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Bayesian Social Science Statistics 1

1 Introduction: The Purpose and Scope of This Element
The Bayesian philosophy about statistical inference is much older than the
better-established traditional Frequentist/Likelihoodist paradigm, starting with
Bayes (1763) and considered by Laplace, Gauss, and others. Scholars such as
Jeffreys, Zellner, Savage, de Finetti, and Lindley reactivated interest in Bayes-
ian methods in the middle of the last century in response to observed deficien-
cies in classical techniques. Unfortunately many of the specifications devel-
oped by these early Bayesians, while superior in theoretical foundation, led to
mathematically intractable forms. This problem has been famously solved in
recent years by a revolution in statistical computing techniques. Yet regrettably
these remarkable developments have not permeated all data-analytic academic
fields including the social and behavioral sciences in particular. This may be
because of a lack of effective introductory material.
The Bayesian paradigm is ideally suited to the type of data analysis per-

formed by social scientists because it recognizes the mobility of population
parameters, incorporates prior knowledge that researchers possess, and updates
estimates as new data are observed. Because most empirical work in the social
sciences is observational rather than experimental, subjects are rarely cooper-
ative, and systematic effects are often more elusive than in other fields, the
Bayesian approach to modeling uncertainty in parameter estimates provides a
more robust and realistic picture of the data generating process.
Most people would be surprised to hear that there are different philosophical

views within statistics. In fact, this led to a major split in the discipline through
most of the twentieth century. A big reason for this schism was that most of
the giants of the adolescent age of statistics in the late nineteenth and early
twentieth century were openly hostile towards the Bayesian paradigm. Another
reason was (notice the past tense) that computing resources were not available
in this period for producing useful Bayesian results for the types of models
that statisticians and others wanted to specify. Neither of these two issues are
important now. It is still useful to understand how the typology of statistics still
permeates written and spoken discussions today.
The first generation of modern statisticians were Frequentists from the idea

of performing some experiment or test multiple times using a long stream of
independent observations from the same data generating source. If a frequen-
tist wanted to determine the probability of heads when presented with a new
coin, the procedure would be to flip it into a sand pit hundreds or thousands
of times and record the long-term results. This comes from the classic Ney-
man/Pearson/Wald setup in the late nineteenth centurywhere the orthodox view
is sampling is infinite (or as long as desired) and decision rules can be sharp.
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2 Quantitative and Computational Methods for the Social Sciences

They also mostly studied physical phenomenon and therefore viewed many
target population parameters as fixed by nature where variation occurred from
less than perfectly accurate instruments and observers. This idea of replicated
tests is a key part of frequentist statistics and led to classic frequentist proce-
dures such as the 1 − α confidence interval: an interval that over 100(1 − α)%
of replications contains the true value of the parameter on average. To this day
the dichotomy between pure frequentism and the regular practice of social sci-
ence statistics makes this definition confusing to both students and practitioners
since it is literally built on the idea of repeating the exact same experiment
multiple times, which few of us are fortunate enough to be able to do. Since
variability to a frequentist rests in the data and the parameters are assumed
fixed points by nature, the key probabilistic quantity of interest is the proba-
bility of some function of the data given some hypothesis: p( f (data)|HA). The
objective is a point estimate and the associated variance of this estimate that
informs a formal procedure, setting some α level set in advance in a distri-
butional test. In this setup HA is accompanied by a complementary hypothesis
HB, meaning that the state of the world is explained by either. This sets up clear
definition and calculation of Type I and Type II errors. The frequentist accepts
HA if p( f (data)|HA)< α and accepts HB if p( f (data)|HB) ≥ α. That sentence
should feel uncomfortable to every practicing empirical social scientist based
on the use of the word “accept.” This is the critical difference between actual
frequentists and others who do not have a perceived infinite flow of independ-
ent identically distributed data and sharp complementary hypotheses. Nearly
all social scientists have limited, often one-off, datasets that are contextual in
time and space and cannot be replicated 19 more times to achieve a true 0.95
confidence interval. This why nearly everyone we know in the social sciences
who calls themselves a frequentist is not a frequentist.
Whywere the leading figures of early statistics openly hostile to the Bayesian

approach? Fisher in particular objected to the uniform distribution as a choice
of prior distribution, and most of them disliked the idea of inverting the order
of conditional probability with Bayes’ Law, which will be discussed at length
in the next section. But there were other fundamental philosophical differences
that ran counter to frequentist thinking. From the Bayes/Laplace/de Finetti tra-
dition, all unknown quantities are treated probabilistically by assigning them
a distribution or probability value, and the state of the world can always be
updated by conditioning on new information as it arrives. In the absence of an
unending stream of data, the data that do arrive are treated as observed and fixed
by the limited sampling process. The most caustic arguments, though, centered
around the interpretation of probability. To a Bayesian probability is not from
a frequent, long-run, series of experiments but instead based on the “degree of
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Bayesian Social Science Statistics 3

belief” given necessarily limited information before or after a specific dataset
arrives. This has been called a “subjective” interpretation of probability but this
is a poor description since what the Bayesian interpretation really is based on is
what does the currently existing evidence imply about an unknown parameter,
say θ, using probability as the mechanism of description. So the key quantity
of interest is p(θ | f (data)), which is a distribution. Here f (data) is any applica-
ble function of the data from a model or other treatment. Therefore instead of
resorting to mechanical hypothesis testing a Bayesian can ask questions such
as what is the probability that θ is greater than zero? Or what is the probability
that a specific treatment changes the status of the treated group over the con-
trol group? Bayesians construct these inferential statements by taking a prior
probability statement about the quantity of interest p(θ) and conditioning it on
a new set of data to produce an updated version, p(θ | f (data)), providing new
knowledge if the data are informative.
The overall history of Bayesian statistics as described earlier is an almost

soap opera like tale of scientific sociology. The Reverend Thomas Bayes died
in 1761 without publishing his article “An Essay towards Solving a Problem
in the Doctrine of Chances,” which was then submitted on his behalf by his
friend Richard Price (they are both buried in the small Bunhill Cemetery in cen-
tral London, which you can visit). Some have conjectured that Bayes did not
believe in or did not have full confidence in this work, therefore making Bayes
not “Bayesian.” This idea was later revisited in the late nineteenth through the
middle twentieth centuries in particular by scholars such as Jeffreys, de Finetti,
Good, Savage, Lindley, and Zellner. Their work was difficult because many of
the giants of the time in statistics such as Pearson (Karl), Neyman and Pearson
(Egon), Wald, and, of course, Fisher were openly hostile to the idea of Bayes-
ian inference, particularly obtaining p(θ | f (data)) using uniformly distributed
prior distributions. Fascinating accounts can be found in Stigler (1982), Stigler
(1983), and Dale (2012). The non-Bayesian charges included: priors are always
assigned subjectively, inverting likelihood functions is illogical, and it is easy
to specify Bayesian models such that unknown parameter estimation is difficult
or impossible. The latter insult was the only one that had an element of truth to
it, but this was solved in 1990 through the introduction of Markov chain Monte
Carlo to use computational power rather than brute analytical derivation. We
now exist in an era where there are no intellectual or analytical impediments to
specifying and estimating Bayesian models.
This discussion here so far has left out the bulk of as-practiced social sci-

ence statistics, which uses limited data collection resources to find evidence
for an effect through statistics calculated once in space and time. This is gen-
erally from the central challenge in studying humans socially, politically, or
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4 Quantitative and Computational Methods for the Social Sciences

biomedically: we are not fixed parameters of nature, and groups of humans
interacting with each other are even less so. So because of the instability of
human behavior, datasets tend to be limited in generality, and contextual to
specific phenomenon being studied at that moment. It would be terrific to go
back and get substantially more survey data relevant to the 2016 US presi-
dential election to understand why predictions were so wrong, but we cannot
do that even with unlimited funding. Armed with a single point estimate and
uncertainty around it for some phenomenon of interest (maximum likelihood
estimates as described in Section 3), social scientists are clearly closer to the
Bayesian paradigm. In fact, all such models are special cases of Bayesian mod-
els with a uniform prior distribution (Section 4), and as the data size gets very
large they are identical for any nonpathological choice of the prior distribu-
tion (also Section 4). So in fact the overwhelming majority of empirical social
scientists are actually just Bayesians who do not yet know it. Hopefully this
discussion is motivation to read on.
It is important to provide some pedagogical notes at this beginning point in

the Bayesian journey provided here. First, one cannot do meaningful Bayesian
inference in the social sciences or elsewhere without some calculus operations.
This is perhaps one of the traditional impediments for wide acceptance and use
of Bayesian statistics. So there will be some basic calculus in the statistical
theory presented in a very gentle way here. It will be as direct and simple
as possible with an emphasis on a general understanding of the procedures
rather than detailed mathematical expositions. In the twenty-first century prac-
ticing empirical social scientists, data scientists, and others performing daily
data analysis tasks do not need to do routine calculus calculations because
almost invariably the computer does it for them. So the key task is to under-
stand what these operations do rather than master the specific mathematical
processes.
There are two primary calculus tools: differentiation and integration. Dif-

ferentiation takes a function and determines what is the instantaneous rate of
change for that function at a specific point. If you are driving a car you have
some velocity but in the course of traveling you have changes in that velocity.
For instance, after the light turns green you hit the gas and are not yet going very
fast but your instantaneous rate of change is very high and positive because you
are speeding up. Conversely, if you are cruising at a relatively steady state on
the highway your instantaneous rate of change is very low even at high speed.
Then as you see a traffic light or obstacle ahead you start to slow down using
the break pedal and your instantaneous rate of change becomes large and nega-
tive. We often use derivatives to make a statement like this on functions to find
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Bayesian Social Science Statistics 5

points of interest like where this instantaneous rate of change is zero, which
is a local maxima or minima of a curvilinear form. Integrals are instead about
space. They can measure how much area is there under a curve to the x-axis
between two points on that x-axis, like a slice of the curve above zero. This
is very useful when dealing with probability functions and general Bayesian
inference as we will shortly find out. The key point is to not worry so much
about the notation, which some people find odd or intimidating looking, but to
think broadly about what is being accomplished with these operations.
Second, we strongly emphasize using computer simulation to produce

desired results rather than analytical calculations, which are of course tradi-
tional in twentieth-century Bayesian statistics. It turns out that nearly all of
the quantities of interest can be produced faster and with less effort by requir-
ing a machine to do repetitive work. This theme is also central to progress in
Bayesian statistics that occurred right at the end of the twentieth century and
led to enormous leaps in our ability to specify and estimate Bayesian models
of interest. We will repeatedly make use of the simulation idea that quantities
of interest, like estimated parameters, can be effectively described by generat-
ing many samples from the relevant distribution and then treating these values
like data and doing simple summaries. This idea goes back to the dawn of
computing and is vitally important in all areas of statistics in the twenty-first
century.
All code and data used throughout this element are stored in the GitHub

repository: https://github.com/jgill22/Bayesian.Social.Science.Statistics, and
can also be conveniently executed online through the Code Ocean capsule
located at: https://codeocean.com/capsule/8772484.

2 Basic Probability Principles and Bayes Law
Knowing basic probability theory is a requirement for understanding statistics,
and even more so Bayesian statistics. Therefore in this section we introduce
the required fundamentals and interested readers can consult Gill (2014) for
more details. Probability is nothingmore than a standard way to describe uncer-
tainty. When unknown or future events are assigned a small positive number
near zero we think of them as being very unlikely to occur. Conversely when
these events are assigned a number less than but near one we think of them
as being very likely to occur. When we perform the experiment of flipping a
fair coin then each event/outcome, heads versus tails, is equally likely to hap-
pen so we assign them both the probability of occurrence of 0.5. Implied by
this brief discussion is a set of rules that map the occurrence of events to their
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6 Quantitative and Computational Methods for the Social Sciences

probability of happening. Start with a set of nonoverlapping discrete events,
A1,A2, . . . ,Ak that make up a sample space, S, which is the collection of all
things that can happen for this experiment. The probabilities associated with
these events are denoted p(A1),p(A2), . . . ,p(Ak), which are just functions in the
spirit of f (x) = x2 except we use p() instead of f () as reminder that these are
probability functions. Returning to the example of flipping a fair coin we have
A1 = heads, and A2 = tails, and p(A1) = p(A2) = 0.5. First we stipulate that:

• the probability of any realizable event is between zero and one: p(Ai) ∈ [0 :
1] for all of the Ai in i = 1, . . . k in the sample space S.

