
ANZIAM J. 51(2009), 102–122
doi:10.1017/S1446181109000352

A SIMPLE ALGORITHM FOR DEDUCTION

BILL WHITEN1

(Received 8 March, 2009; revised 9 September, 2009)

Abstract

It is shown that a simple deduction engine can be developed for a propositional logic
that follows the normal rules of classical logic in symbolic form, but the description of
what is known about a proposition uses two numeric state variables that conveniently
describe unknown and inconsistent, as well as true and false. Partly true and partly false
can be included in deductions. The multi-valued logic is easily understood as the state
variables relate directly to true and false. The deduction engine provides a convenient
standard method for handling multiple or complicated logical relations. It is particularly
convenient when the deduction can start with different propositions being given initial
values of true or false. It extends Horn clause based deduction for propositional logic
to arbitrary clauses. The logic system used has potential applications in many areas. A
comparison with propositional logic makes the paper self-contained.

2000 Mathematics subject classification: primary 03B05; secondary 03B50, 03B53,
03B70.

Keywords and phrases: deduction, classical propositional logic, two-variable logic,
simple algorithm.

1. Introduction

By an appropriate choice of rule format and proposition description, a simple and
easily implemented algorithm for deduction can be derived. While the proposition
states are described by two numeric variables, a simple interpretation in terms of true
and false is directly available. It can be considered to be an extension of deduction
using Horn clauses that is not restricted in the form of the clauses used. The algorithm
has a wide range of potential uses. Due to its symmetrical use of the rule base it is
particularly useful where information on different propositions can be supplied as the
initial data. Useful student exercises can be based around implementing and evaluating
versions of this algorithm. One published application using the logic and deduction
algorithm of this paper is to the optimization of ultrasonic transducers [9].

1The University of Queensland, SMI, JKMRC, Brisbane 4072, Australia; e-mail: W.Whiten@uq.edu.au.
c© Australian Mathematical Society 2010, Serial-fee code 1446-1811/2010 $16.00

102

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

[2] A simple algorithm for deduction 103

An application of particular interest is for decisions within computer programs. By
using a rule base that takes the input conditions and evaluates indicator variables that
then control the sequence of events within the program, the logical decisions can be
separated from the remainder of the program. As complicated logic is a regular source
of problems in computer programs, the ability to separate the logic for independent
testing is a significant advantage. For this application the algorithm in this paper
is significantly more capable than a decision table, although it provides a way to
implement and extend decision tables, and is both less complex and more robust than
the Rete algorithm [5], in that it handles inconsistent states. In some cases there may
be advantage in dividing the deduction into separate stages where some results of the
first stage form the input to a second stage.

There have been many methods suggested for extending Boolean logic to include
more than the states true and false. For instance, [16] contains well over a
thousand references. More recent reviews are given in [7, 13]. Several authors,
including [1, 6, 12], have recommended a four-value logic consisting of unknown,
true, false, and inconsistent as having significant benefits for deduction, as the four
cases cover the possible outcomes. However, in spite of the advantages, four-valued
logic is not widely known or used outside of the literature on logic. For example, [3]
does not mention the use of unknown or inconsistent states, and the recent review
by [8] mentions unknown only to say (in Section 2.4) that it causes problems, and
suggests two ways of avoiding the problems. Ben-Ari [2, Section 1.5] mentions the
possibility of an undetermined state, but then uses only true and false in his description
of propositional logic. The book by Russell and Norvig [10, Chapter 7] includes an
unknown but not an inconsistent state, but, as is commonly the case, inconsistent is
used implicitly for formulae in proof by contradiction.

The logic system presented in this paper is formally a paraconsistent logic (see
[11, 14] and references therein) in that inconsistencies are tolerated, can be identified,
and are not indefinitely propagated. Paraconsistent logics are controversial and as such
have developed a significant literature. Troublesome expressions such as A | ¬ A | X
should not be generated gratuitously, and should if present be reduced to true before
deduction starts.

In this paper it is shown how the normal rules of propositional logic can be retained,
while a multi-valued logic is used to provide a robust deduction algorithm. The
multi-valued logic is based on separate %true and %false values associated with each
proposition; these can conveniently describe what is known about a proposition, and
allow a very simple deduction engine. The 0% and 100% points of the %true and
%false scales define a four-valued logic, and intermediate percentages can be used
to indicate uncertainty in the true or false values. Although this is a multi-valued
logic, being constructed using %true and %false values makes it easily understood by
untrained users.

The rules can be described using the familiar If–Then structure, or other logical
relations if required, but are transformed to a symmetric form, known as the
conjunctive normal form, for the deduction engine. All the transformations of the

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

104 B. Whiten [3]

rules are made according to the usual rules of classical logic. Deduction relies on
If–Then rules and a simple transformation to %true and %false state variables.

The deduction algorithm runs quickly with typically only a small number of
evaluations of each rule required. The number of passes over the rule base depends on
length of possible chains from one rule to the next and the order of the rules. Typically
the length of possible chains can be expected to be low, usually below 10, and the
ordering of the rules can be expected not to be such that a complete pass over the rules
is required for each link in a chain of rules. A simple extension of the basic algorithm
can, at the expense of some preprocessing, avoid evaluating rules in which no variables
have changed (see Section 8.9). The simpler algorithm can be used until such time as
it is found that a faster algorithm is required.

The following sections first describe how propositions are given values for use in
deduction. This is followed by some notation, and a description of the rules and their
transformation. Next the deduction engine is described, followed by an example and
some implementation details. Comments and conclusions complete the paper.

