extended to a g ∈ [Qs] majorizing f. Then
Φg ∈ P by assumption and g ∈ [T], so g meets A� and thus � ⊂ Φg . But g avoids
all Ai , and thus �̂yi �⊂ Φg for any i < s , giving us a contradiction.

Thus there is some yi such that ṙAi ,T (k(�n)) <∞, and so � = �̂yi is as desired
for the definition of �m(n). �

Thus our construction has the stated properties. Now we define

Vm = {�m(n) : n ≤ m}.

These are uniformly Π1
1 and of the correct size. We can also define

T = {k(�) : � majorizes f}

and observe that T is a stemless Laver tree.

Claim 4.41. For every g ∈ [T], (Vm)m∈� is an h-trace of Φg .

Proof. Fix n ≤ m largest with �n ⊂ g, and let � = �m(n). Then, by construction,
g ∈ [Tn,m] and thus g meets A�. This guarantees that Φg� m = � ∈ Vm. �

This completes the proof of Lemma 4.23. �

4.4. A class without Π1
1 traces. At this point, we can finally complete the

separation of uniform highness for descending sequences and highness for
isomorphism. Suppose H is a Harrison order and (Xa)a∈H is a jump structure
onH. We wish to show that there is no Π1

1 h-trace for (Xa)a∈H for an appropriately
chosen computable order h, not depending on (Xa)a∈H.

Lemma 4.42. Suppose V is a finite set with |V | ≤ n. Then there are sets (Ua)a∈H
satisfying:

• For all a, |Ua | ≤ n;
• For all a < b, Ua ⊆ Ub ;
• V =

⋃
a∈W (H)Ua ; and

• Each Ua is enumerable from Xa uniformly in a, n, and a Π1
1 index for V.

Proof. We fix uniformly computable treesTi ⊆ �<� such thatTi is well founded
if and only if i ∈ V . Define R(i, a) to be the relation “Xa computes a tree-rank
function from Ti to H<a” (a standard tree-rank function, not a Laver ranking).
Note that {i : R(i, a)} is uniformly Σ0

3(Xa) and that i ∈ V if and only if there is
some a ∈W (H) satisfying R(i, a).

Now we define

Wa =

{
i : R(i, a) ∧ ¬∃j0 < ··· < jn–1

∧
s<n

[(js < i ∧R(js , a)) ∨ (∃b < a)R(js , b)]

}
.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1716 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

Define Ŵa =
⋃
b≤a Wb . We claim that (Ŵa)a∈H is as desired except for not being

uniformly enumerable from Xa .
First, towards a contradiction, we fix some a with |Ŵa | > n and then fix

distinct i0, ... , in ∈ Ŵa . For each s ≤ n, we fix bs ≤ a with is ∈Wbs and let
b = max{bs : s ≤ n}. Now we let i = max(Wb ∩ {i0, ... , in}) and derive a contra-
diction from i ∈Wb .

Clearly, for a ∈W (H), we have thatWa ⊆ V . For i ∈ V , let a be least such that
R(i, a) holds. Then

⋃
b<a Wb ⊆ V \ {i}, and so |

⋃
b<a Wb | < n. This gives us that

i ∈Wa , and it follows that V =
⋃
a∈W (H) Ŵa .

Now we observe that Ŵa is Σ0
4(Xa) uniformly in a, n, and a Π1

1 index for V, so we
define

Ua =
⋃
b+3≤a

Ŵb. �

Proposition 4.43. Let H be a Harrison order. There is a computable order h such
that no jump structure onH has a Π1

1 h-trace.

Proof. We fix some b + 1 ∈ H \W (H) nonuniformly and let JZ(e) = ΦZe (e)
for all e ∈ � andZ ∈ 2� . By the recursion theorem, there is an injective computable
sequence ei,j for i ∈ � and j ≤ i such that we control the behavior of each J (ei,j).
We let ri = max{〈b + 1, ei,j〉+ 1 : j ≤ i} and define a computable order h such that
h(ri) ≤ i + 1 for all i.