Next we require that one of the events must occur:

• some event happens with probability one: p(S) = 1.

The next rule is a little more tricky and states that if we are considering whether
any of a sub-collection of events can occur, say A1 or A3 or A7, then the asso-
ciated probability of this set is the sum of their individual probabilities. More
formally:

• The probability of unions (collections) of n “pairwise disjoint” (that
is, non-overlapping) events is the sum of their individual probabilities:
p(⋃n

i=1 Ai) =
∑n

i=1 p(Ai)

(where
⋃

means “union”). So p(A1
⋃

A3
⋃

A7) = p(A1) + p(A3) + p(A7). To
further illustrate this last rule return to flipping a fair coin from above: “the
probability that we get heads or tails must be one, p(A1

⋃
A2) = p(heads) +

p(tails) = 1. In total these rules are called the Kolmogorov probability axioms
(Kolmogorov, 1933), and they codify the modern definition of a probabil-
ity function. Before this definition was institutionalized by mathematicians,
authors would present their version of these statements at the beginning of the
paper and prove or derive some objective based on their version, which meant
that readers had to exert extra effort to understand the work than was actually
necessary.
The next important principle to understand is conditional probability, which

is simply the idea that prior information may change the probability of interest.
For example if we are interested the probability of rolling a with a far die,
and we know in advance that the outcome is an even number, then sample space
reduces from all six outcomes to the set { , , } so now p( ) = 1

3 instead of
1
6 . In more formal notation for eventA, the unconditional (marginal) probability
is p(A) and the conditional probability given a prior event B is p(A|B), “the
probability of event A given event B has occurred.” If B is meaningful in the

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009341189
Downloaded from https://www.cambridge.org/core. IP address: 18.188.19.96, on 17 Nov 2024 at 20:17:33, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009341189
https://www.cambridge.org/core


Bayesian Social Science Statistics 7

calculation of p(A) then p(A) , p(A|B) and we would not want to ignore this
information. This is calculated mathematically by:

p(A|B) = p(A ∩ B)
p(B) , (2.1)

given that p(B) , 0. Here ∩ in the numerator indicates “joint” or “intersec-
tion” meaning that the two events both occur, “A and B.” Henceforth ∩ will
be replaced with a comma, as in p(A,B), which is more common in statistical
notation for the joint probability of A and B. For the die rolling experiment we
know that p( ,even) = 1

6 because the only way both could occur is if we roll a
. Since we know that the probability of rolling an even number is 1

2 , then the
calculation of the conditional probability previously is calculated by:

p(A|B) = p(A,B)
p(B) =

1/6
1/2 =

1
3
.

Obviously this principle applies to more elaborate settings as we will see with
Bayesian inference. The important idea to remember is that if we have prior
information relevant to a probability calculation we would like to perform, then
it will affect the resulting probability number when conditioned upon.
Conditional probability is order dependent meaning that the probability of

event A given that event B has occurred is not the same as the probability of
event B given that event A has occurred:

p(A|B) , p(B|A) and therefore from above
p(A,B)
p(B) ,

p(B,A)
p(A) ,

although

p(A,B) = p(B,A)

because order does not matter for joint probability statements just like “and”
does not imply an order in English language statements. Given this fact we can
write the two conditional probability statements accordingly and rearrange:

p(A|B) = p(A,B)
p(B) p(B|A) = p(A,B)

p(A)
p(A|B)p(B) = p(A,B) p(B|A)p(A) = p(A,B).

Therefore:

p(A|B)p(B) = p(B|A)p(A) −→ p(A|B) = p(A)
p(B)p(B|A), (2.2)

meaning that we can switch the order of conditioning by multiplying with the
ratio of marginal distributions in the order of the left-hand-side. This is so
important that it has a special name, Bayes’ Law from Bayes (1763), although
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8 Quantitative and Computational Methods for the Social Sciences

we know that Laplace (1811) independently discovered this idea around the
same time. In fact, this statement is the core of Bayesian inference in statistics
as will be covered in detail in Section 4. The important idea to remember is
that order is critical in conditional probability statements, and there is even a
name formisunderstanding this principle called the “prosecutor’s fallacy” since
courtroom arguments sometimes make this exact mistake.
Consider the following example from the early months of the Covid pan-

demic as reported in The New York Times (August 6, 2020) for the city of
New York that previous spring at the height of their pandemic emergency. The
reported probabilities in the city population for having had Covid (Cov) and
therefore having antibodies, along with test accuracy, are for randomly chosen
resident:

• the estimated probability of Covid infection: p(Cov) = 0.10 (prevalence)
• the probability of correct positive (Pos) classification: p(Pos|Cov) = 0.875
(sensitivity)

• the probability of correct negative (Pos∁) classification: p(Pos∁ |Cov∁) =
0.975 (specificity), where the “∁” in the exponent denotes the complement
of the associated probability, meaning p(event∁) = 1 − p(event).

• Now suppose we want p(Cov|Pos), from:

p(Cov|Pos) = p(Cov)
p(Pos) p(Pos|Cov),

which is the probability of actual Covid infection given a positive test result.

To make this Bayes’ Law calculation we need the marginal p(Pos), which we
do not immediately have. It can be obtained from the Law of Total Probabil-
ity, which states that here there are only two ways to test positive (since this
example has only two outcomes), testing positive with having Covid and test-
ing positive not having had Covid. Using this fact, the definition of conditional
probability, and complementation, we can calculate this marginal:

p(Pos) = p(Pos,Cov) + p(Pos,Cov∁)
[from the Law of Total Probability]

= p(Pos|Cov)p(Cov) + p(Pos|Cov∁)p(Cov∁)
[from turning joints into conditionals times marginals]

= p(Pos|Cov)p(Cov) + [1 − p(Pos∁ |Cov∁)]p(Cov∁)
[using complementation in the second term]

= (0.875)(0.10) + (1 − 0.975)(1 − 0.10) = 0.11.
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Now we have all of the ingredients for the Bayes’ Law calculation:

p(Cov|Pos) = p(Cov)
p(Pos) p(Pos|Cov) =

0.10
0.11

(0.875) = 0.7954545.

This means that the probability that this individual has had Covid given a posi-
tive test classification is approximately 0.80. From the principle of complemen-
tation it also means that about 20% of those with a positive test classification
never had the disease. These are not numbers that would make epidemiologists
or policy makers particularly happy, but this was an extraordinary time and
location for this disease.
Consider using computer simulation to ask probability questions. In tra-

ditional basic statistics courses it is common to see exercises that ask for
probabilities over sub-regions of the support of a distribution. Most commonly
this is tail values of a normal distribution (z-scores), but we can make it as
general as we want. The key method introduced here,Monte Carlo simulation
dating back to the earliest era of digital computing, is based on generating data
according to a known distribution and manipulating the values arithmetically
to compute desired quantities. Since computers can easily generate large num-
bers of specified random variables, the Law of Large Numbers and the Central
Limit Theorem are applicable andwe can replace analytical human calculations
with easier computational work. Suppose we want to calculate the density of a
normal distribution with mean 3 and standard deviation 2 that is above zero?
This is pnormal( y > 0|µ = 3,σ = 2). A recipe is to generate one million (1M)
values from this distribution, count the number of values above zero, and divide
that by the number generated. This is three lines of R or Python code (a sin-
gle line if one wants to be clever), and returns the value 0.933. This could be
done more directly with specific functions in these languages, and this is an
over-simplified use of Monte Carlo simulation. We provide this example here
in the adjacent code boxes as a way to introduce simulation based calculation
of probabilities with samples, which is a critical and necessary tool in more
complex settings for Bayesian inference.

R Code for Simulated Probability Calculations

n.sims <- 1000000
y <- rnorm(n.sims,mean=3,sd=2)
length(y[y>0])/n.sims

PYTHON Code for Simulated Probability Calculations

import numpy as np
n_sims = 1000000
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y = np.random.normal(3,2,n_sims)
sum(y>0)/n_sims

The purpose of this section has been to introduce (or review) the necessary
basic probability theory for continuing our studies in Bayesian inference. Prob-
ability is a deep area of study in mathematics and is pervasive in statistics, data
science, and machine learning. Many readers will eventually want to continue
studies in this area.

3 What Is a Likelihood Function and Why Care
Many statistics are produced by closed-form mathematical expressions that
are well understood in both their calculation and their subsequent properties.
The best known form of these is the calculation of the estimate of the vec-
tor of regression parameters for a multivariate linear model, which is simply
β̂ = (X′X)−1X′ywhereX is the matrix of explanatory variables down columns
with a leading column of 1s and y is the vector of outcomes (bold indicates a
vector or matrix structure). This is literally the most studied expression in sta-
tistics and we know everything about its properties. Another class of statistics
are produced by assuming a distributional property, which leads to a functional
form to be numerically maximized in order to produce estimates with known
and optimal properties. The latter parametric approach is the topic of this sec-
tion and a vast number of models in modern statistics need to use this approach
to produce useful results for the researcher.
Random variables are defined by their probability mass functions for the

discrete case (PMF), or their probability density functions for the continuous
case (PDF). These distributions are probability functions, in the sense of the last
section, that describe assumed variation in some random variable, say Y over a
specific range of values (support), and are typically conditional on parameters,
say θ. For the discrete case we specify p(Y = y) for the probability that the
random variable Y takes on some specific realization y. So in the case of flipping
a fair coin we say p(Y = 1) = 0.5 and p(Y = 0) = 0.5, where 1 indicates heads
and 0 indicates tails (this numerical assignment is standard but arbitrary). In the
continuous case we consider f ( y) and often focus intervals on the real line (R)
since exact numbers do not make sense as specific outcomes since they have
probability zero of occurring on the real line. When the random variable Y is
conditioned on parameters, that can be known or unknown, then we want to use
conditional probability as discussed in the last section. Suppose that the random
variable under study, Y, is distributed Exponential: p(Y|θ) = θe−θY (the “rate”
version) with support (0 :∞). This is a conditional probability statement since
the distribution of Y is overtly dependent on the value of θ as in the definitional
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Figure 1 The exponential distribution for different θ values

form in (2.1). Note that this is a PDF since values of Y are defined over the real
line from zero to positive infinity, and this makes the exponential distribution
useful for modeling time to an event. Several versions with different values of
θ are shown in Figure 1.
For the moment consider a “generic” conditional distribution for the random

variable Y, p(Y|θ), but we observe an independent sample of n of them from the
same data generating process conditioned on the same θ: y1,y2, . . . ,yn. This is
called an “independent, identically distributed” set of data, usually abbreviated
IID or iid since they come from the same distribution but are produced without
being conditional on each other in any way. Classic data that do not have this
property come from a time series where typically serially observed values are
conditional on previous observations, and conditions (conditional parameters)
are likely to change over time like stock prices or agricultural output.
As a quick illustration, return to the coin flipping example but suppose we

flipped the fair coin three times. The observed set of heads and tails is clearly an
IID dataset, denoted here as y = ( y1,y2,y3) with partial PMF p(Y = y),y = 0,1.
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For just one of these events the probability of an observation is fully described
by the PMF. Now ask the question: what is the probability of observing the data
(H,T,H)? It is intuitively given by:

p(H,T,H) = p(Y = 1) × p(Y = 0) × p(Y = 1) = (0.5)(0.5)(0.5) = 0.125

(with standard encoding of heads and tails). We know that it is a fair coin so
let us specify a conditional parameter to remind us of this fact: p(Y = 1|θ =
0.5) = 0.5. Since only two things can happen we also know for a fact that
p(Y = 0|θ = 0.5) = 0.5, but this is redundant information and we only need the
first statement to have full information. Returning to the generic description of
the observed data, y = ( y1,y2,y3), we can more generally state that:

p(y|θ = 0.5) = p( y1 |θ = 0.5)p( y2 |θ = 0.5)p( y3 |θ = 0.5) =
3∏
i=1

p( yi |θ = 0.5),

where the product notation (
∏
) is a convenience to make such statements with

arbitrary and possibly large sample sizes manageable notationally. Because it
is a fair coin, θ = 0.5, with only two sides, the probability of observing any
specific n sized sample will always be equal to (0.5)n, which is oversimplified
for our intentions. A slightly more interesting variant would be a “biased” coin
with, say, p(Y = 1|θ = 0.75). Now the probability of observing the sequence
from above changes to:

p(H,T,H)= p(Y = 1)×p(Y = 0)×p(Y = 1) = (0.75)(0.25)(0.75) = 0.140625.