2. Propositions

Deduction is about some propositions that can be true or false. In this paper
propositions are always assumed to be simple, rather than compound expressions or
rules which are formed by combining propositions. For example, we might have “the
algorithm needed is linear programming” as a proposition that can be true or false.
The propositions are used in rules, which give relations between the propositions and
are assumed to be always true. These rules, given some initial proposition values, can
be used to deduce the status of other propositions.

Classical logic assumes that a proposition is either true or false. However, a
deduction engine needs also to be able to express the fact that the status of a proposition
is unknown. In fact, most propositions will start from the unknown status. Also it is
quite possible that by accident (or otherwise) rules and/or data can give inconsistent
information about a proposition, and hence it is also desirable to be able to detect and
report this situation. Thus, for describing what is known about a proposition, the logic
needed is a four-valued logic, with states unknown, true, false, and inconsistent.

Further the information we have about a proposition may be uncertain. This can be
conveniently expressed as a percentage. Note that if sufficient information is available
to calculate probabilities, the rules of statistics should be applied. However, in many
cases there is not sufficient information for a proper or even approximate statistical
analysis.

A convenient way of expressing the status of knowledge about a proposition is to
use two variables, one giving the extent to which it is known that the proposition is
true, and the second giving the extent to which it is known that the proposition is
false. It is generally convenient to express these state variables as %true and %false,
although in many cases only the 0% and 100% values need to be used. Another range
for these state variables can be chosen if desired.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

[4] A simple algorithm for deduction 105

In the case where the percentages are restricted to either 0% or 100% a four-valued
logic results.

State %true %false
True 100 0
False 0 100
Unknown 0 0
Inconsistent 100 100

Comparing this with classical true/false logic, we see that true and false are easily
obtained from the two state variables. Unknown as 0 %true 0 %false is easily
understood, and inconsistent is also clear. It should be noted that that the numeric state
variables are always defined regardless of the state of the corresponding proposition.
The application of operators to these state variables is described in the following
sections and some examples are given in Appendix A.

Partly true and/or partly false values can be introduced as percentages between 0 and
100 as needed. For example, a proposition given as 60 %true and 60 %false indicates
there is about equal evidence for the proposition being true, and for the proposition
being false, while 30 %true and 30 %false also indicates equal evidence but at a lower
level, and 70 %true and 20 %false indicates more evidence for true than for false.
Additional information is needed if these situations are to be further resolved. Note
that all three cases above are different from no information supporting true or false
which is 0 %true and 0 %false.

While this use of the two state variables to describe what is known about a simple
proposition is different from classical logic, after a little practice it is generally found
to be convenient and easy to use.

3. Notation

The notation used in this paper has been chosen to correspond to that used in
computer programs rather than that in formal logic, as this notation is more likely
to be familiar to those who might use the algorithm given in this paper. It is of course
a matter of a simple change of symbols to use the notation of formal logic.

Operators such as If and Then will be given in bold type, with an initial capital
letter. A | (bar) will be used for Or (for example, A | B is true, if either A is true, or B is
true; or both are true), and & (ampersand) will be used for And (for example, A & B
is true, if both A and B are true). The symbol ¬ (negate) will be used for Not. The
manner in which Not is interpreted is explained in due course.

We will use one or more capital letters (but not T, F or U to Z) as a short
symbol that denotes a simple proposition, and the corresponding lower-case letters
with superscript T or F to denote the two percentage variables (%true and %false)
that define the known status of the proposition. For example, the proposition “the
algorithm needed is linear programming” might be represented by LINPROG and its
two variables defining its known status will be the values of linprogT and linprogF .

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

106 B. Whiten [5]

When describing the general case where the state variable could be either a %true or a
%false the superscript is omitted.

It should be carefully noted that the lower-case letters denote numeric values
associated with the logical proposition but are not the logical proposition. The rules for
operating on the lower-case percentage variables differ from those for the upper-case
logical variables.

T and F are reserved to describe a proposition or logical formula as being true or
false. The letters X to Z are used to denote expressions made up of propositions,
and the lower-case letters x to z denote expressions made up of the state variables.
The letters U to W are used to represent a simple proposition or the Not of a simple
proposition, which are the cases that convert to a simple state variable.

For formulas that update a variable’s value, the new value of the variable will be
given by the expression on the left-hand side of the replacement operator := (for
instance, x := x + 1).

The lower-case letters i, j, k are used for subscripts and m, n are used for the
number of rules and the number of propositions in a rule.

While propositions are described by two state values (%true and %false),
expressions involving the state variables have only a single numeric value that
is determined by the variables in the expression. The method used to evaluate
expressions is described in the section on deduction.

4. Rules

Rules provide the known relations between the propositions or, in the case of an
expert system, the expert knowledge. They are used to make deductions about the
propositions typically using initial values for some of the propositions. It is assumed
that each rule is true. Section 8.5 indicates how partly true rules can be accommodated.

Rules are generally easiest developed and understood in the form

If U & · · · & V Then W, (4.1)

where the propositions (U to W) can be a simple proposition name indicating true is
to be used when applying the rule, or can be in the form ¬ A, where A is a simple
proposition name, indicating false is used (for instance, a rule could be If ¬ A & B
Then ¬ C). Several rules of this form are assumed to have an implicit And between
them. Thus all the given rules are assumed to be true, and are available for use in
deduction.

Any logical conditions can be converted to multiple If–And–Then rules of the type
above. The well-known rules of propositional logic can be used to do this (Appendix B
gives these rules). For instance,

If A | B Then C

is equivalent to the two rules

If A Then C and If B Then C.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

[6] A simple algorithm for deduction 107

It should be noted that the rules in terms of the symbolic propositions follow the
normal rules of propositional logic, while the deductions operate on the state variables
describing the current knowledge about the propositions.