Now we let ((V im)m∈�)i∈� be a uniform listing of all Π1
1 h-traces. We let (Uia)a∈H

be as in Lemma 4.42 for V = V iri and n = h(ri) and define JZ(ei,j) as follows: we
first attempt to enumerate Uib , working under the assumption that Z = Xb ; and,
letting �0, �1, ... be the elements we enumerate in order of enumeration, we define
JZ(ei,j)↓ if and only if �j exists and �j(ei,j) = 0.

Now we suppose (Xa)a∈H is a jump structure onH. Towards a contradiction, we
further suppose (V in)n∈� traces X = {〈a, x〉 : x ∈ Xa}, and we fix � ∈ V iri an initial
segment of X. Then V iri ⊆ U

i
b and Uib is enumerated by Xb , so � = �j for some

j < h(ri) ≤ i + 1. Then

〈b + 1, ei,j〉 ∈ X ⇐⇒ ei,j ∈ Xb+1 ⇐⇒ JXb (ei,j)↓ ⇐⇒ �(ei,j) = 0,

which contradicts � being an initial segment of X. �

Lemma 4.44. Suppose P is a Π0
1 class and f ∈ �� is such that every function

dominating f computes an element of P . Then there is a Φ and an f′ such that for
every function g majorizing f′, Φg is an element of P .

Proof. We perform Hechler forcing: a condition is a pair (�, g) such that
� ∈ �<� , g ∈ �� , and � ⊂ g; we say that (�0, g0) ≤ (�1, g1) if �0 ⊇ �1 and g0

majorizes g1.
If F is a sufficiently generic filter, gF =

⋃
(�,g)∈F � is a total function majorizing

every g with (�, g) ∈ F . Note that for any condition (�, g), if we define

g ′(x) =
{

�(x), x < |�|,
max{f(x), g(x)}, otherwise,

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1717

then g ′ dominates f and (�, g ′) ≤ (�, g). So for a sufficiently generic filter F, gF
will dominate f. We fix Ψ such that ΨgF ∈ P . Now we consider the following set of
conditions:

D = {(�, g) : [Ψ�] ∩ P = ∅} ∪ {(�, g) : ∃n ∀(�′, g ′) ≤ (�, g) [Ψ�
′
(n)↑]}.

F must not meet D, so there is some (�, f′) ∈ F with no extension in D. We claim
this is our desired f′.

We define a functional Φ as follows: given g majorizing f′, we define a sequence
� = �0 ⊂ �1 ⊂ ··· such that Ψ�n� n↓ and for all x with |�n| ≤ x < |�n+1|, �n+1(x) ≥
g(x). Then we define Φg =

⋃
n Ψ�n .

Now, towards a contradiction, we suppose n is least such that there is no �n+1.
Then for

g ′(x) =
{
�n(x), x < |�n|,
g(x), otherwise,

(�n, g ′) ∈ D is an extension of (�, f′), giving us a contradiction. Thus Φg is total.
Again towards a contradiction, we suppose Φg �∈ P . Then there is some least n

such that [Ψ�n] ∩ P = ∅. For the same g ′ as previously, (�n, g ′) ∈ D is an extension
of (�, f′), once more giving us a contradiction. �

LetH be a Harrison order which admits a jump structure. Then the collection of
jump structures on H is a Π0

2 subset of 2� , and there is a Π0
1 P ⊆ �� × 2� which

projects ontoH.

Theorem 4.45. Let H be a Harrison order which admits a jump structure, and let
P be a Π0

1 class which projects onto the jump structures of H. Then for any f ∈ �� ,
there is a g dominating f which does not compute an element of P .

Proof. Suppose not. Then, by Lemma 4.44, there are Φ and f such that for
every g majorizing f, Φg ∈ P . By composing with projection, we get Ψ such that
for every g majorizing f, Ψg is a jump structure on H. As the collection of jump
structures is a subset of 2� , it has compact closure, and by Lemma 4.23, for every
computable order h there is a jump structure onHwith a Π1

1 h-trace. This contradicts
Proposition 4.43. �

Lemma 4.46. If L is a computable linear order (where we identify the domain
with �) and f is a descending sequence (thought of as an element of ��), then any g
majorizing f uniformly computes a descending sequence through L.