Note that this numeric value is higher than before. This is because it is more
likely to draw a head and we did draw more heads than tails.
Now consider that we do not know the value of θ before sampling the

data but we are willing to impose a parametric assumption with some form
of p(Y = y|θ). For the exponentially distributed random variable earlier we
specified that p(Y|θ) = θe−θY. In most statistical modeling we make such
a parametric assumption at the beginning of the analysis based on previous
information, standard practice, or exploratory criteria (although there exist
“nonparametric” modeling approaches, also called “semiparametric,” in prac-
tice). Of course not knowing the true value of θ is not onlymore realistic, it adds
substantially to the challenge of analyzing the data and calculating probabilities
as we did previously. So now for an arbitrary set of n data values:

p(y|θ) = p( y1 |θ)p( y2 |θ) · · · p( yn |θ) =
n∏
i=1

p( yi |θ). (3.1)

This would be just as easy to mathematically manipulate as the earlier exam-
ples, even for large n, except that we do not know θ. A typical statistical
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problem is to observe the sample of y values and use them to estimate some
unknown population parameters such as θ. In fact this is the exact definition
of “inference” in statistics. For example, most basic statistics texts start with
using a sample of y values to calculate ȳ to estimate the true population mean,
µy. Importantly, once the vector of y values is observed then it is fixed for
our purposes. We can go get coffee for ten minutes, or go on vacation for two
weeks, and when we return and look on our computer’s hard drive it will still
be the same (barring something catastrophic of course). So what is unknown
(and possibly random) is θ. In two of the most important papers in the history
of statistics Fisher (Fisher, 1922, 1925), considered this situation and decided
to first change the notation of (3.1) to reflect that it is the y that is known and
the θ that is target of our inquiry:

L(θ |y) =
n∏
i=1

p( yi |θ). (3.2)

This is a notational sleight of hand since we have discussed conditional prob-
ability as going in the opposite direction and in the last section showed that
order critically matters in conditional probability, but it is expressed this way
to emphasize what is known and what is unknown. So now attention is focused
on estimating the best value of the unknown θ given the observed and fixed
vector y. So what we want now is the value of θ, denoted θ̂ (“theta hat”), that
is most likely to have generated the observed data given an assumed paramet-
ric form. For this reason the “L” in (3.2) stands for “Likelihood” and (3.2) is
called a likelihood function. But it is important to remember that technically a
likelihood function is just the product of the n PMFs or PDFs of the observed
IID data.
Now our job is to find the best θ̂ for (3.2), that is, the value of y that is

“most likely to have generated the observed data.” This is called theMaximum
Likelihood Estimate (MLE). For of the most common forms of p( y|θ) used
in practice the form of L(θ |y) is concave to the x-axis as shown in Figure 2.
This means that the function has a single unique maximum value of L(θ |y) for
a given observed dataset. Here is where the big intellectual leap occurs. This
unique value, θ̂, is the single value that is most likely to have produced the
observed data, indicated by the dotted line in Figure 2. Therefore if the sample
data is truly representative of the population data and the parametric assumption
is correct, then this is the best estimate of the unknown population value of θ.
In addition, this estimator has been proven to have optimal properties under
common circumstances (Birnbaum, 1962). This is a very subtle and deep idea
and most readers (at all levels!) do not fully grasp the theoretical importance
right away.
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Figure 2 A generic likelihood function

Perhaps the best way to add intuition is to work through a detailed and real-
istic example. Consider a standard model for evaluating data that are counts:
nonnegative integers without an upper bound. Another way of thinking of such
count data is in terms of durations: the time waiting for some event of inter-
est. If the probability of an event is proportional to the length of the wait, then
the number of events in a given time period can be modeled with the Poisson
distribution:

p( y|θ) = e−θθy

y!
, y ∈ I+, θ ∈ R+. (3.3)

which is read as the “the probability that exactly y events occur given parame-
ter θ.” Notationally y ∈ I+ indicates that the support of the outcome variable
y is over the nonnegative integers, and θ ∈ R+ indicates that the support of
θ is over the positive real line, R+. The assumption of proportionality is usu-
ally quite reasonable because over longer periods of time the event has more
“opportunities” to occur. Here θ is called the intensity parameter and gives the
mean (expected) number of events and the (expected) variance. The concept of
expectation is described in detail in Section 6. To use the Poisson probability
model for counts, we need to assume:

1. Non-Simultaneity: Two events cannot occur at exactly the same time.
2. IID: Events in different time segments are independent and identically

distributed.
3. Proportionality: For small time periods, the probability of an event is

proportional to the length of time passed in the period so far, and is not
dependent on the number of previous events in this period.
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This is a basic model for counts and there are many variants when the
aforementioned assumptions are violated and for other complexities.
Now assume that we have a vector of counts, y, and we want the MLE of

the unknown θ parameter. The likelihood function is created from the joint
distribution of the observed data as shown earlier:

L(θ |y) =
n∏
i=1

e−θθyi
yi!

=
e−θθy1
y1!

e−θθy2
y2!

· · · e
−θθyn

yn!
= e−nθθ

∑
yi

( n∏
i=1

yi!
)−1
.

Suppose now that we have the count data: y = (5,1,1,1,0,0,3,2,3,4), then the
likelihood function from plugging in these values previously is:

L(θ |y) = e−10θθ20

207360
,

which is the probability of observing this exact sample. With likelihood
function calculations is often easier to deal the logarithm:

logL(θ |y) = ℓ(θ |y) = log ©«e−nθθ
∑
yi

( n∏
i=1

yi!
)−1ª®¬

= −nθ +
n∑
i=1

yi log(θ) − log

( n∏
i=1

yi!
)

(3.4)

where the “logL” and “ℓ” notation are both commonly used. For our small
example this is numerically:

ℓ(θ |y) = −10θ + 20 log(θ) − log(207360)︸          ︷︷          ︸
12.242

. (3.5)

Importantly, for the family of functions that we will use the likelihood function
and the log-likelihood function have the samemode (maximum of the function)
for θ, and they are both guaranteed to be concave to the x-axis. This is illustrated
for this example in Figure 3. The property of having only one mode and no
minima is important because our calculus tool (taking the derivative, setting
equal to zero) finds points with a minima or maxima without regard for which,
so in this case we know what we are finding.
So now let’s use freshman calculus to find out the maximum of the log like-

lihood function. This is at the θ point when first derivative of ℓ(θ |y) equals
zero, where the dotted line in Figure 2 touches the curve. This means that
we take the first derivative with regard to the parameter of interest denoted
d
dθ , set the resulting equation equal to zero, and solve for θ. Here the state-
ment d

dθ ℓ(θ |y) ≡ 0 is unsurprisingly called the Likelihood Equation. For the
numerical example we start with ℓ(θ |y) and take the derivative (which uses the
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exponent rule in calculus: d
dx (some constant)xk = (some constant)kxk−1), and

setting equal to zero gives:

d
dθ
ℓ(θ |y) = d

dθ
(−10θ + 20 log(θ) − 12.242) = −10 + 20θ−1 ≡ 0, (3.6)

where we use the additional rules that d
dx (some constant alone) = 0, and

d
dx log(x) = x−1. So that 20θ−1 = 10, and therefore the MLE is θ̂ = 2 (note the
hat indicating that this is now an estimate). This is the most likely θ value with
the Poisson PMF to have generated the data y = (5,1,1,1,0,0,3,2,3,4). Note
that the mathematical expression ≡ 0 means “set equal to zero,” as opposed to
= 0 which means “is equal to zero.”
In the more general sense with arbitrary data we can perform the same

process to get a generic form of the Poisson MLE:

ℓ(θ |y) = −nθ +
n∑
i=1

yi log(θ) − log

( n∏
i=1

yi!
)

[take the first derivative with respect to θ]
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d
dθ
ℓ(θ |y) = −n + 1

θ

n∑
i=1

yi − 0 ≡ 0

[algebraically rearrange]

θ̂ =
1
n

n∑
i=1

yi = ȳ

Note that it is not true that theMLE is always the data mean; this is just a special
property of the Poisson PMF. So to summarize the general process, perform the
following steps:

1. identify the PMF or PDF applicable to the outcome
2. create the likelihood function from the joint distribution of the observed data
3. change to the log-likelihood for convenience
4. take the first derivative with respect to the parameter of interest
5. set this equation equal to zero
6. solve algebraically for the MLE.

Of course with more complicated forms this process is done in software such as
with generalized linear models regression (logit, probit, gamma, etc.) through a
process called Iteratively Weighted Least Squares; see Gill and Torres (2019).

R Code to for the Poisson MLE Example

# A POISSON LIKELIHOOD AND LOG-LIKELIHOOD FUNCTION
llhfunc<-function(X,p,do.log=TRUE) {

d <- rep(X,length(p))
q.vec <- rep(length(X),length(p))
p.vec <- rep(p,q.vec)
d.mat <- matrix(dpois(d,p.vec,log=do.log),

ncol=length(p))
if (do.log==TRUE) apply(d.mat,2,sum)
else apply(d.mat,2,prod)

}

y.vals<-c(1,3,1,5,2,6,8,11,0,0)

# EXAMPLE RUN FOR TWO POSSIBLE VALUES OF THETA: 4 AND 30
llhfunc(y.vals,c(4,30))

# USE THE R CORE FUNCTION FOR OPTIMIZING,
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# par=STARTING VALUES,
# control=list(fnscale=-1) INDICATES A MAXIMIZATION,
# bfgs=QUASI-NEWTON ALGORITHM
mle <- optim(par=1,fn=llhfunc,X=y.vals,

control=list(fnscale=-1),method="BFGS")

# MAKE A PRETTY GRAPH OF THE LOG AND NON-LOG VERSIONS
ruler <- seq(from=.01, to=20, by= .01)
poisson.ll <- llhfunc(y.vals,ruler)
poisson.l <- llhfunc(y.vals,ruler,do.log=FALSE)

par(oma=c(3,3,1,1),mar=c(0,0,0,0),mfrow=c(2,1))
plot(ruler,poison.l,type="l",xaxt="n",lwd=3)
text(mean(ruler),mean(poison.l),

"Poisson Likelihood Function")
plot(ruler,poison.ll,,type="l",lwd=3)
text(mean(ruler)+5,mean(poison.ll)/2,

"Poisson Log-Likelihood Function")

PYTHON Code to for the Poisson MLE Example

import numpy as np
from scipy.stats import poisson
from scipy.optimize import minimize
import matplotlib.pyplot as plt