A rule of the form
If X Then Y (4.2)

can be written as
¬ X | Y is true (4.3)

which says that either Y is true, or ¬ X is true, or both are true (see Appendix B for
more details). Note that in this form the rule is symmetric in ¬ X and Y .

For the rule If X Then Y (that is, ¬ X | Y is true), if ¬ Y is true then ¬ X must be
true, for if X is true we get Y is true which is inconsistent. This can be written as

If ¬ Y Then ¬ X

which can also be written as ¬ X | Y is true.
Similarly the condition

A1 | A2 | · · · | An is true (4.4)

corresponds to the n rules
If Z Then Ak, (4.5)

where Z is the And of the ¬ A j excluding ¬ Ak (which is also the Not of the Or of
the A j excluding Ak , and thus this is derived from the equality of the rule (4.2) and
expression (4.3)).

So we see that one If–And–Then rule (as in (4.1)) converts to a symmetric Or
format that, if there are n terms, supplies n different If–And–Then rules that are
actually equivalent in terms of propositional logic. While the Or format for rules
is convenient for deduction, in that it is symmetric and converts easily to each of the
equivalent If–Then expressions, most people seem to prefer thinking and working
with the If–Then format. Fortunately the transformation to the Or format is purely
mechanical, and it is both possible and convenient to prepare rules in the If–And–
Then format. Converting all the rules to the form (4.4) gives the conjunctive normal
form.

Finally, we note several rules with the same variable after the Then (that is, in the
Or format (4.4) the rules contain the same variable) can be combined into one rule;
for example, the m rules

If X1 Then W, If X2 Then W, . . . , If Xm Then W

can be written as
If X1 | X2 | · · · | Xm Then W. (4.6)

This then provides a single rule for deduction of W from the available rules about W .
As indicated above, it will be assumed that the rules have been transformed so that
each X i is of the form U1 & U2 & · · · & Un where U j is either a simple proposition
or the Not of a simple proposition, and W is also of the form A or ¬ A.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

108 B. Whiten [7]

5. Deduction

Deduction is done by finding rules that, given the current values of some of the
propositions, can only be made true by giving a particular value to another proposition.
This occurs in an obvious manner for the proposition following the Then in a rule
having the If–Then format. Deduction in this paper will be done by evaluating, using
the state variables, the expression between If and Then, and giving its value to the state
variable of the proposition (or Not proposition) following the Then. This provides a
clear interpretation for deduction that extends to using partly true propositions.

However, as seen above, one rule gives rise to several different If–Then rules. For
symmetry and convenience (of the algorithm rather than the user) the Or form of the
rules is used within the deduction engine.

For deduction the proposition state variables are substituted into the rules. This
is done by replacing the Not of a proposition (¬ A) by the corresponding %false
value aF, and replacing a simple proposition A by its %true value aT. Note that
for consistency this requires that ¬ aT can be replaced by aF, and ¬ aF can be
replaced by aT. This substitution expresses the rules in terms of the known states
of the propositions. Note that there are no longer any Not operators in these rules, and
expressions can always be evaluated as the state variables are always defined.

Having made this substitution, the state variables can be treated as independent
numeric values. It is easily seen that transforming an expression and then converting
to the state variables usually gives the same result as converting to the state variables
and then making the transformation. For instance, for the transformation step
applying Not to the expressions A | B | C and aT

| bT
| cT gives ¬ A & ¬ B & ¬ C

and aF & bF & cF . Appendix C summarizes the difference between symbolic
manipulation of propositions (as given in Appendix B) and evaluation of expressions
containing the state variables.

The deduction engine needs to evaluate the And and Or operators that occur
between the If and Then terms in expressions similar to those in rules (4.5) and (4.6).
For these we choose the minimum and maximum:

a & b is evaluated as min(a, b),

a | b is evaluated as max(a, b).

Thus both the state variables and expressions involving them evaluate to numeric
values. These are the same rules that are often used in fuzzy set theory and various
other applications. They agree with normal logic for propositions that are true or
false, and are easily seen to give the expected results when applied to unknown values
(Appendix A gives some examples). They have convenient properties for calculation,
in that they are simple to apply, and if applied multiple times the result is not changed.
This last property means that rules can be applied in any order and repeated, without
the deductions giving a different result.

Values of the %true or %false variables between 0 and 100 indicate uncertainty
about the proposition. The min/max rules give an approximate way of dealing with
uncertainty which may be adequate for some applications.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

[8] A simple algorithm for deduction 109

The deduction engine needs to handle both the multiple If–Then deductions
possible from one rule in Or format, and also handle the results of several rules that
contain the same variable. The following subsections describe deduction from a single
rule, the deduction from multiple rules, and finally the complete deduction engine.

5.1. Single rules For the deductions possible from a single rule we note that there
are only two values that a variable can receive from the rule. These depend on which
variable is placed on the Then side of the rule. The rule

a1 | a2 | · · · | an (5.1)

written, for instance, as

If ¬ a2 & · · · & ¬ an Then a1

sets a1 to the value min(¬ a j ; j = 2 : n) (remember for the proposition A j that a j
is one of the state variables and ¬ a j is the other state variable). This is the same
as min(¬ a j ; j = 1 : n) if ¬ a1 is not the minimum, and if ¬ a1 is the minimum of
(¬ a j ; j = 1 : n) then the value for a1 is the second smallest of (¬ a j ; j = 1 : n).