Proof. Let a0 be the L-rightmost of the first g(0) elements of L, and, given an,
define an+1 to be the L-rightmost of the first g(n + 1) elements of Lwhich are to the
left of an. Inductively, f(n) ≤L an, and so a candidate for an+1 exists; in particular,
f(n + 1) is such an element. �

Corollary 4.47. There is a degree which is uniformly high for descending sequences
but not high for isomorphism.

Proof. Let f be a total function such that for every e such that Le is ill founded,
f[e] is a descending sequence. By Theorem 4.45, there is a g majorizing f which
is not high for paths, and by Lemma 4.46, this g is uniformly high for descending
sequences. �

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1718 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

We will strengthen this result in Theorem 5.3.
Though highness, even uniform highness, for descending sequences does not

suffice to imply highness for isomorphism, the addition of a different property
provides the missing strength, although this property itself seems rather weak (see
Proposition 3.3).

Theorem 4.48. A degree d is high for isomorphism if and only if it is both high for
descending sequences and Scott complete.

Proof. That a high for isomorphism degree is both high for descending sequences
and Scott complete is immediate, so we argue the converse.

Given isomorphic computable structuresA and B, we form a structureA B by
expanding the cardinal sum ofA and B with two new constant symbols a, b, adding
new elements to instantiate them, and adding a new relation S such that aSx for
exactly those x ∈ A and bSx for exactly those x ∈ B. We take a Harrison order
H whose well-founded partW (H) is Turing equivalent to O, a standard operation
described in [16, 19], and let (≤x : x ∈ H) be the Scott analysis computed by d. We
further use a ∼=α b to denote the conjunction of a ≤α b and b ≤α a.

We now consider the points a, b. As A ∼= B, a ∼=α b for all ordinals α, and thus
a ∼=x b for every x ∈W (H). If for all x ∈ H \W (H) we have a �x b, then d easily
computesW (H) and thus computes O, making d high for isomorphism.

Thus we can assume that there is some x ∈ H \W (H) such that a ∼=x b and
take H′ = H �x . Since d is high for descending sequences, we find a d-computable
descending sequence (si : i ∈ N) ⊆ H′. We will use (≤si : i ∈ N) to compute an
isomorphism f : A → B. We construct a sequence (f̃t : t ∈ N) of finite partial
isomorphisms; for notational convenience, we will also construct �t a tuple of the
elements of dom(ft) and �t a tuple of the elements of range(ft).

We let f̃0 = {(a, b)}, denoting �0 = (a) and �0 = (b). Now, at stage 2t, we take the
first c ∈ A \ dom(f̃2t) and find (using oracle d) some d such that �2t̂c ≤s �2t̂d for
s = s2t . We set f̃2t+1 = f̃2t ∪ {(c, d)} and make �2t+1 = �2t̂c and �2t+1 = �2t̂d .
We act symmetrically at stage 2t + 1 so that both A and B are exhausted. We now
define f̃ =

⋃
t∈N

f̃t and f = f̃ \ {(a, b)}. Finally, we can see that f : A → B is an

isomorphism.
The converse follows from the discussion at the conclusion of Section 3 and at the

beginning of the present section. �
Corollary 4.49. There is a degree which is uniformly high for descending sequences

but not Scott complete, and conversely.

Proof. By Corollary 4.47, uniform highness for descending sequences does not
imply highness for isomorphism, and thus cannot imply Scott completeness.

As observed in Section 3, Scott completeness does not imply highness for isomor-
phism, and thus cannot imply highness for descending sequences. Alternatively, this
follows from the same reasoning employed in Proposition 4.19. �

§5. Reticence. It is standard in computability to distinguish between positive
information (e.g., an enumeration) and complete information. A structural analogue
of this distinction is what we call “reticence.” By this we mean that a degree that

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1719

is, for instance, uniformly high for isomorphism “in the reticent sense” should not
only compute isomorphisms where they exist but refrain from computing things
that seem to be isomorphisms when no isomorphism exists. We present a formal
definition here.