# POISSON LIKELIHOOD AND LOG_LIKELIHOOD FUNCTION
def llhfunc(X, p, do_log=True):

lX, lp = len(X), len(p)
d = np.tile(X, lp)
u = np.repeat(p, lX)
p_pmf = [poisson.pmf(d[i:i+lX], u[i:i+lX])

for i in range(0, lX*lp, lX)]
d_mat = np.log(p_pmf).T if do_log else \

np.array(p_pmf).T
return np.sum(d_mat, axis=0) if do_log else \

np.prod(d_mat, axis=0)

y_vals = np.array([1, 3, 1, 5, 2, 6, 8, 11, 0, 0])
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# EXAMPLE RUN FOR TWO POSSIBLE VALUES OF THETA: 4 AND 30
llhfunc(y_vals,np.array([4, 30]))

# USE minimize() FROM scipy.optimize
mle = minimize(fun=lambda p: -llhfunc(y_vals, p),

x0=1,
method="BFGS")

# fun=lambda p: -llhfunc(y_vals, p): DEFINE FUNCTION
# x0=1: STARTING VALUES
# method="BFGS": QUASI-NEWTON ALGORITHM

ruler = np.arange(.01, 20.01, .01)
poison_ll = llhfunc(y_vals, ruler)
poison_l = llhfunc(y_vals, ruler, do_log=False)

fig, axs = plt.subplots(2, 1, figsize=(8, 12))
axs[0].plot(ruler, poison_l, linewidth=3)
axs[0].annotate('Poisson Likelihood Function',

xy=(np.mean(ruler),
np.mean(poison_l)),

xytext=(np.mean(ruler)-2,
np.mean(poison_l)))

axs[0].tick_params(which='both',
bottom=False,
labelbottom=False)

axs[1].plot(ruler, poison_ll, linewidth=3)
axs[1].set_xlabel('Support of $\Theta$')
axs[1].annotate('Poisson Log-Likelihood Function',

xy=(np.mean(ruler),
np.mean(poison_ll)),

xytext=(np.mean(ruler)+2,
np.mean(poison_ll)+20))

plt.subplots_adjust(hspace=0)
plt.show()

We can also measure the uncertainty of the MLE around this point. Recall
that all reported statistics should be accompanied by an associated measure of
uncertainty, usually a standard error. To obtain this measurement we will return
to basic derivative calculus. When working with functions the first derivative
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measures slope of the tangent line at given points (zero was of interest in our
case before) and the second derivative measures “curvature” of the function
at a given point. The second derivative is obtained by taking a function’s first
derivative and performing the same operation again on that: taking d

dθ ℓ(θ |y)
and repeating the differentiation process, d

dθ (
d
dθ ℓ(θ |y)). Getting this curvature

is important because themore peaked the log-likelihood function is at theMLE,
themore “certain” the data are about this estimator. Conversely themore diffuse
the log-likelihood function around the MLE, the less the data are saying about
the this estimate.
Going from curvature to a standard error of theMLE is relatively simple. The

square root of the negative inverse of the expected value of the second derivative
is the standard error of the MLE. We will save the details of expected value for
Section 6, but the operation is very simple here. Calculate the first derivative:

d
dθ
ℓ(θ |y) = −n + 1

θ

n∑
i=1

xi

and then take another (now second) derivative of this form:

d2

dθ2
ℓ(θ |y) = d

dθ

(
d
dθ
ℓ(θ |y)

)
= −θ−2

n∑
i=1

xi

again using the exponential rule in calculus. The expected value (estimate) of
θ is the MLE (data mean for the Poisson case) allowing us to replace θ̂ with ȳ,
so:

Var(θ̂) =
(
θ̂−2

n∑
i=1

xi

)−1
=
θ̂2∑n
i=1 xi

=
ȳ2

nȳ
=
ȳ
n
.

Nowwe have theMLE for the general Poisson case, ȳ, and its associated stand-
ard error, (y/n)−1/2. In our numerical example the standard error is then simply√
2/10 = 0.4472.

4 The Core of Bayesian Inference: Prior Times Likelihood
So far everything in this exposition has been leading up to this section, which
is easily the most important one. How are Bayesian models constructed, and
how is Bayesian inference performed? Here we will look at the way prior infor-
mation and data are combined to provide inferences that are a balance between
the two.
We start with broad high-level language giving the philosophical principles

of Bayesian inference before proceeding to the mechanics and details of the
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process. The first, and perhaps most important, principle is that all unknowns
are treated probabilistically, meaning they are assigned a conditional distribu-
tional statement p(·|·), or a probability value [0 : 1]. This includes unknown
parameters, missing data values, and even model choices. Thus uncertainty is
always a probabilistic phenomenon. Specifically data enters the inference using
probability models in the form of likelihood functions, which, recall are just the
joint probability of the observed data using an assumed parametric form. Then
all parameters (variables of interest or requirement) are assigned distributions
with all relevant information prior to considering the observed data at hand:
PMFs or PDFs depending on the level of measurement.
The Bayesian inferential process proceeds by using prior information com-

bined data information to produce an updated distribution for each parameter
of interest with the principle of inverse probability through conditional distri-
butions presented in Section 2 as Bayes’ Law. This provides a full probabilistic
description that can be evaluated in many ways. The overall process can be then
described in three steps:

1. Specify a probability model for unknown parameter values that includes
some prior knowledge about the parameters if available.

2. Update knowledge about the unknown parameters by conditioning this
probability model on observed data.

3. Evaluate the fit of the model to the data and the sensitivity of the conclusions
to the assumptions.

We will, of course, go over these steps in detail in the process of this mono-
graph. For now readers should have an appreciation for the considerable dif-
ference between Bayesian inference and the maximum likelihood process for
estimation described in Section 3, even though both use a likelihood function.

4.1 The Core Bayesian Process
Bayesian inference is about updating. The core operation is taking a distribu-
tion that represents the current state of knowledge about some phenomenon
of interest and updating it with recently acquired information to produce a new
distribution that is more informed. Our starting point is (2.2) in Section 2, which
stated p(A|B) = p(A)

p(B)p(B|A), and can be thought of as updating Awith new infor-
mation B from a version of A with no conditioning, P(A). Now replace this A
with θ as some model parameter that we would like to estimate, and replace B
with a more direct expression of the data, y. Therefore p(B|A) is a joint distri-
bution of the data conditional on the parameter, the likelihood function: L(θ |y).
Now Bayes’ Law can be expressed in the real quantities of interest:
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π(θ |y) = p(θ)L(θ |y)
p(y) , (4.1)

where the π() notation is just a reminder that the left-hand-side expression is
different than the p(θ) on the right-hand-side. So far this is very intuitive, but
how do we interpret p(y)? This is the unconditional probability of observing
the data that we have in hand right now. Remember to a Bayesian once the data
are observed they are fixed forever and no longer have a random (stochastic)
characteristic, as opposed to a frequentist who has an unending stream of ran-
dom data. So in a Bayesian sense then p(y) = 1. So why is it even there if it
is just an unimportant constant? One answer is that it is a constant that ensures
that π(θ |y) sums or integrates to one so that it is a proper probability statement
in the sense of the Kolmogorov probability axioms discussed in Section 2. So
specifically, what would happen if we left it out is that π(θ |y) would not sum
(PMF) or integrate (PDF) to 1 as a proper probability function should. If this
denominator is actually not the number 1, then what is it? It is whatever num-
ber that in divisor makes the right-hand-side sum or integrate to one. It is easier
for now to consider only the continuous case where all of the functions in (4.1)
above are PDFs. If we want p(θ)L(θ |y) to integrate to 1 then we need to divide
it by the area it occupies under the curve over the support of θ on the x-axis
labeled Θ as shown hypothetically in Figure 4. Remember y is fixed here so
only θ has a distributional property. This area is calculated by the integral:∫

Θ

p(θ)L(θ |y)dθ = f (y), (4.2)

where:
∫
is a curvy version of

∑
for an interval measured variable, Θ is the

support of the variable θ on the x-axis, and dθ is a reminder that this calculation
is done with respect to the variable θ (“the variable of integration”). Some of
this notation feels like redundant information but it is a hint that integrals can
be much more complex and nuanced with many variables and different types of
support (Section 6). So if p(θ)L(θ |y) integrated to 1.4, say, we would just divide
it by 1.4 to make π(θ |y) a proper probability statement. So actually performing
the integral (typically done computationally, if at all) would produce a number
that we would use accordingly.
All of this discussion of the denominator leads to two forms of the key

Bayesian inferential expression. First there is:

π(θ |y) = p(θ)L(θ |y)∫
Θ
p(θ)L(θ |y)dθ

, (4.3)

which is the primary definitional form that says that the posterior distribution
is obtained with Bayes’ Law from the prior distribution times the likelihood
function with a scaling factor in the denominator. So we have a balance or
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Figure 4 Integrated likelihood

compromise of prior information and data information that become posterior
information. Now that we know that the denominator’s main purpose is simply
to make the posterior distribution a proper one and that this purely numeric
information can be recovered at any time, it is convenient to drop it and use a
proportional statement (∝) for the relationship:

π(θ |y) ∝ p(θ)L(θ |y), (4.4)

which is read as:

Posterior Probability ∝ Prior Probability × Likelihood Function.

This is the form that you see most often because it contains the core of the rela-
tionship and simply omits an inconvenience that can be recovered later after
key calculations. The omitted denominator, called the “integrated likelihood,”
the “marginal likelihood,” the “marginal probability of the data,” or the “pre-
dictive probability of the data,” seems unimportant here but it is actually very
useful in other contexts, including the model comparison tool Bayes Factor.
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From all of this we see the key fundamental principle of Bayesian inference:
start with a prior distribution, p(θ), that is unconditional on the data at hand and
reflects prior belief in the distribution stipulated, multiply it with the likelihood
function, L(θ |y), where the data enters the equation, to produce the posterior
distribution, π(θ |y), which is a distribution that reflects our latest knowledge
about the phenomenon of interest. Notice that the result is a distribution not
a point estimate, meaning that uncertainty is built-in to the results as shown
by how peaked or flattened this posterior distribution appears. One powerful
feature of this process is that in the future if additional data (y2) are observed
then we can treat the current posterior based on the earlier data (y1) as a prior
distribution in (4.4), and use the new data in a new likelihood function, and
create an updated posterior to reflect the latest knowledge about θ:

π(θ |y2) ∝ π(θ |y1)L(θ |y2). (4.5)

Plus, the final posterior created in this process is exactly the same as if we
had both datasets (y1,y2) at the same time. This updating process can also be
repeated asmany times as data arrival permits with the same principle applying.