Hence for the rule (5.1) the value of ak is set to min(¬ a j ; j = 1 : n) unless
¬ ak is the minimum value, in which case ak is set to the second smallest of the
(¬ a j ; j = 1 : n). Note that the second smallest value may be equal to the smallest
value. That is, the deduction calculation for a single rule (5.1) is

α :=min(¬ a j ; j = 1 : n)

β := secondsmallest(¬ a j ; j = 1 : n)

for j := 1 : n

a j := if ¬ a j = α then β else α

end for j.

Minor variations of this can also be used: for instance, the test condition could use the
subscript of the smallest value.

5.2. Multiple rules Multiple rules containing the same variable can be written as
(from (4.6))

If b1 | b2 | · · · | bm Then c,

where bi is the value determined (as in the previous subsection) for c from the i th
rule containing c. The value of c is max(bi ; i = 1 : m), and this can be calculated
incrementally as

c := 0;

for i = 1 : m

c :=max(c, bi)

end for i.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

110 B. Whiten [9]

It does not matter in what order the rules are applied or whether a rule is applied more
than once, as the maximization over all the rules ensures that the resulting value of c
will be the same.

5.3. Deduction engine We can now combine the deduction for a single rule with
that for multiple rules. The rules are assumed to have been converted to the Or format
giving the m rules

ai,1 | ai,2 | · · · | ai,ni ; i = 1 : m. (5.2)

Initial values are provided for the state variables for each proposition, some variables
will be given values corresponding to the initially known information, and the
remainder of the state variables are set to zero. The deduction algorithm combines
the deduction for a single rule and that for multiple rules to give:

Repeat until no further changes occur

for i = 1 : m

α :=min(¬ ai, j ; j = 1 : ni)

β := secondsmallest(¬ ai, j ; j = 1 : ni)

for j = 1 : ni

ai, j :=max(ai, j , if ¬ ai, j = α then β else α)

end for j

end for i

end repeat.

This algorithm repeatedly uses each rule to deduce the values of the variables in the
rule, and if the value is larger than the current value of the variable, saves the new
value. The algorithm will always converge as the ai, j can only take values that are
given initially to some of the ai, j , and ai, j can only increase.

6. Example

To see how the deduction algorithm operates it is suggested that the reader work
through some simple examples. It is often helpful to mentally or otherwise convert
the rules back to the various implied If–And–Then rules to assist in understanding the
algorithm steps. The following five rules:

1 If QUACKS And WADDLES Then DUCK
2 If JUMPS And CROAKS Then FROG
3 If DUCK Then Not FROG
4 If Not CROAKS Then QUACKS
5 If Not WADDLES And Not JUMPS Then WALKS

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

[10] A simple algorithm for deduction 111

convert to the following conditions using the %true and %false state variables.

Rule 1 quacksF
| waddlesF

| duckT Rule 2 jumpsF
| croaksF

| frogT

Rule 3 duckF
| frogF Rule 4 croaksT

| quacksT

Rule 5 waddlesT
| jumpsT

| walksT

Starting with the information: does not walk, waddle, or quack, which, using the
state variables, becomes

walk F 100 waddlesF 100 quacksF 100,

deduction then proceeds with the following steps (in each pass all of the rules are
evaluated in turn, however for brevity after the first pass only rules that result in a
change have been recorded below):

Pass 1, Rule 1 no change Pass 1, Rule 2 no change
Pass 1, Rule 3 no change Pass 1, Rule 4 croaksT 100
Pass 1, Rule 5 jumpsT 100

Pass 2, Rule 2 frogT 100 Pass 2, Rule 3 duckF 100

Pass 3 no changes

Hence the result of this deduction is FROG true, and DUCK false.
A second example is given in Appendix D. Again the reader in invited to work

through the example step by step to see how the algorithm operates.

7. Implementation

The implementation of the algorithm requires the storage of the rules and the storage
of the two state variables for each proposition. For the percentage scale one byte is
all that is needed for each variable. The ease and efficiency of implementation depend
largely on the method of storage used and on how ¬ x is determined from x .

One convenient scheme is to store the state variables in an array with the %true
values in the even locations and the corresponding %false in the following location.
Conversion from x to ¬ x as required in the algorithm can then be done with a bitwise
exclusive or of the location in the array with one, which turns an even subscript to the
following odd subscript, and an odd subscript to the preceding even subscript.

The rules can then be stored in a sparse matrix form, as a list of vectors that give
the subscripts of the variables in the Or form of each rule.

Other storage schemes can be envisaged and a useful exercise is to compare the
different possible schemes.

8. Comments

This deduction engine, although simple to implement, has a range of interesting
properties that are discussed in the following subsections.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

112 B. Whiten [11]

8.1. Preparation for deduction The deduction proceeds using three stages, of
which the first two prepare the rules for input to the deduction engine and the last is the
actual deduction. The first stage converts the rules to a standard form, which uses only
Or and Not applied to simple propositions, by applying classical propositional logic
(Appendix B). The next stage converts the rules to contain only the proposition state
variables (%true and %false). This stage removes all the Not operators from the rules.
The last stage is the deduction engine where the numeric values of the state variables
are combined with the rules to make deductions.

8.2. Propositions, variables and rules The normal rules of logic are applied to
propositions, while what is known about a proposition is given by the two state
variables. For deduction, rules and formulae are expressed using state variables which
are simple scalar values. This creates a difference between the symbolic expressions
of Boolean algebra that assume a proposition is either true or false, and the numeric
evaluation that uses what is actually known about the proposition. Numeric evaluation
of a formula, including the trivial formulae aT and aF, always gives a single scalar
value, and only one of a proposition’s state variables is determined by a single rule.
This provides a convenient mechanism to allow propositions to be unknown, party
known, or inconsistent (in the case of inconsistent information).