Definition 5.1. Let d be a Turing degree which is uniformly high for a given
notion N . That is, there is some I ⊆ � (depending on N) and a d-computable
function F such that if i ∈ I , then F (i) ∈ �� has someN -appropriate relation to i,
(e.g., uniformly high for paths, where I is the set of indices for nonempty Π0

1 classes
and F (i) ∈ Pi).

We say that d is uniformly high for N in the reticent sense if F can be chosen such
that for every i �∈ I , the partial function F (i) diverges for all inputs.

Of course, being uniformly high for some notion in the reticent sense implies
being uniformly high in the normal sense. Possibly the most interesting feature of
reticence from our perspective is that our various highness properties, apparently
distinct without reticence, collapse when this further requirement is introduced.

Theorem 5.2. The following properties of a degree d are equivalent:
(1) d enumerates all Σ1

1 sets.
(2) d is uniformly high for paths in the reticent sense.
(3) d is uniformly high for isomorphism in the reticent sense.
(4) d is uniformly high for descending sequences in the reticent sense.
(5) d is uniformly high for tight descending sequences.
(6) d is uniformly high for tight descending sequences in the reticent sense.

Proof. The proof is organized as follows:

(1) (2) (3)

(5) (6) (4)

(1⇒ 2) Let Pe be an effective listing of Π0
1 classes in Baire space. By assumption,

d enumerates X = {(�, e) : [�] ∩ Pe �= ∅}.
Given e, we search for a string �0 with (�0, e) ∈ X . Having found such a �0, we

define F (e)� |�0| = �0. We then search for a string �1 ∈ X strictly extending �0, and
continue in this fashion.

If Pe is empty, then there is no such �0, and so we will leave F (e) everywhere
divergent. On the other hand, if Pe is nonempty, then we will find our sequence of
�is and use them to define F (e) ∈

⋂
i [�i] ⊆ Pe .

Thus f witnesses that d is uniformly high for paths in the reticent sense.
(2 ⇒ 3) Given computable structures Mi and Mj , {(f,f–1) : Mi

∼=f Mj} is a
Π0

1 class.
(3 ⇒ 2) In the proof of Proposition 2.6, we gave a uniform procedure for

transforming a Π0
1 class into a pair of computable structures such that the structures

are isomorphic if and only if the class is nonempty, and every isomorphism computes
an element of the class. The result follows.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1720 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

(2 ⇒ 4) The infinite descending sequences through a computable linear order
form a Π0

1 class, and an index for the Π0
1 class can be effectively obtained from an

index for the linear order.
(1 ⇒ 6) LetLe be an effective listing of computable linear orders. By assumption,

d enumerates X = {(a, e) : a is in the ill-founded part of Le}. We fix such an
enumeration (Xs)s∈� and assume Xs is finite for every s. Given e, we search for
a0 ∈ Le with (a0, e) ∈ X ; if we find such an a0 at stage s, we make sure to choose
it such that a0 is the leftmost element of Le with (a0, e) ∈ Xs . We then search for
an a1 ∈ Le with (a1, e) ∈ X and a1 <Le a0; again, we choose a1 to be the leftmost
eligible element at the stage we find it. We continue in this fashion and define
F (e) = 〈a0, a1, ... 〉.

Clearly if Le is well founded, then we never find a0, and so F (e) diverges for all
inputs. Suppose now that b is an element of the ill-founded part of Le . There is
some s with (b, e) ∈ Xs , and so any an chosen on or after stage s will be ≤Le b by
construction.

(6 ⇒ 5) This is immediate.
(4 ⇒ 1) Given a Σ1

1 set Y, there is a computable sequence of linear orders (Len)n∈�
such thatLen is ill founded if and only if n ∈ Y . Therefore, n ∈ Y if and only ifF (en)
produces any output, which gives a d-computable enumeration.