4.2 Mathematical Example of Posterior Calculation
To show how this process works with a specific model and actual social sci-
ence data, return to the Poisson model from Section 2 where we developed the
likelihood function for count data using a Poisson specification to provide infer-
ence for an unknown intensity parameter θ. Recall that the derived likelihood
function for this setup with an n-length sample y was:

L(θ |y) = exp[−nθ]θ
∑
yi

( n∏
i=1

yi!
)−1
. (4.6)

A convenient and flexible prior distribution for θ with the right support is the
gamma distribution:

p(θ |α, β) = βαΓ(α)−1θα−1 exp[−βθ], α, β, θ > 0 (4.7)

given a shape parameter α, and rate parameter β (the latter alternately expressed
as a scale parameter 1/β). Also, the Gamma function (Γ() earlier is the gener-
alization of the factorial function (k! = k × (k − 1) × (k − 2) · · · 2 × 1) that
can be applied to noninteger values(Γ(k) =

∫ ∞
0 tk−1e−tdt, k > 0). The expo-

nential distribution shown in Figure 1 is actually a special case of the gamma
distribution where the α parameter is set to one. As discussed in Section 4,
it is the researcher’s responsibility to set the two “hyperparameter” values (α
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and β) according to theory, convention, or desired vagueness. The posterior
distribution for θ is given by the calculation starting from (4.4):

π(θ |y) ∝ p(θ)L(θ |y)
[plug (4.7) and (4.6) in that order]

= βαΓ(α)−1θα−1 exp[−βθ] × exp[−nθ]θ
∑
yi

( n∏
i=1

yi!
)−1

[strip off all constants using proportionality]

∝ θα−1+
∑n

i=1 yi exp[−(β + n)θ]. (4.8)

The second step is justified because we are already using proportionality by
ignoring the denominator of Bayes’ Law, and therefore these constants add no
important information. They will be recovered in a later step to make posterior
statements “proper” in the sense that π(θ |y) integrates to 1 as probability func-
tion should. From the second step we can also see that ignoring the constants
for the moment makes the form of the posterior more clear and less cluttered.
Notationally these Bayesian expressions are often given without all of the fixed
parameters on the side of the conditional if the dependency is obvious as it is
with (4.8). This expression can be more completely described as p(θ |y, α, β) on
the left side of ∝, but the conditionality is clear without this. In more complex
specifications listing all of these hyperparameter and fixed parameter values
often muddies the notation.
To further improve our intuition we can define:

α† = α +
n∑
i=1

yi β† = β + n,

which means that we can express the posterior distribution in the last line of
(4.8) as:

π(θ |y) ∝ θα†
exp[−(β†)θ],

which is the kernel (the part of a distribution absent constants) of a gamma
distribution different than the gamma prior given by (4.7), which means that
if use we proportionality in the other direction (adding back the constants) we
get:

π(θ |y) = (β†)α†
Γ(α†)−1θα†−1 exp[−β†θ]. (4.9)

This means that the posterior distribution of θ is a gamma formwith parameters
α† and β† previously, and that we now know everything about it. So we can
report its mean, median, variance, quantile variances, and more. For instance
the mean and variance of gamma distributed random variable X are:
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• E [X ] = α
β , rate version.

• Var[X ] = α
β2
, rate version.

The first expression earlier for the expected value will be derived in Section 6
as an example of an expected value calculation. It is also now a trivial exercise
to plot it in R or Python. This is a particularly elegant result partly because it
is a gamma to gamma conjugate relationship through the Poisson likelihood
function. Conjugacy is a property of a set of specific Bayesian models where
pairing the distributional form of the prior distributionwith a specific likelihood
function means that the posterior distribution has the same form as the prior,
with different parameterization of course.
We can also think about the expected value (mean) of this posterior gamma

distribution for the parameter θ in an informed way with some modest algebra
using the aforementioned definition:

E [θ |y] = θ |y = α
†

β†
=
α +

∑n
i=1 yi

β + n
=

[
n
β + n

]
ȳ +

[
β

β + n

] (
α

β

)
. (4.10)

The concept of expected value will be discussed at length in Section 6, but for
now think of it as simply the mean of the distribution of the random variable
θ given the data y. This rewrite of the posterior mean into a weighed sum of
the data mean and the prior mean shows some important principles here and
is present in all Bayesian inference. Consider earlier what happens as n gets
very large moving towards infinity. The second term in the sum goes away
because n is only in the denominator of the bracketed component (the second
weight), and in the first term the bracketed component (the first weight) goes
to one for any reasonable choice of the number β. So asymptotically (in the
limit as the data size gets bigger) the posterior mean for θ converges to the data
mean, ȳ, contained in the first term, and the prior mean, α/β, in the second term
becomes irrelevant. So the data wins over the prior in the limit, and this is true
in every Bayesian specification no matter how complex. It also makes intuitive
sense: if we have massive amounts of (presumably high quality) data then prior
information should matter less or not at all. Conversely, when the data size is
limited to a modest number we want to be able to rely on high quality prior
information. Furthermore, this is exactly how science is supposed to work: a
large quantity of reliable new information should change our knowledge about
some phenomenon of interest relative to prior information, andmodest amounts
of new information may not do so.
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Table 1 Active shooter incidents in the United States

Year 2000 2001 2002 2003 2004 2005 2006 2007
Count 3 10 7 12 5 11 12 14
Year 2008 2009 2010 2011 2012 2013 2014 2015
Count 9 19 27 13 20 18 19 19
Year 2016 2017 2018 2019 2020 2021
Count 19 31 30 30 40 61

Note: Counts by Year in the United States.
Source: Pew Research Center, April 6, 2023, from FBI statistics.

4.3 Empirical Example of Posterior Calculation
Consider describing active shooter incidents by year in the United States from
2000 to 2021. The report cautiously notes that the definition of “mass shooter
incident” is not fully agreed upon and therefore uses instead the FBI defini-
tion of active shooter incidents: “one or more individuals actively engaged in
the killing or attempting to kill people in a populated area” to produce the
count data reproduced in Table 1 with n = 22, and

∑
yi = 429. It turns out

that now there is very little calculation to be done since we have a full rec-
ipe for the posterior of interest from (4.9) with the parameter definitions in
(4.2).
Our first job is to determine a reasonable prior form for θ, which means

selecting the two parameters in (4.7). A reasonably diffuse and conservative
choice is α = 14 and β = 2 for a prior mean and variance of 7 and 3.5,
respectively, reflecting a much lower level of active shooter incidents before
the year 2000. So stipulating this prior is an implicit Bayesian hypothesis test
that these incidents have increased in the last two decades over previous eras.
This prior decision leads to the simple conjugate update described in (4.9) on
25 to produce the gamma distribution posterior for θ:

Gprior(14,2) −→ Gposterior(14 + 429,2 + 22) = G(443,24),

meaning that the updated posterior mean and variance of θ are 18.46 and 0.77
respectively. This progression from prior through data to posterior is shown in
Figure 5. The effect of the data on the prior is not only to move the center of
the distribution but also to decrease the variability indicating that the data are
informative in addition to what is contained in the prior. We can also compare
quantiles using the R function qgamma or the Python function gdtr, as shown
in Table 2.
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Table 2 Quantiles from the prior and posterior, active shooter model

Quantile 0.05 0.25 0.50 0.75 0.95
Prior Distribution 4.232 5.664 6.834 8.155 10.334
Posterior Distribution 17.040 17.859 18.444 19.042 19.924

R Code for the Gamma Poisson Update

y <- c(3,10,7,12,5,11,12,14,9,19,27,13,20,18,19,19,19,
31, 30,30,40,61)

par(mar=c(6,6,2,2), cex.lab=1.5)
ruler <- seq(from=0,to=25,length=300)
alpha <-14; beta <- 2
plot(ruler,dgamma(ruler,alpha,beta),type="l",

ylim=c(0,0.5),lwd=3, col="grey70",
ylab="Posterior Density",xlab="Support")

lines(ruler,dgamma(ruler,alpha+sum(y),beta+length(y)),
lwd=4)

text(7,0.25,"Prior",col="grey70",cex=1.5,adj=0.5)
text(18.46,0.485,"Posterior",col="grey10",cex=1.5,

adj=0.5)

PYTHON Code for the Gamma Poisson Update

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import gamma

y = np.array([3,10,7,12,5,11,12,14,9,19,27,13,
20,18,19,19,19,31,30,30,40,61])

ruler = np.linspace(0, 25, num=300)
alpha = 14; beta = 2

# GAMMA DISTRIBUTION IN scipy.stats USES SCALE FOR
# THE SECOND PARAMETER: 1/rate
d_val_prior = gamma.pdf(ruler, alpha, scale=1/beta)
d_val_post = gamma.pdf(ruler, alpha+sum(y),

scale=1/(beta+len(y)))
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Figure 5 Gamma Poisson model prior to posterior update

fig, ax = plt.subplots(figsize=(8, 6))
ax.plot(ruler, d_val_prior, color='grey',

linewidth=3, label="Prior")
ax.plot(ruler, d_val_post, color='black',

linewidth=4, label="Posterior")
ax.set_xlabel('Support')
ax.set_ylabel('Density')
ax.text(6.5, 0.235, 'Prior', color='grey',

fontsize=12, ha='center')
ax.text(18.46, 0.475, 'Posterior', color='black',

fontsize=12, ha='center')
plt.ylim([0, 0.51])
plt.show()
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5 Prior Probabilities and the Progression of Human
Knowledge

Prior to posterior inference is how scientific knowledge accumulates, and prior
information abounds in the social sciences. We have hundreds of years of self-
aware study of the human condition and human interactions, both qualitative
and quantitatively. In fact it seems daft to ignore deep literature, common wis-
dom, recorded history, and researcher intuition when creating statistical models
to understand social science phenomena. Prior specifications can come from
previous studies, conflicting theories in a given literature, researcher experi-
ence, nonparametrics and other data-oriented sources, diagnostic objectives,
expert judgments, and even previous posterior distributions.
As discussed, the Bayesian process of inference starts with assigning prior

distributions for unknown parameters. Prior distributions are necessary in
Bayesian models. These unknown parameter distributions are operationalized
with observed explanatory variables in a simple model. Such prior distributions
range from very informative descriptions based on previous research in the field
to purposefully vague and uncertain forms that reflect high levels uncertainty
or possibly previous ignorance. It is important to notice that the prior distri-
bution is not an inconvenience imposed on the researcher by the treatment of
unknown quantities. It is instead an opportunity to include existing knowledge
systematically in the model. Such prior information can include: qualitative,
narrative, statistical, and intuitive information.
The use of prior distributions has been controversial at various times in the

history of statistics. This is partly because guidance on the selection of priors
is less firm than with other parts of the model. However, there are often strong
arguments for particular forms of the prior: little or vague knowledge often jus-
tifies a diffuse or even a uniform prior, certain probability models logically lead
to particular forms of the prior (conjugacy), and the prior allows researchers to
include additional information collected outside the current study. This con-
troversy is also because early leading statisticians were opposed to the use of
“subjective” information in specifications, thus this word became a deroga-
tory term for Bayesian practitioners. However, it is a completely misguided
charge since all decisions made in the process of model development, esti-
mation, and reporting are subjective. It is subjective which data are used; it is
subjective which variables are selected; it is subjective whichmodel is selected;
it is subjective which likelihood function is specified; it is subjective which
significance level is selected (note that the standard levels are not theoretically
derived, they are merely “conveniences”); it is subjective which software is
used; it is subjective which estimation procedure is specified; it is subjective

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009341189
Downloaded from https://www.cambridge.org/core. IP address: 18.188.19.96, on 17 Nov 2024 at 20:17:33, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009341189
https://www.cambridge.org/core


Bayesian Social Science Statistics 31

how the results are presented; and it is subjective where and how findings are
distributed. So every statistical model ever developed is “subjective.”
There are also technical reasons to allay concerns about the use of prior dis-

tributions in statistical models. The maximum likelihood estimate (Section 3)
is equal to the Bayesian posterior mode with the appropriately bounded uni-
form prior. This means that a uniform prior can be found to equate the point
estimates, although Bayesians generally prefer to give more information than
that through distributional descriptions. A likelihood based model with no prior
and a corresponding Bayesian model are asymptotically equivalent for any
nonpathological choice of prior: as the sample size increases, the likelihood
progressively dominates the prior, as demonstrated for one particular case in
Section 4.2. Because of the Central Limit Theorem, both estimates are also
identically normally distributed for large data. These properties are explored in
technical detail in Diaconis and Freedman (1986).