A formula X can be symbolically equated to a proposition A which creates the two
rules

If X Then A, If ¬ X Then ¬ A. (8.1)

In this manner an expression can be converted back to a proposition with the two state
variables. Without this equivalence with a simple proposition which needs the two
parts, expressions evaluate from the state variables to a simple numeric value, which
does not have an associated %false value unless the Not of the expression is also
evaluated.

8.3. Repeated rules The use of minimum and maximum for And and Or allows
the deduction algorithm to proceed without checking whether a rule has been used
multiple times. This simplifies the deduction algorithm. It is also convenient in
formulating the rules where it may not be easy to determine if a rule is redundant,
directly or as a combination of other rules. Redundant rules could slightly reduce or
increase the algorithm efficiency but do not have a detrimental effect on the result. The
next subsection shows how certain formally redundant rules can sometimes be added
to extend the deduction power of the algorithm.

8.4. Additional deductions Determining the values of logical propositions
that satisfy given logical relations is a typical example of an NP-complete
(nondeterministic polynomial [4, 15]) problem for which no efficient algorithms are
known, and solutions can expand exponentially in the size of the problem. The
deduction algorithm of Section 5.3 proceeds by passing information using the state
variables of the propositions, however some deductions cannot be made in this manner.
It is this limitation that allows the simple deduction algorithm. In some cases further

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

[12] A simple algorithm for deduction 113

deductions can be made by passing information in a combination of propositions. The
number of possible combinations can increase exponentially with the number of rules.
Where necessary, additional rules can be added to allow any required extra deductions
to be made.

For instance, for the rules

If ¬ B & ¬ C Then A, If B Then D, If C Then D (8.2)

with the data A is false, using the above deduction algorithm does not derive D as true.
Here if the rules are rewritten as

If ¬ A Then (B | C), If (B | C) Then D, (8.3)

we see that the deduction from ¬ A to D is transmitted via the expression B | C rather
than as the value of a single variable. This expression can be replaced in (8.3) by a
simple expression that is defined using the relations (8.1). Alternatively and more
simply, the additional rule

If ¬ A Then D

can be added to the rules (8.2), giving for deduction the four rules

aT
| bT
| cT, bF

| dT, cF
| dT, aT

| dT.

Both options are sufficient to allow the missing deduction to be made.
It is also possible to use a more complete method of deduction with the proposition

state defined by the %true and %false variables in a straightforward manner. However
the more complete deduction methods may require considerably more computation,
particularly when, as in the proposed algorithm, deductions about all the propositions
are requested.

8.5. Partly true rules If a partly true rule is needed it is easily implemented by
introducing into the rule a partly true proposition that describes the extent to which the
rule is true. For instance, the rule If A Then B is changed to If A & P Then B where
P is the variable that determines how true the rule is. The %false value of this variable
gives the extent to which the rule can be deduced as not true.

8.6. Extending Horn clauses A Horn clause is of the form [10]

If A & B & · · · & D Then E,

where A to E are simple propositions (or E can be the constant false, that is, F) and the
clause contains no negation operators. This is a similar form to that used for deduction
after conversion to only %true and %false variables. However, unlike forward chaining
using Horn clauses, both true and false values can be deduced and all of the multiple
forms of the If–And–Then rules are used for deduction.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

114 B. Whiten [13]

8.7. Excluded middle The logic rule excluding values other than true and false
(X | ¬ X = T) has long been controversial. For this deduction engine X | ¬ X , being
symbolic, is assumed to be true regardless of the state of knowledge about X , which
could be unknown. Having converted to the state variables the corresponding xT

| x F

no longer has the corresponding value of 100%. This is because state variables
describe what is known about the proposition, rather than a logical requirement based
on the proposition being either true or false. A rule A | ¬ A becomes If aT Then aT

and also If aF Then aF, which while clearly true are not useful.
Similarly, the expression X & ¬ X is treated as false for symbolic calculations, but

when evaluated using the state variables xT & x F may well give values greater the
zero, indicating some level of inconsistency. The propagation of inconsistencies can be
reduced if deductions are restricted to giving numeric values greater than the numeric
value of the Or form of the rule (expressions (4.4) and (5.2)).

8.8. Fuzzy set logic A fuzzy set description of the logic values can be incorporated
by using a cumulative description of the fuzzy set to describe %true and also %false.
Then c := a | b is evaluated using the inverse cumulative fuzzy distribution as

cdf−1
c (t) :=max(cdf−1

a (t), cdf−1
b (t)),

where t goes from zero to one or takes certain discrete values between zero and one.
Similarly, for c := a & b,

cdf−1
c (t) :=min(cdf−1

a (t), cdf−1
b (t)).

When the cumulative distribution functions are a step function from zero to one these
reduce to the simple %true and %false case.

8.9. Efficiency In most cases the algorithm given requires only a few iterations and
the amount of computation needed is not a problem. Each iteration takes a time
proportional to the total number of proposition mentions in the rules. However, the
algorithm can be made more efficient in several ways, including by calculating α
and β in the same loop and also noting that if α is zero the inner deduction loop
can be skipped. A reordering of the rules can reduce the number of iterations needed.

For large rule bases with few rules active it may be more efficient to only evaluate
the rules containing state variables that have changed in value. This requires some
preprocessing of the data to create a table giving the rules that can produce new
deductions for a change in each of the state variables. Then an array containing one
element for each rule can contain zero if the rule does not need to be evaluated, or
elements of a linked list of the rules pending evaluation. Rules are evaluated from the
beginning of the linked list until the list becomes empty. When a state variable changes
value, the rules that use that state variable (that is, ¬ ai, j from expression (5.2)) are
added to the end of the list if they are not already on the list.