(5 ⇒ 1) Fix a Σ1
1 set Y. Then there is a computable sequence of linear orders

(Len)n∈� such that Len is ill founded if and only if n ∈ Y . Now fix a Harrison order
H and, for each n, define in so that Lin = Len +H . Then Lin will be ill founded and
F (in) will produce a tight descending sequence through it. Then n ∈ Y if and only
if F (in) enumerates an element of the Len part of Lin , which gives a d-computable
enumeration. �

The striking thing about this result is the light it sheds on the known separations
among the “nonreticent” versions of these properties. The separation for any two
of these properties must somehow be driven by how the degrees in question handle
the “dark matter” of, e.g., the nonisomorphic structures or non-ill-founded orders.
To the present authors, at least, this feature was not obvious from our initial proofs
of separation.

Theorem 5.2 and Corollary 4.47 immediately separate uniform highness for
descending sequences from the reticent notion. We can also separate uniform
highness for isomorphism from the reticent notions.

Theorem 5.3. There is a d with d′ ≡T O that is uniformly high for descending
sequences but not high for isomorphism, and such that there is no b that is uniformly
high for descending sequences in the reticent sense such that d ≤T b and O �≤T b.

Proof. Fix (Pe)e∈� an effective listing of all Π0
1 classes in Baire space. Now define

c(0) = – 1 and, for n > 0, define c(n) to be the largest x such that 〈x, y〉 < n for
some y where 〈·, ·〉 is the standard pairing function. As before, we write J for the
universal jump functional. We define a forcing notion and then carefully build a
sequence through the notion.

Our conditions will be triples (�, f, n) ∈ �<� × �� × � satisfying:

• � majorizes f ;
• c(|�|) < n;

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1721

• f is strongly hyperlow; and
• For e < n, if Pe is nonempty, then f[e] majorizes an element of Pe .

Condition (�, g,m) extends condition (�, f, n) if:

• � ⊇ �;
• g majorizes f ;
• m ≥ n; and
• For all x < |�|, g(x) = f(x).

If (�, g,m) extends (�, f, n) and, in addition, g [e] = f[e] for all e < r, then we say
that (�, g,m) r-extends (�, f, n). Thus 0-extension is simply extension.

We build an O-computable sequence of conditions (�0, f0, n0), (�1, f1, n1), ... ,
each extending the previous. Our degree d will be the degree ofG =

⋃
s �s . We begin

by setting �0 to be the empty string, f0 to be the constant 0 function, and n0 = 0.

At stage 3s . Suppose we have constructed (�3s , f3s , n3s). Let e = n3s . An oracle
for O can determine whether Pe is empty. If so, we define f3s+1 = f3s . If not,
we fix some h ∈ Pe such that f3s ⊕ h is strongly hyperlow; we define f[e]

3s+1(x) =

max{f[e]
3s (x), h(x)} and f3s+1(x) = f3s(x) elsewhere. In either case, we let �3s+1 =

�3s and n3s+1 = e + 1. We have now forced thatG [e] majorizes an element ofPe if the
latter is nonempty. Note that our new condition e-extends the previous condition.

At stage 3s + 1. Suppose we have constructed (�3s+1, f3s+1, n3s+1). Let e = n3s+1

and consider the set of g satisfying the following:

• g majorizes f3s+1;
• For all e < n3s+1, g [e] = f[e]

3s+1; and
• For all � ⊇ �3s+1 majorizing g, J�(s)↑.
This is a Π0

1(f3s+1) class, and so O can determine whether it is empty. If it is
nonempty, let n3s+2 = n3s+1, �3s+2 = �3s+1, and f3s+2 be some strongly hyperlow
element of the class; we have now forced JG(s)↑.

If instead the class is empty, we begin building a sequence of extensions:

(�3s+1, f3s+1, n3s+1) = (�0, h0, m0), (�1, h1, m1), (�2, h2, m2),

Each term is constructed from the previous term following the process for stage 3s ,
and so each (�k+1, hk+1, mk+1) mk-extends (�k, hk,mk). After constructing the kth
term, we ask O if there is a � satisfying the following:

• � ⊇ �3s+1;
• c(|�|) < mk ;
• � majorizes hk ; and
• J�(s)↓.