5.1 Conjugate Model Specifications
The phenomenon of conjugacy happens when the distributional form of the
prior distribution flows down to the posterior distribution given a specific
likelihood function:

πf (θ |y) = pf (θ)L 7→f (θ |y), (5.1)

where “7→” means “maps to” and the “f ” designation means that π() and p()
are the same PDF or PMF but with different parameterizations due to the influ-
ence of L(). We have already seen one example of a conjugate model setup in
Section 4 where a gamma distribution prior and a Poisson likelihood produced
a gamma distribution posterior distribution. Conjugacy is not a requirement of
Bayesian specifications, but it is especially important in the history of Bayes-
ian statistics because before the advent of advanced computational tools in the
1990s it was a mathematically guaranteed way to be able to produce tractable
posterior forms. Up until the 1990s it was easy to specify a desired Bayes-
ian (usually regression) model where the joint posterior distribution could not
be integrated to produce marginal distributions for a results summary. The
most common conjugate relationships are given in Table 3. See Gill (2014),
Appendix B for mathematical details on these forms. An excellent book-long
exposition that derives these conjugate models and related forms is Zellner
(1996).
An easy, obvious, and convenient conjugate setup is the normal-normal for

the mean parameter and the normal-inverse gamma for the variance parameter.
This is also important because of the popularity of normal specifications in
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Table 3 Conjugate prior-likelihood pairings for
Bayesian models

Likelihood Function Prior/Posterior
Form Distribution
Bernoulli Beta
Binomial Beta
Multinomial Dirichlet
Negative Binomial Beta
Poisson Gamma
Gamma (including χ2,
and Exponential) Gamma
Normal for µ Normal
Normal for σ2 Inverse Gamma
Pareto for α Gamma
Pareto for β Pareto
Uniform Pareto

standard practice and the effect of the Central Limit Theorem. Suppose that we
have n-length y, a vector of IID normally distributed data with population mean
−∞ < µ < ∞ and population variance σ2 > 0. Then the two-variable normal
likelihood function for these data is:

L(µ,σ2 |y) = (2πσ2)− n
2

n∏
i=1

exp
[
− 1
2σ2

( yi − µ)2
]
, (5.2)

constructed as shown in Section 3. As per Table 3 we first specify an inverse
gamma distribution for the unknown σ2:

p(σ2 |a,b) = ba

Γ(a) (σ
2)−(a+1) exp[−b/σ2]

∝ (σ2)−(a+1) exp
[
−b/σ2

]
, (5.3)

where the form in the second line is just the kernel of the PDF for σ2 stripping
off the constants with proportionality. If a variable X is distributed gamma, then
1/X is distributed inverse gamma, and this distribution is the conjugate form in
the normal-normal setup. Here a > 0 and b > 0 are “hyperparameter values” of
the prior that are set by the researcher. An additional utility of this example is in
further demonstrating the usefulness of proportionality in simplifying Bayesian
calculations. The normal kernel prior distribution for µ is given by:
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p(µ|σ2,m) ∝ (σ2)− 1
2 exp

[
− 1
2σ2

(µ − m)2
]
, (5.4)

where m is the prior mean parameter for µ set by the researcher. The new wrin-
kle here is that this prior is actually called a “semi-conjugate” form since it
needs to be conditioned on the σ2 parameter in order for the conjugacy prop-
erty to hold. The joint posterior distribution is produced in the same way that
we did in Section 4, except that there are now two variables instead of one in the
model, meaning that the posterior distribution is a “joint posterior” distribution
for unknown µ and σ2 and is thus slightly more complicated than the posterior
form in (4.3). This joint posterior distribution is produced from multiplying the
two prior distribution kernels times the likelihood function:

π(µ,σ2 |y) ∝ p(µ|σ2,m) × p(σ2 |a,b) × L(µ,σ |y). (5.5)

Now substitute the expressions (5.2), (5.3), and (5.4) into the definition of
the posterior distribution earlier and collect like terms into a (σ2)something
component and an exp[something else] component to produce:

π(µ,σ2 |y) ∝ (σ2)−α− n
2−

3
2 exp

[
− 1
σ2

b − 1
2σ2

n∑
i=1

( yi − µ)2 −
1

2σ2
(µ − m)2

]
.

(5.6)

This joint form is large and awkward but can easily be marginalized (see details
in Gill (2014)) with integration as explained further in Section 6. It is important
not to be intimidated by the length of this posterior expression earlier: it is
just a series of additive and multiplicative states in two exponentials multiplied
together. Performing the marginalization first for σ2 means integrating out the
µ parameter:

π(σ2 |y) =
∫ ∞

−∞
π(µ,σ2 |y)dµ

∝ (σ2)−a− n
2−

3
2 exp

[
− 1
σ2

(
b +

1
2

n∑
i=1

y2i −
1
2
nȳ2

)]
. (5.7)

This feels complicated! The integral averages over uncertainty from the µ
parameter leaving just a distributional expression for σ2, and we will discuss
integration extensively in Section 6. Actually this expression earlier is neater
than it seems. Looking back at the form of (5.3) we see that this marginal
posterior is the kernel of an inverse gamma for σ2 described by:

p(σ2 |y) ∝ (σ2)−(something+1) × exp[−(something else)/σ2]
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where

something = a +
n
2
+
1
2

something else = b +
1
2

n∑
i=1

y2i −
1
2
nȳ2,

which defines the parameters of another inverted gamma distribution! So now
we know that the posterior distribution of σ2 is:

σ2 |y ∼ IG
(
a +

n
2
+
1
2
,b +

1
2

n∑
i=1

y2i −
1
2
nȳ2

)
. (5.8)

Remember that no matter how awkward the parameterization is (although this
one is not too bad), once we have the posterior distribution fully described we
know everything about it and can describe it to readers any way we want. For
instance the mean and variance of the generic inverse gamma PDF for X are
given by:

• E [X ] = b
a−1 , a > 1.

• Var[X ] = b2
(a−1)2(a−2) , a > 2.

The marginal (really conditional because of the semi-conjugacy) posterior dis-
tribution for µ can be obtained by using the definition of conditional probability
(p(A|B) = p(A,B)/p(B)) and then some basic algebra as follows:

π(µ|σ,y) = π(µ,σ
2 |y)

π(σ2 |y)
= σ−2 exp

[
− n
2σ2

(
µ2 − 2

nȳ + m
n
µ +

nȳ2 + m2

n

)]
(5.9)

(the y just “comes along for the ride” here in the conditional probability state-
ment). We can use the same “something” approach as before in looking at this
form and see that this is the kernel of another normal distribution, according
to:

µ|σ2,y ∼ N
[
nȳ + m

n
,
σ2

n

]
. (5.10)

Here that the prior dependence on σ2 flows through to the posterior for µ,
which is why this is called semi-conjugate. Note also that as n gets very large
the posterior mean of µ converges to the data mean, which is intuitive but can
be shown more technically:

lim
n→∞

(
nȳ + m

n

)
= lim

n→∞

(n
n
ȳ
)
+ lim

n→∞

(m
n

)
= ȳ. (5.11)
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Table 4 A year 2023 sample of salaries for data scientists in 1,000s

214.907 125.985 156.206 176.417 210.296 181.129 187.393
172.322 187.450 135.631 162.032 198.629 143.636 188.978
191.123 185.914 153.376 134.740 198.416 138.659

After splitting up the first fraction into two components we see that the ratio of
n values becomes 1 in the first term (even though they are infinity, they are the
same “flavor” of infinity), and that the n in the denominator of the second term
eliminates that one. This is another clear illustration of the Bayesian principle
that the data always “win” in the limit.

5.2 Analysis of Salary Data for Data Scientists
As an example of the normal-normal conjugate Bayesian model, consider the
annual US salary numbers in thousands for Data Scientist positions listed for
hire at Glassdoor in April 2023 with the sample in Table 4. This is the first 20
listed out of 8,880 since that is the most one can see without a lengthy registra-
tion process. Suppose we want to use this modest sample to make inferences
about the national picture for Data Science pay. Salary figures in a specific
occupation are often approximately normally distributed, even though a small
sample of n = 20 may not appear to be so. The sample mean is 172.1619 and
the sample standard deviation is 26.7349. The hyperparameter values are set
at m = 170,a = 2,b = 550 to somewhat resemble sample values and provide
a diffuse and conservative picture of variability. Calculation of the marginal
posterior distributions directly follows from the recipes in (5.8) and (5.10). The
results are shown in Figure 6. For the µ parameter we see that the prior is influ-
ential in the production of the posterior, which makes sense when the data size
is only n = 20. This is an important illustration of the sample size principle
in Bayesian inference: when the data are modest we will rely heavily on the
specification of the prior and should be very introspective about its choice. For
the σ2 parameter we see that the data were more influential in determining the
form of the posterior but not dramatically so.

R Code for Normal-Normal Model
library(MCMCpack) # FOR dinvgamma(x, shape, scale = 1)
# DATA
salary <- scan("glassdoor.dat")
salary <- salary/1000; n <- length(salary)
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Figure 6 Normal-normal conjugate model for data science salaries

# HYPERPRIOR VALUES
m <- 170; a <- 2; b <- 550

# POSTERIOR PARAMETERS
post.a <- a + n/2 + 1/2
post.b <- b + 0.5*sum(salary^2) - 0.5*n*mean(salary)^2
post.mu <- (n*mean(salary) + m)/n
post.var <- post.b/(post.a - 1)

# GRAPH
par(oma=c(1,1,1,1), mar=c(3,5,1,1),cex.lab=1.5,

mfrow=c(2,1))
ruler <- seq(60,300,length=500)
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prior.dens <- dnorm(ruler,m,sqrt(b/(a-1)))
plot(ruler,prior.dens,type="l",ylim=c(0,0.018),lwd=3,

col="grey70", ylab=expression(paste(mu," Density")),
xlab="")

post.dens <- dnorm(x=ruler,mean=post.mu,
sd=sqrt(post.var))

lines(ruler,post.dens,lwd=3, col="grey30")
text(125,0.010,"Prior",col="grey70",cex=1.10,adj=0.5)
text(250,0.0050,"Posterior",col="grey10",cex=1.10,

adj=0.5)
ruler <- seq(0,2000,length=500)
prior.dens <- dinvgamma(ruler,a,b)
plot(ruler,prior.dens,type="l",ylim=c(0,0.0025),

xlim=c(-200,2000), lwd=3, col="grey70", xlab="",
ylab=expression(paste(sigma^2," Density")))

post.dens <- dinvgamma(ruler,post.a,post.b)
lines(ruler,post.dens,lwd=3,col="grey30")
text(-50,0.0020,"Prior",col="grey70",cex=1.10,adj=0.5)
text(1060,0.0010,"Posterior",col="grey10",cex=1.10,

adj=0.5)

PYTHON Code for Normal-Normal Model
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm, invgamma

# DATA
salary = np.loadtxt("glassdoor.dat")
salary /= 1000; n = len(salary)

# HYPERPRIOR VALUES
m = 170; a = 2; b = 550

# POSTERIOR PARAMETERS
post_a = a + n/2 + 1/2
post_b = b + 0.5*sum(salary**2) - \

0.5*n*np.mean(salary)**2
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post_mu = (n*np.mean(salary) + m)/n
post_var = post_b/(post_a - 1)

# GRAPH
fig, axs = plt.subplots(2, 1, figsize=(8, 12))
ruler = np.linspace(60, 300, num=500)
prior_mu = norm.pdf(ruler, m, scale=np.sqrt(b/(a-1)))
post_mu = norm.pdf(ruler, post_mu, np.sqrt(post_var))
axs[0].plot(ruler, prior_mu, color='grey',

linewidth=3, label='Prior')
axs[0].plot(ruler, post_mu, color='black',

linewidth=3, label='Posterior')
axs[0].set_ylabel(r'$\mu$ Density')
axs[0].text(125, 0.010, 'Prior', color='grey',

fontsize=12, ha='center')
axs[0].text(248, 0.0050, 'Posterior', color='black',

fontsize=12, ha='center')
ruler = np.linspace(0, 2000, num=500)
prior_s2 = invgamma.pdf(ruler, a, scale=b)
post_s2 = invgamma.pdf(ruler, post_a, scale=post_b)
axs[1].plot(ruler, prior_s2, color='grey',

linewidth=3, label='Prior')
axs[1].plot(ruler, post_s2, color='black',

linewidth=3, label='Posterior')
axs[1].set_ylabel(r'$\sigma^2$ Density')
axs[1].text(0, 0.0020, 'Prior', color='grey',

fontsize=12, ha='center')
axs[1].text(1050, 0.0010, 'Posterior', color='black',

fontsize=12, ha='center')
plt.subplots_adjust(hspace=0.15)
plt.show()

5.3 Typology of Bayesian Priors
Conjugacy is mathematically convenient and leads to easily understood prop-
erties, but it is much less important now that we use computational tools to
perform the type of operations done in the last section with the normal-normal
setup. Modern Bayesians are unencumbered by intractable calculations (mar-
ginalization with integration) that were a serious problem throughout most of
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the twentieth century. So now there exists a wide class of priors to consider,
not based on calculability, but on research design criteria.