It is also possible to maintain and update the values of α and β for each rule as
variables used by the rules are updated. This adds another portion of complexity to the
algorithm and, depending on the particular rule base, may or may not give a benefit.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

[14] A simple algorithm for deduction 115

9. Conclusions

For symbolic manipulation of rules the well-known formulae of propositional logic
are used to transform rules (or any other logical condition) to the Or format, where
each rule contains only the Or binary operator with the Not operator preceding some
of the propositions, and there is an implied And between the rules (conjunctive normal
form). For the most common rule format (If–And–Then) this transformation is
trivial.

Two numeric state variables are used to describe what is currently known about a
proposition. One, the %true, gives the extent of evidence that the proposition is true,
and the other, the %false, gives the extent of evidence that the proposition is false.
These state variables are always defined and thus expressions containing them can
always be evaluated to a numeric percentage.

The deduction engine, which is described in only a few lines of code, is based on
deduction using the multiple If–Then rules that come from rules in the Or format.
Evaluation of expressions containing the state variables is done using minimum for
And, and maximum for Or. This allows both redundant rules and multiple evaluations
of the same rule, thus simplifying both rule development and the deduction algorithm.

The use of %true and %false to describe the known status of a logical proposition
has been readily accepted by users of this deduction engine. This logic system has
potential uses beyond the deduction algorithm in this paper.

Several extensions of the basic algorithm are possible including: partly true rules,
use of fuzzy set based logic, and more efficient calculation.

A Matlab implementation of this algorithm is available from:

http://www.mathworks.com/matlabcentral/fileexchange/9218

or can be found by a search for Matlab EXPERT1.

Acknowledgements

The assistance of Graham Sheridan in checking parts of an earlier version of
this paper is gratefully acknowledged. Useful suggestions from the referees are
acknowledged.

Appendix A. Result tables for %true and %false logic

Table 1 gives how the operator Not is interpreted when used in an expression and
in rules. This is followed by sample tables for the operators Or (Table 2) and And
(Table 3). Note that in these tables both state variables are given for completeness,
although only the value of one is used in the evaluation of the expression. The other
tables for these operators are easily constructed.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

http://www.mathworks.com/matlabcentral/fileexchange/9218
https://doi.org/10.1017/S1446181109000352

116 B. Whiten [15]

TABLE 1. Result table for Not in expressions and rules.

If T Then X If T Then ¬ X

Proposition In expressions Updated X Updated X

State xT x F X = xT
¬ X = x F xT x F xT x F

Unknown 0 0 0 0 100 0 0 100
False 0 100 0 100 100 100 0 100
True 100 0 100 0 100 0 100 100

Inconsistent 100 100 100 100 100 100 100 100

TABLE 2. Result table for operator Or in X | Y (which becomes the numeric value xT
| yT given in the

lower right partition).

yT, yF

X | Y (xT
| yT) 0, 0 0, 100 100, 0 100, 100

0, 0 0 0 100 100
xT, x F 0, 100 0 0 100 100

100, 0 100 100 100 100
100, 100 100 100 100 100

TABLE 3. Result table for operator And in X & ¬ Y (which becomes the numeric value xT & yF given
in the lower right partition).

yT, yF

X & ¬ Y (xT & yF) 0, 0 0, 100 100, 0 100, 100

0, 0 0 0 0 0
xT, x F 0, 100 0 0 0 0

100, 0 0 100 0 100
100, 100 0 100 0 100

Appendix B. Rules for classical propositional logic

The basic identities of propositional logic are given below and should be compared
with the rules that apply to the state variables %true and %false given in Appendix C.

For operator Not (¬):

¬ (¬ X)≡ X,

¬ T≡ F, ¬ F≡ T.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

[16] A simple algorithm for deduction 117

For operator And (&):

X & X ≡ X, X & Y ≡ Y & X, X & T≡ X, X & F≡ F,

X & (Y & Z)≡ (X & Y)& Z ≡ X & Y & Z ,

F & F≡ F, F & T ≡ F, T & F≡ F, T & T≡ T.

For operator Or (|):

X | X ≡ X, X | Y ≡ Y | X, X | F≡ X, X | T≡ T,

X | (Y | Z)≡ (X | Y) | Z ≡ X | Y | Z ,

F | F≡ F, F | T≡ T, T | F≡ T, T | T≡ T.

For combinations of & and |:

X & (Y | Z)≡ (X & Y) | (X & Z),

X | (Y & Z)≡ (X | Y)& (X | Z).

And for combinations including ¬ :

X & ¬ X ≡ F, X | ¬ X ≡ T,

¬ (X & Y) ≡ ¬ X | ¬ Y, ¬ (X | Y) ≡ ¬ X & ¬ Y.

Proofs can be performed by application of the basic formulae above. Alternatively,
as the propositions can be restricted to true or false values, an enumeration of all
possible values can be done. If two expressions have the same values for all possible
inputs the expressions are identical, for instance:

X Y ¬ X | Y If X Then Y
F F T T
F T T T
T F F F
T T T T

Thus:
(If X Then Y)≡ (¬ X | Y).

Statements of the form If X Then Y when X is false often require an explanation.
Firstly, in making deductions it is required that all the given rules are made true.
Looking at the possible cases where the rule is assumed to be false gives:

if the rule If X Then Y is false when X is false (regardless of the value of Y),
this would require X to be true to make the rule true—clearly not the meaning
required for the rule;

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

118 B. Whiten [17]

if the rule If X Then Y is false when X and Y are false, and true when X is false
and Y is true, X false would require Y true to make the rule true—again not the
meaning required;
similarly, if the rule If X Then Y is true when X and Y are false, and false
when X is false and Y is true, X false would require Y to be false.