If there is no such� for any k, thenH = limk hk is an element of the earlier Π0
1(f3s+1)

class which we assumed was empty, giving us a contradiction. Thus eventually
we locate such a k and witnessing �. We then define �3s+2 = �, f3s+2 = hk , and
n3s+2 = mk . We have now forced JG(s)↓.

At stage 3s + 2. Suppose we have constructed (�3s+1, f3s+1, n3s+1). Fix T ⊆ �<�
a computable tree such that [T] is the Π0

1 class described by Theorem 4.45. We may

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1722 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

assume that for all oracles X and all t, if (ΦXs � t)↓, then (ΦXs � t) ∈ T . We again build
a sequence of extensions:

(�3s+2, f3s+2, n3s+2) = (�0, h0, m0), (�1, h1, m1), (�2, h2, m2),

Each term is again constructed from the previous term following the process for
stage 3s , and so each (�k+1, hk+1, mk+1)mk-extends (�k, hk,mk). After constructing
the kth term, we ask O if there is a g ∈ �� , a � ∈ �<� , and a t ∈ � satisfying the
following:

• g majorizes hk ;
• (�, g,mk) extends (�3s+2, f3s+2, n3s+2); and
• There is no �′ ⊇ � majorizing g with (Φ�

′
s � t)↓.

Towards a contradiction, we suppose there are never any such g, �, and t for any k.
Let H = limk hk . Given an oracle g majorizing H, we may assume g extends �3s+2.
Consider the following algorithm:

• Let �0 = �3s+2;
• Given �i , search for a �i+1 ⊇ �i that majorizes g with Φ�i+1

s (i)↓.
If this algorithm finds a �i for every i, it computes a path through T via Φs , but
by Theorem 4.45, there is some g majorizing H for which it fails. Fix such a g and
let i be least such that the algorithm fails to define �i+1. Furthermore, let k be such
that c(|�i |) < mk . Then this g, � = �i , and t = i are as desired for k, contrary to
assumption.

Therefore, eventually we locate a k for which g and � exist. We fix such g and �
with g strongly hyperlow. We set (�3s+3, f3s+3, n3s+3) = (�, g,mk), and we have now
forced that ΦGs �∈ [T].

By construction,G [e] majorizes an element ofPe whenever the latter is nonempty.
It follows that d is uniformly high for descending sequences. It also follows that d
enumerates O: a Π0

1 class Pe is empty if and only if Pe ∩ {g : ∀x [g(x) ≤ G [e](x)]}
is empty, and the latter is effectively compact relative to G. We force the jump, so
d′ ≤T O and thus d′ ≡T O. We also ensure that d is not high for isomorphism, as it
does not compute an element of [T].

Now suppose b ≥T d is uniformly high for descending sequences in the reticent
sense. Then b enumerates � \ O, and since d enumerates O, b does too. Thus, b
computes O. �

Corollary 5.4. There is a degree that is uniformly high for isomorphism, but not
in the reticent sense.

Proof. Let d be as in Theorem 5.3, and take b to be both PA over d and low
over d. Then b is uniformly high for isomorphism by Theorem 4.15, but not in the
reticent sense, as b is above d but not O. �

§6. Randomness and genericity. We conclude with some quick remarks on the
ability of degrees that are high for isomorphism to compute generic and random
sets.

Fact 6.1. All degrees that are high for isomorphism compute a Σ1
1-generic since

Σ1
1-generics form a Σ1

1 class, but the converse may not hold.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

STRUCTURAL HIGHNESS NOTIONS 1723

This contrasts, sharply and unsurprisingly, with the situation for degrees that are
low for isomorphism: every Cohen 2-generic is itself low for isomorphism, as is every
degree computable from a Cohen 2-generic [11].

Fact 6.2. All degrees that are high for isomorphism compute a Π1
1-random since

the class of Π1
1 randoms is Σ1

1.