5.3.1 Proper Bayes

These priors come from previously compiled evidence, such earlier studies or
published work, researcher intuition, or substantive experts. It is not unscien-
tific to say that previous research in a specific literature should be considered
important prior information in a statistical model. In fact, it is vital to sci-
entific progress to take existing knowledge and improve it systematically as
new data are observed. These priors can take whatever distributional form that
the researcher considers appropriate, including conjugate forms of course, but
typically with regression models normal priors are applied to the regression
parameters. These normal forms can be mean centered at: the middle of pre-
vious research, skeptically at zero, or with elicited knowledge from experts.
Many authors have explicitly argued for the use of such informed priors in the
social sciences. Leamer (1972) asserts: “Arguments concerning the use of such
prior information should appropriately address the question of how rather than
whether prior information should be used.” Berk, Western, and Weiss (1995)
point out at that “in complex studies where the prior information is based on
clearly explained previous studies, the prior may find greater support among
skeptical researchers than the model itself.” Bartels (1996) uses prior informa-
tion in a pooling context: “My analysis so far has emphasized that intelligent
decisions about how to treat disparate observations must be based, in one way
or another, upon prior beliefs about the statistical relevance of the available
data.”

5.3.2 Empirical Bayes

These prior distributions are produced from other parts of the data, or possi-
bly from the same data used in the likelihood function. One version uses the
observed data to establish hyperpriors in a hierarchical model through regular
(non-Bayesian) estimation. Another version, called nonparametric empirical
Bayes, specifies only a generic form of the prior rather than a specific paramet-
ric form. Such approaches leverages both Bayesian and frequentist methods
in its implementation and has therefore historically offended both camps. The
mid-century Bayesian Lindley famously said “there is no one less Bayesian
than an empirical Bayesian” and described the underlying asymptotic justifica-
tion as “technicalities out of control” (Copas, 1969). However, empirical Bayes
estimators enjoy good frequentist properties including a theoretical connection
to James-Stein estimation. There are actually many variants as the core ideas
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have been developing for about 70 years. With the advent of machine learn-
ing, interestingly, some of these data re-use ideas have recently become more
popular.

5.3.3 Reference Bayes (Objective Bayes)

This approach is really a collection of tools, the most common of which pro-
poses prior distributions that are created to influence the posterior as little
as mathematically possible with the idea of being “objective.” One way to
approach this goal is to specify hierarchical models with objective hyperprior
values. To some, any Bayesian procedure is considered objective if it yields
good standard frequentist behavior. Often these approaches involve substantial
mathematical effort with reasonably complex model specifications, providing
a sizable barrier to objective Bayesian work in social science applications.

5.3.4 Decision-Theoretic Bayes

Often setting up decision-theoretic statistical models are difficult to setup in the
social sciences because there needs to be a measure of advantage-disadvantage.
Economists are blessed with an easy version of this: money. If one can have a
measure such as this to evaluate, then Bayesian models conjoin elegantly with
the structure of decision theory. Here prior distributions are setup to compare
different strategies and results. Results are presented in a full decision-theoretic
framework where utility functions determine decision losses, which are min-
imized according to different probabilistic criteria. See Gill (2014) Chapter 8
for extended details of this approach.

5.3.5 Priors of Convenience

Probably the most common form of prior distributions used by social science
Bayesianmodelers is a diffuse uniform or normal distribution designed to avoid
discussion of prior decisions as much as possible. This is done often more for
practical reasons than belief or philosophy: they are easier forms to satisfy skep-
tical journal reviewers and editors. This approach is both good and bad. In one
sense it makes it easier for researchers to pursue Bayesian approaches in vari-
ous fields and sub-fields that have historically not produced a lot of Bayesian
model specifications. On the other hand, it means that researchers are denying
themselves the ability to incorporate the deep scientific knowledge that exists
all in social science literatures into their model specification.

5.4 Elicited Priors
An important class of proper priors are those that are created from draw-
ing qualitative information out of experts and expressing it in terms of
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distributional statement. These priors are a way to elicit information from
subject-area experts to build a probability structure that captures their spe-
cific qualitative knowledge and experience about the phenomenon under study.
This elicitation process obtains information from nonstatisticians who have
a great deal of contextual information about some substantive issue but are
not involved in the model specification process. In published work some of
these experts have been physicians, policy-makers, theoretical economists, his-
torians, judges, politicians, previous study participants, outside experts, and
community activists.
Elicited priors are often categorized into four general types (Gill andWalker,

2005). Clinical Priors are those that are elicited from substantive experts that
are taking part in the research project at hand. Skeptical Priors are constructed
with the assumption that the hypothesized effect does not actually exist and
are typically operationalized through a probability function centered at a zero
effect. Oppositely, Enthusiastic Priors are built around the positions of experts
or advocates assuming the existence of the hypothesized effect. Reference
Priors are produced from expert opinion as a way to express informational
uncertainty with diffuse forms (in a somewhat different sense than reference
priors discussed earlier).
While there are many specific methods of eliciting priors from experts, these

research designs all have essentially three phases. The Deterministic Phase
starts with specifying explanatory variables in the model and the assumed prior
parametric form for their associated coefficients, finding the relevant data col-
lection processes, selecting the number and type of experts to query, and then
planning how to evaluate the reliability of their contributions Experts usually
need to be trained or briefed before elicitation takes place.
The Probabilistic Phase is where experts are actually interviewed is gen-

erally the most challenging. There are three common approaches: assessors
can be asked fixed value questions with probability responses (“P-methods”),
fixed probability questions with value responses (“V-methods”), or questions
to be answered on probability and value scales simultaneously (“PV-methods”)
P-methods determine levels of explanatory variables in advance and ask the
assessor to provide the probability of occurrence for different levels of the
outcome variable. V-methods ask the more difficult question of determin-
ing explanatory variable levels associated with a specific probability value.
PV-methods are even more demanding because they require that the assessor
simultaneously pick cumulative distribution points and their associated levels
as a pair.
Since elicited priors are developed from substantive area experts rather than

from the researchers themselves, a key challenge is turning verbal or written
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opinions into specific probability statements to create prior distributions. A typ-
ical strategy is to query experts about outcome variable quantiles for given
researcher specified levels of specific explanatory variables. This includes
strategies from informal assignments to detailed elicitation plans, as well as
regression analysis across multiple experts. Often this process is done online
so that assessors fill-in values or select menu options from a formatted window,
see the subsequent effects to a visual distribution, and then make adjustments
to their original input (see Gill and Freeman (2013)). There are many different
specific research designs for elicitation, and this class of prior is a powerful way
to bridge qualitative and quantitative knowledge for a given research question.

5.5 Improper Priors
So far all of the prior distributions that we have seen have been “proper,” mean-
ing that they conform exactly to the probability rules introduced in Section 2. It
is actually possible to specify priors that do not have to conform to all of these
rules, in particular the requirement that the PMF or PDF sum or integrate to one.
This substantially increases the available selection of distributions that can be
specified, particularly when diffuse or skeptical forms are desired. It is impor-
tant to distinguish between “uninformative” priors such as conjugate forms
with large variance, and “improper” priors which are typically uninformative
as well but have the mathematical property that they do not sum or integrate to
a finite quantity.
Perhaps the most commonly applied improper prior for a parameter that has

support [−∞ :∞] is a uniform (flat) PDF. This is a popular choice for the mean
parameter, µ, in a normal model, and is specified by:

p(θ) = c, −∞ < θ < +∞. (5.12)

for any positive constant c. Think of this as a rectangle that isH = g(θ) = c high
and W = ∞ wide. For this form H could be something as simple as g(θ) = 1.
It does not seem that this would produce a proper posterior distribution but it
turns out that the infinities cancel out in Bayesian inference:

π(θ |y) = p(θ)L(θ |y)∫
Θ
p(θ)L(θ |y)dθ

[insert the “box” definition of the prior ]

=
(H ×W )L(θ |y)∫
Θ
(H ×W )L(θ |y)dθ

[pullW out of the integration since it is a constant]
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=
(W )HL(θ |y)

(W )
∫
Θ
HL(θ |y)dθ
[cancel theWs since they are the same flavors of∞]

=
HL(θ |y)∫
Θ
HL(θ |y)dθ

[substitute back g(θ) for generality]

=
g(θ)L(θ |y)∫
Θ
g(θ)L(θ |y)dθ

,

resulting in a proper posterior statement like the definitional statement in (4.3).
The cancellation is possible because mathematicians tell us that this can be
done with the same “flavor” of infinity, as opposed to infinities that are pro-
duced from distinct processes: f (θ,∞) , g(θ,∞). Here these two infinities are
produced from the exact same specification so the cancellation works.
There are also some popular improper choices for the variance parameter in

the normal model: p(σ) = 1/σ, and p(σ) = k, for some constant k (these forms
are usually given for σ not σ2, but this is not important conceptually). The
logic of how these work is the same as earlier. Compared to conjugate forms,
improper forms always lead to posterior distributions with larger variance. This
is intuitive since there is less information in an improper prior. For instance,
recall that a normal-normal conjugate setup leads to a normal posterior for µ,
but an improper prior with a normal likelihood produces a Students-t posterior
distribution, which has heavier tails than a normal and therefore greater vari-
ance. More specifically, stipulate a model to estimate µ and σ with a normal
likelihood and the two improper priors:

p(µ) ∝ c, −∞ < µ < ∞
p(σ) ∝ σ−1, 0 < σ < ∞,

(for some positive constant c) with the goal of adding very little prior informa-
tion. Then the marginal posterior distribution for µ is Students-t, which is most
intuitively described by a transformation:

µ − ȳ
s/
√
n
∼ t(df = n − 1),

where s =
√
(n − 1)−1 ∑( yi − ȳ)2. So the marginal posterior of µ is also

Student’s-t with noncentrality parameter x̄, thus providing a more diffuse than
the normal conjugate form since Students-t distributions have heavier tails.
Also, the resulting marginal posterior for σ2 is IG((n− 2)/2, (n− 1)s2) is gen-
erally more diffuse version than the form we saw before for the conjugate case
in (5.8), depending on the choices for the a and b parameters therein.
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5.6 General Thoughts on Priors
At this point it is important to note that there is no such thing as “non-
informative” prior distributions. For reasonable sized finite samples any speci-
fied prior has an influence on the posterior distribution, even if small. A better
term is “uninformative” when the prior has little influence over the posterior.
There was an acrimonious debate about whether uniform priors were actually
noninformative that took a surprisingly long time to resolve. Even in the world
of Reference Bayesians there is recognition that all priors matter with finite
samples. The core of this issue is that stating that discrete alternatives or regions
of continuously measured space are equally likely turns out the be an informed
statement. Consider three candidates for election to US president: a Democrat,
a Republican, and a Communist, where all are on the ballot. In any electoral
context it is a ridiculous, and nonconservative in the modeling sense, statement
to say that they are all a priori equally likely to win.
An enduring criticism that has little validity is the idea that one can fix the

prior distribution in a strategic way to shape the posterior distribution as one
wants. Stipulating priors is an overt public statement made to a naturally skep-
tical scientific audience, so priors cannot be covertly adjusted to “cook” the
conclusions. This is where the “subjective” term has been wrongly used in the
past. Specification of prior distributions should be clearly stated and defended
along with any other model decisions made by researchers.
There is another useful aspect of prior distributions. When there are multiple

theories or empirical observations, then the associated prior distributions can
be used to test the efficacy of the different subsequent posterior distributions.
Producing even multiple priors is a straightforward and easy process and can
be used to test alternative theories about the state of the world. See Wagner and
Gill (2005) for an example.
Finally, in this section we note that the idea of prior information, and even

prior distributions, is not restricted to specifically Bayesian modeling. Schol-
ars frequently talk about prior theories, prior findings, and prior conclusions.
It is also common to find authors discussing results in overtly prior-posterior
terms in published work. For instance, Canes-Wrone, Brady, and Cogan (2002)
(clearly not Bayesian practitioners) in discussing model results state:

The effects of campaign spending and district ideology are consistently in
the expected direction and statistically significant. Those on challenger qual-
ity also have the correct sign in each regime and sample and are significant
with the exception of the marginal regime of the 1980-1996 test. In addition,
the coefficients for the remaining variables that are not included as a main
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effect typically have the predicted sign, and they are significant only with
the expected sign.