Hence the only way this rule does not give deductions contrary to its conventional
meaning is to have If X Then Y true when X is false as in the above table. When X is
false no deduction is made as the rule is already true.

Further identities involving If–Then can be derived:

(If X Then Y)≡ (If ¬ Y Then ¬ X),

If (If X Then Y)& (If Y Then Z) Then (If X Then Z),

(If X Then Z)& (If Y Then Z)≡ (If X | Y Then Z),

(X ≡ Y)≡ (If X Then Y)& (If ¬ X Then ¬ Y).

Appendix C. Rules for deduction

Deduction in this paper is done using rules in the form If X Then U with the
value X being evaluated using

a & b ≡min(a, b), a | b ≡max(a, b) (C.1)

after expressing X in terms of the %true and %false state variables. This value
then sets a state variable for U which is required to be a simple proposition, or the
Not of a simple proposition. It is again noted that the lower-case state variables
represent numeric values rather than logical propositions, and both these variables
and expressions evaluate to a purely numeric value. The use of percentages has been
chosen to emphasize this. It is probably more straightforward to convert the logical
expressions to the required form before introducing the numeric state variables for
evaluation. However, the following gives rules for symbolic manipulation and numeric
evaluation of the state variables.

Expressions of state variables involving Not can be handled by converting back
to an expression using the propositions, transforming using the above identities so
that the Not operates on simple propositions, and then converting back to the state
variables. For instance:

¬ (aT
| bF
| cT) → ¬ (A | ¬ B | C) = ¬ A & B & ¬ C → aF & bT & cF.

It is easy to verify that the interpretation of And and Or as minimum and
maximum, together with T= 100% and F= 0%, satisfies the rules for And and Or
given in Appendix B. A direct evaluation of Not is not defined; however, Not can be
defined as an operator that converts to expressions that can be evaluated. Rules for the
direct transformation of expressions using the state variables can be derived. These,

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

[18] A simple algorithm for deduction 119

not surprisingly, are similar to those for propositional logic, with the exception that the
four identities

¬ T≡ F, ¬ F≡ T, X & ¬ X ≡ F and X | ¬ X ≡ T

do not convert to state variables, as these involve corresponding %true and %false state
variables which are independent. The conversion rules ¬ aT

= aF and ¬ aF
= aT

replace these four rules.
Thus the rules that can be used for manipulation of expressions of the numeric state

variables are:

¬ aT
≡ aF, ¬ aF

≡ aT , (C.2)

x & x ≡ x, x & y ≡ y & x, x & 100%≡ x, x & 0%≡ 0%,

x & (y & z)≡ (x & y)& z ≡ x & y & z,

x | x ≡ x, x | y ≡ y | x, x | 0%≡ x, x | 100%≡ 100%,

x | (y | z)≡ (x | y) | z ≡ x | y | z,

x & (y | z)≡ (x & y) | (x & z), x | (y & z)≡ (x | y)& (x | z),

¬ (x & y) ≡ ¬ x | ¬ y, ¬ (x | y) ≡ ¬ x & ¬ y, (C.3)

(If x Then y) ≡ ¬ x | y.

Similarly to the rest of this paper x , y and z can be expressions, while aT and aF are
simple numeric variables. For evaluation, the two rules (C.1) are used. As there is
no rule for evaluation of Not to a numeric value the above rules (particularly (C.2)
and (C.3)) need to be applied to remove all Not operators before a numeric value can
be obtained.

Appendix D. Example

As a simple example consider a few of the options for optimization programs. First
the type of target to be minimized.

LINTARGET The target is a linear expression
QUADTARGET The target is a quadratic function
SUMSQUARES The target is a sum of squares
OTHERTARGET The target is not one of the above

These four propositions are mutually exclusive, giving the following rules:

1 If LINTARGET Then ¬ QUADTARGET
2 If LINTARGET Then ¬ SUMSQUARES
3 If LINTARGET Then ¬ OTHERTARGET
4 If QUADTARGET Then ¬ SUMSQUARES
5 If QUADTARGET Then ¬ OTHERTARGET
6 If SUMSQUARES Then ¬ OTHERTARGET

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

120 B. Whiten [19]

Next we present some propositions giving the type of constraints.

NOCONSTR No constraints
LININEQ Linear inequality constraints
OTHERCONSTR Other constraints

Again these are mutually exclusive, giving the following rules:

7 If NOCONSTR Then ¬ LININEQ
8 If NOCONSTR Then ¬ OTHERCONSTR
9 If LININEQ Then ¬ OTHERCONSTR

Finally, to maintain this example at a reasonable size, we give only a few of the
possible types of optimization programs:

LINPROG The problem is a linear programming problem
QUADPROG The problem is a quadratic programming problem
LEASTSQ The problem is one of least squares without constraints

These are related by the following rules to the propositions defined above:

10 If LINTARGET & LININEQ Then LINPROG
11 If QUADTARGET & LININEQ Then QUADPROG
12 If SUMSQUARES & NOCONSTR Then LEASTSQ

As these are in fact equivalence relations the following additional rules apply:

13 If LINPROG Then LINTARGET
14 If LINPROG Then LININEQ
15 If QUADPROG Then QUADTARGET
16 If QUADPROG Then LININEQ
17 If LEASTSQ Then SUMSQUARES
18 If LEASTSQ Then NOCONSTR

Rules 10–12 are in the form of a decision table; however, rules that the column entries
are mutually exclusive and that the rows are an equivalence have been added. This
type of conversion from a decision table could well be automated and the algorithm in
this paper is not limited to decision table type problems.