Again, this contrasts with the situation for degrees that are low for isomorphism:
no Martin-Löf random degree is low for isomorphism [11].

We now use the notion of genericity to explore the relationship between degrees
that are low for isomorphism and degrees that are high for isomorphism. Recall that
the triple jump of a degree high for isomorphism must compute O. While this does
not give an exact characterization of highness for isomorphism, it would be nice if
it at least ruled out the degrees which are low for isomorphism. However, this is not
the case.

Theorem 6.3 [22]. A degree b is the nth jump of a weakly (n + 1)-generic degree if
and only if b > 0(n) and b is hyperimmune relative to 0(n).

It follows that the degree of O is the nth jump of a weakly n-generic degree for
every n and thus the double jump of a 2-generic, and therefore in particular it is the
double jump of a low-for-isomorphism degree.

§7. Summary of results and future directions. At the time of this writing, the
following questions appear both entirely open and deeply interesting.

Question 7.1. Is there a jump complete degree which is not uniformly high for
isomorphism?

Question 7.2. Is there a jump complete degree which is not uniformly high for
descending sequences?

Question 7.3. Is there a jump complete degree which is not Scott complete?

Question 7.4. Is there a degree d which is uniformly high for isomorphism, with
d′′ ≡T O?

Acknowledgments. The second author was supported in part by Simons
Foundation Collaboration Grant #420806. Portions of this material are based
upon work supported by the National Science Foundation under Grant No. DMS-
1928930 while the first author participated in a program hosted by the Mathematical
Sciences Research Institute in Berkeley, California, during the Fall 2020 semester.

REFERENCES

[1] C. J. Ash and J. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Studies in
Logic and the Foundations of Mathematics, vol. 144, North-Holland, Amsterdam, 2000.

[2] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, A K Peters,
Wellesley, 1995.

[3] J. Barwise, Back-and-forth through infinitary logic, Studies in Model Theory (M. D. Morley,
editor), Studies in Mathematics, vol. 8, Mathematical Association of America, Buffalo, 1973, pp. 5–34.

[4] W. Calvert, J. F. Knight, and J. Millar, Computable trees of Scott rank �CK1 , and computable
approximation, Journal of Symbolic Logic, vol. 71 (2006), pp. 283–298.

[5] C. T. Chong and L. Yu, Recursion Theory, De Gruyter Series in Logic and Its Applications, vol. 8,
De Gruyter, Berlin, 2015.

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.35

1724 WESLEY CALVERT, JOHANNA N. Y. FRANKLIN, AND DAN TURETSKY

[6] B. Csima, Degrees of categoricity and related notions, BIRS Computable Model Theory Workshop,
2013.

[7] R. Downey, D. Hirschfeldt, and B. Khoussainov, Uniformity in the theory of computable
structures. Algebra and Logic, vol. 42 (2003), no. 5, pp. 566–593, 637.

[8] E. B. Fokina, S.-D. Friedman, V. Harizanov, J. F. Knight, C. McCoy, and A. Montalbán,
Isomorphism relations on computable structures, Journal of Symbolic Logic, vol. 77 (2012), pp. 122–132.

[9] J. N. Y. Franklin, Lowness and highness properties for randomness notions, Proceedings of the 10th
Asian Logic Conference (T. Arai, J. Brendle, H. Kikyo, C. T. Chong, R. Downey, Q. Feng, and H. Ono
editors), World Scientific, Hackensack, 2010, pp. 124–151.

[10] J. N. Y. Franklin and T. H. McNicholl, Degrees of and lowness for isometric isomorphism.
Journal of Logic and Analysis, vol. 12 (2020), Article no. 6, 23 pp.

[11] J. N. Y. Franklin and R. Solomon, Degrees that are low for isomorphism. Computability, vol. 3
(2014), no. 2, pp. 73–89.

[12] ———, Lowness for isomorphism, countable ideals, and computable traceability. Mathematical
Logic Quarterly, vol. 66 (2020), no. 1, pp. 104–114.

[13] J. N. Y. Franklin, F. Stephan, and L. Yu, Relativizations of randomness and genericity notions.
Bulletin of the London Mathematical Society, vol. 43 (2011), no. 4, pp. 721–733.

[14] J. N. Y. Franklin and D. Turetsky, Lowness for isomorphism and degrees of genericity.
Computability, vol. 7 (2018), no. 1, pp. 1–6.

[15] ———, Taking the path computably traveled. Journal of Logic and Computation, vol. 29 (2019),
no. 6, pp. 969–973.

[16] H. Friedman, Recursiveness in �1
1 paths through O. Proceedings of the American Mathematical

Society, vol. 54 (1976), pp. 311–315.
[17] R. O. Gandy, G. Kreisel, and W. W. Tait, Set existence. Bulletin L’Académie Polonaise des

Science, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 8 (1960), pp. 577–582.
[18] J. Le Goh, Inseparable�1

1 sets, in preparation.

[19] S. S. Goncharov, V. S. Harizanov, J. F. Knight, and R. A. Shore, �1
1 relations and paths

through O, Journal of Symbolic Logic, vol. 69 (2004), no. 2, pp. 585–611.
[20] S. S. Goncharov and J. Knight, Computable structure and antistructure theorems. Algebra and

Logic, vol. 41 (2002), no. 6, pp. 639–681, 757.
[21] C. G. Jockusch, Jr. and S. G. Simpson, A degree-theoretic definition of the ramified analytical

hierarchy. Annals of Mathematical Logic, vol. 10 (1976), pp. 1–32.
[22] S. A. Kurtz, Notions of weak genericity, Journal of Symbolic Logic, vol. 48 (1983), no. 3,

pp. 764–770.
[23] G. E. Sacks, Higher Recursion Theory, Perspectives in Logic, vol. 2, Cambridge University Press,

Cambridge, 2016.
[24] T. A. Slaman and R. M. Solovay, When oracles do not help, Fourth Annual Workshop on

Computational Learning Theory, Morgan Kaufman, Los Altos, 1991, pp. 379–383.
[25] R. Soare, The Friedberg–Muchnik theorem re-examined. Canadian Journal of Mathematics,

vol. 24 (1972), pp. 1070–1078.
[26] J. Suggs, Degrees that are low for C isomorphism. Ph.D. thesis, University of Connecticut, 2015.

SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES
SOUTHERN ILLINOIS UNIVERSITY

MAIL CODE 4408, 1245 LINCOLN DRIVE
CARBONDALE, IL 62901, USA

E-mail: wcalvert@siu.edu
URL: http://lagrange.math.siu.edu/calvert

DEPARTMENT OF MATHEMATICS
HOFSTRA UNIVERSITY

ROOM 306, ROOSEVELT HALL
HEMPSTEAD, NY 11549-0114, USA

E-mail: johanna.n.franklin@hofstra.edu
URL: http://www.johannafranklin.net

SCHOOL OF MATHEMATICS AND STATISTICS
VICTORIA UNIVERSITY OF WELLINGTON

WELLINGTON, NEW ZEALAND
E-mail: dan.turetsky@vuw.ac.nz

https://doi.org/10.1017/jsl.2022.35 Published online by Cambridge University Press

mailto:wcalvert@siu.edu
http://lagrange.math.siu.edu/calvert
mailto:johanna.n.franklin@hofstra.edu
http://www.johannafranklin.net
mailto:dan.turetsky@vuw.ac.nz
https://doi.org/10.1017/jsl.2022.35

	1 Introduction
	2 Highness and uniform highness for isomorphism
	2.1 Relationship between highness for isomorphism and benchmark Turing degrees
	2.2 High for a restricted class of isomorphisms

	3 Scott analysis
	4 Computing descending sequences
	4.1 Degrees that are high for descending sequences
	4.2 Computing jump hierarchies
	4.3 Π11-tracing of majorized classes
	4.4 A class without Π11 traces

	5 Reticence
	6 Randomness and genericity
	7 Summary of results and future directions