The rules above convert to the following using the %true and %false state variables.

Rule 1 lintargetF
| quadtargetF Rule 2 lintargetF

| sumsquaresF

Rule 3 lintargetF
| othertargetF Rule 4 quadtargetF

| sumsquaresF

Rule 5 quadtargetF
| othertargetF Rule 6 sumsquaresF

| othertargetF

Rule 7 noconstrF
| linineqF Rule 8 noconstrF

| otherconstrF

Rule 9 linineqF
| otherconstrF Rule 10 lintargetF

| linineqF
| linprogT

Rule 11 quadtargetF
| linineqF

| quadprogT

Rule 12 sumsquaresF
| noconstrF

| leastsqT

Rule 13 linprogF
| lintargetT Rule 14 linprogF

| linineqT

Rule 15 quadprogF
| quadtargetT Rule 16 quadprogF

| linineqT

Rule 17 leastsqF
| sumsquaresT Rule 18 leastsqF

| noconstrT

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000352

[20] A simple algorithm for deduction 121

Starting with the data

linprogT 100,

deduction proceeds with the following steps:

Pass 1, Rule 13 lintargetT 100 Pass 1, Rule 14 linineqT 100

Pass 2, Rule 1 quadtargetF 100 Pass 2, Rule 2 sumsquaresF 100
Pass 2, Rule 3 othertargetF 100 Pass 2, Rule 7 noconstrF 100
Pass 2, Rule 9 otherconstrF 100 Pass 2, Rule 15 quadprogF 100
Pass 2, Rule 17 leastsqF 100

Pass 3 no changes

Thus it is determined that a linear target and linear inequalities are needed, and the
remaining propositions are all false.

In a second example to demonstrate the effect of inconsistent data, the initial data
suggests that the result might be quadratic programming by setting 50% for the value
for quadprogT but provides other data inconsistent with this. The data for this example
is:

quadprogT 50 linineqT 100 lintargetT 100.

For this input data case the deduction steps are:

Pass 1, Rule 1 quadtargetF 100 Pass 1, Rule 2 sumsquaresF 100
Pass 1, Rule 3 othertargetF 100 Pass 1, Rule 7 noconstrF 100
Pass 1, Rule 9 otherconstrF 100 Pass 1, Rule 10 linprogT 100
Pass 1, Rule 15 quadtargetT 50 Pass 1, Rule 15 quadprogF 100
Pass 1, Rule 17 leastsqF 100

Pass 2 no changes

This case is identified as a linear programming problem, but additionally two
propositions are identified as partly inconsistent, namely QUADPROG with 50 %true
& 100 %false, and QUADTARGET also with 50 %true & 100 %false.

References

[1] N. D. Belnap, “A useful four-valued logic”, in: Modern uses of multiple-valued logic, (eds
J. M. Dunn and G. Epstein), (D Reidel Publishing, Dordrecht, Holland, 1975) 8–37.

[2] M. Ben-Ari, Mathematical logic for computer science (Springer, London, 2004).
[3] D. M. Bourg and G. Seemann, AI for game developers (O’Reilly, Sebastopol, CA, 2004).
[4] Clay Mathematics Institute, 2009. Millennium Problems, N vs NP.

http://www.claymath.org/millennium/.
[5] C. Forgy, “Rete: a fast algorithm for the many pattern/many object pattern match problem”,

Artificial Intelligence 19 (1982) 17–37.
[6] M. I. Ginsberg, “Multivalued logics: a uniform approach to reasoning in artificial intelligence”,

Comput. Intelligence 4 (1988) 265–316.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
http://www.claymath.org/millennium/
https://doi.org/10.1017/S1446181109000352

122 B. Whiten [21]

[7] R. Hahnle, “Advanced many-valued logic”, in: Handbook of philosophical logic, 2nd ed, Volume 2
(eds D. M. Gabbay and F. Guenthner), (Kluwer Academic, Dordrecht, Holland, 2001) 297–395.

[8] A. A. Hopgood, The state of artificial intelligence, Volume 65 of Advances in Computers
(ed. M. V. Zelkowitz), (Elsevier, Amsterdam, 2005) 1–75.

[9] S. N. Ramadas, A. Tweedie, L. O’Leary and G. Hayward, A rule based design toll for ultrasonic
transdusers and arrays, Paper #1091, International Congress on Ultrasonics, Vienna, Apr. 9–13,
2007, Session R252007.

[10] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach (Pearson Education,
London, 2003).

[11] Stanford Encyclopedia of Philosophy, Paraconsistent.
http://plato.stanford.edu/entries/logic-paraconsistent/.

[12] A. Stern, Matrix logic (North Holland, Amsterdam, 1988).
[13] A. Urquhart, “Basic many-valued logic”, in: Handbook of philosophical logic, 2nd ed, Volume 2

(eds D. M. Gabbay and F. Guenthner), (Kluwer Academic, Dordrecht, 2001) 249–295.
[14] Wikipedia, 2009. Paraconsistent logic, http://en.wikipedia.org/wiki/Paraconsistent_logic.
[15] Wikipedia, 2009. NP-complete. http://en.wikipedia.org/wiki/NP-complete.
[16] R. G. Wolf, “A survey of many-valued logic (1966–1974)”, in: Modern uses of multiple-valued

logic, (eds J. M. Dunn and G. Epstein), (D Reidel Publishing, Dordrecht, 1975) 167–323.

https://doi.org/10.1017/S1446181109000352 Published online by Cambridge University Press

http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://plato.stanford.edu/entries/logic-paraconsistent/
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/Paraconsistent_logic
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
https://doi.org/10.1017/S1446181109000352