There are at least four prior-posterior assertions in those sentences!

6 Integrals and Expected Value: Not as Scary as they Look
The development of calculus in the seventeenth century byNewton and Leibniz
is considered a turning point not just in mathematics but also in human devel-
opment. The credit here is a bit of a simplification as other mathematicians of
the time made important contributions as well. Basic calculus is now offered as
a course at many high schools and is considered essential knowledge in many
fields. The central principle in calculus is determining what happens to func-
tions in limits (→ ∞) and infinitesimals (→ 0). In this section we introduce
the use of integrals which are central to Bayesian inference, and statistics in
general. To restate a point in the introduction in starker terms: the required use
of integrals in Bayesian statistics is the main reason that students and other
researchers cannot easily slide from an introductory statistics course to learn-
ing Bayesian statistics. This section is the linchpin of our strategy to rectify this
problem. Since computers are used to perform the actual analytical work, the
emphasis here is on general principles to interpret the output of these operations
rather than the mathematical details.

6.1 Expected Value for Discrete Random Variables
Expectation can be thought of as a mean average taken over a random (stochas-
tic) target rather than just a vector of numbers. Returning to flipping a coin,
consider it now as a gambling exercise. The probability of a heads for a given,
not necessarily fair, coin is p(heads) = a, where a is a number between zero
and one as described in section 2. Therefore the probability of tails is given by
p(tails) = 1−a. Suppose you are offered the opportunity to flip this coin where
you would get $1 if it comes up heads and $0 if it comes up tails. What is this
game worth? Meaning, what would you be willing to pay to play this game.
If a = 0.5 for a fair coin you might feel that it is worth playing this game if
it costs you less than 50¢, especially if you could play multiple times. Why is
that? It is because over time your expected earnings are positive. Consider the
payout and probability for each of the two outcomes in a single toss where the
game costs 49¢ to play:

• Heads: cost = −0.49¢, payout = 0.5× $1
• Tails: cost = −0.49¢, payout = 0.5× $0,
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since there is a 50% chance of either outcome. The expected value of playing
this particular game is therefore:

EV( flip) = −0.49 + (0.5 × 1) + (0.5 × 0) = 0.01, (6.1)

meaning that the expected value is one penny. It doesn’t mean that you are
going to win 1¢ on any play of the game: you will win either $0 or $1. It means
that over a long sequence of plays your average (expected) return per game is
1¢. The expected value here would have been 50¢ if there was not a cost to play
this game (the more general case), meaning that the expected value is 0.5 times
$1 plus 0.5 times $0. Thus expected value is a balance between chance and
reward. Clearly you would not want to play this game if it costs 99¢ for each
round. This exact idea is how casinos make money. Every game in a casino
has a positive expected value to the house and a negative expected value to
the player, although this number varies considerably across the various games
offered.
To further make this balance between chance and reward more intuitive sup-

pose you were offered $100 to walk the length of a 2×4 lumber board sitting on
the ground. It seems correct to say there is a probability of about 0.99 that you
would successfully walk on the board from one side to the other and therefore
a probability of about 0.01 that you would stumble and step off the board on to
the ground 2 inches below with no obvious consequences. You would certainly
want to play this game since:

EV(walk) = 0.99 × 100 + 0.01 × 0 = 99,

meaning that the expected payout is $99. Now suppose we take this exact same
board and we put it 40 feet in the air across two adjacent buildings. Barring
any psychological issues the probability of walking across the board is still the
same at 0.99, and the payout is still $100. What is different? Now the cost of
stumbling off the board is no longer near zero since 40 feet is the height that
kills half of people falling (“LD50” in epidemiologist terms) . So most people
would probably see the cost of stumbling now as −∞. This makes the expected
value calculation:

EV(walk) = 0.99 × 100 + 0.01 × −∞ = −∞,

where the minus sign is because this is now a penalty not a different reward. So
you would definitely not want to play this version of the game. What changed
was not the probability of either event but what you get for one of the out-
comes. Oddly, there is almost certainly dollar amount reward that would entice
some people to play. A million dollars? Ten million dollars? We can slightly
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formalize this logic in order to conceive new board-walking games for the
arbitrary outcome a:

EV(walk) = p(a) × reward(a) + p(not a) × reward(not a),

where a is the event of remaining on the board, or some other event that we
could stipulate. Casinos make (a lot of) money bymanipulating these four com-
ponents earlier in a way that exploits human psychology. Apparently humans
are poor assessors of events with very high or very low probabilities, which is
why lotteries exist.
Now let us take this idea and make it more statistical in notation. Start with

a discrete random variable Y with K possible outcomes. These outcomes are
analogous to the rewards/punishments idea earlier, but they are numerical, like
heads = 1, tails = 0. This is described by the Bernoulli PMF p(Y = k) = pk, k =
1,2, . . . ,K, with the requirement that p1 + p2 + . . . + pK = 1. If k = 2 then we
would have the coin flip or the board walking setup. We can state this more
formally as the expected value of the discrete random variable Y:

E [Y ] =
K∑
k=1

p( yk)yk (6.2)

meaning that the expected value is the sum of: the values of each event times
its corresponding probability. This expected value calculation can be applied
to any PMF. For example, consider a binomial experiment of n trials with y
successes:

p(Y = y|n,p) =
(
n
y

)
py(1 − p)n−y, n ≥ y, n,y ∈ I+, p ∈ [0:1]. (6.3)

where
(n
y
)
= n!

y!(n−y)! . The expected value of this random variable is then:

E [Y ] =
n∑
i=1

p( yi)yi = E [ y1] + E [ y2] + . . . + E [ yn] = np (6.4)

since there are n trials each with identical probability p. Here we used the
expected value relation: E [X + Y ] = E [X ] + E [Y ], which a property that
actually applies to both sums and integrals.
As a quick example of such a calculation LeBron James’ lifetime NBA free

throw percentage is 73.5% as of April 2023, which is an expected value of
taking a single attempt. So if he takes 15 free throws in a given game we would
expect approximately 11 baskets (0.735 × 15 = 11.025 rounded down).
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6.2 Summing over Continuous Space
Suppose we wanted to measure the area under a curve or function f (x) on the
real line, R, such as the one depicted in Figure 7. As seen in the figure one way
to do this is to use a histogram, where in this case the upper left corner of the
bars touches the curve. It could be the right; it doesn’t matter. This histogram
estimate is the sum of the area of the B bars with the same width but different
heights:

A =
∑

B=bars
(heightbar × widthbar). (6.5)

The first panel the histogram has B = 25 bars and as a result when the curve
is increasing it underestimates the area and when the curve is decreasing it over
estimates the area. This would have been the other way around if we used the
upper right corner to touch the curve instead. The total error is the sum of the
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Figure 7 Approximating the area under a curve
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area in these under- and over-counts: the areas between the histogram and the
curve summed. In the second panel there are B = 50 bars in the histogram, and
one can see that the errors in estimating the area are smaller. In the third panel
there are B = 164 bars, and it is clear that now the errors are smaller still. What
would happen if we took B → ∞? It is intuitive that there would then be no
errors at all and the sum of the area of the bars would exactly equal the area
under the curve. This is precisely how an integral works in calculus: set the
area criteria (as we have done with the histogram in this case) and then take a
discrete approximation method to the limit. In notation this looks like:

A =
∫ b

a
f (x)dx (6.6)

where the limits a and b are the starting and ending points for the area of interest
on the x-axis (real line, R). We first saw an expression like this in (4.2). As
noted before, “

∫
” is a smooth version of Σ since we are on the real line instead

of across discrete events, and “dx” is a reminder that the integration function
is with regard to the variable x.
Notice that the integration process starts with a function, a distribution func-

tion in our case, and ends with a number. Thus the uncertainty inherent in a
PDF is quantified as a single number. For example if we integrated a stand-
ard normal PDF, f (x) = (2π)−1 exp[−x2], over its complete support, [−∞ :∞],
then this operation would return the number 1 by definition of a PDF. If we
integrated this same standard normal over [0 :∞] then we would get the num-
ber 0.5. This second integration means that we have integrated half the area
under the curve of the PDF and described half of the uncertainty.
Before in Section 4 we needed to use integrals to introduce key elements of

Bayesian inference and integrals in this process and were discussed more intu-
itively rather than mathematically. Now that we have a theoretical definition,
we can return to these operations in slightly more detail. One important way
that integrals are used is to take a joint distribution between two interval meas-
ured variables and integrate out one of them to produce a marginal distribution
for the other. In abstract terms it looks like this:

f (x) =
∫
y
f (x,y)dy,

where the integration is over y so we are “integrating out uncertainty in y” from
the joint distribution of x and y to produce amarginal distribution for x. By using
just y under the integral sign and “dy” we are stating that the integration takes
place over the complete support (range) of this variable. So the first integral
that we saw in Section 4 took place over a joint function of θ and y given
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by p(θ)L(θ |y). Integrating θ over its complete support Θ gave the marginal
distribution of y:∫

Θ

p(θ)L(θ |y)dθ = f (y).

This turned out not to be a distribution by the standard Bayesian assumption
that once the data are observed they are fixed so f (y) is just a constant. Then
in (4.3) we used this integral-produced value to make sure that the posterior
probability for θ was a proper probability statement with the criteria given in
Section 2 by normalizing the prior times the likelihood in the numerator:

π(θ |y) = p(θ)L(θ |y)∫
Θ
p(θ)L(θ |y)dθ

.

Later in the exposition of the normal-normal conjugate model the integral
in (5.7) was used to integrate out the µ parameter from the joint posterior
distribution to give the marginal posterior distribution of σ2:∫ ∞

−∞
π(µ,σ2 |y)dµ = π(σ2 |y).

So integration is used to describe the area under a curve, but all of our “curves”
are PDFs describing probability density over defined intervals on the real line
(including those going to infinity like the normal). Thus when we integrate
an interval-measured random variable over its support we get the number
1, and when we integrate out an interval measured random variable from a
joint probability statement we are integrating out the uncertainty contained in
this probability statement. Furthermore, this process is not constrained to the
treatment of just two random quantities. For instance:∫

Θ

p(α, β, θ |y)dθ = p(α, β |y).

Obviously there are more complex versions of this principle, but they all have
the same characteristic of integrating out the uncertainty contained in a specific
target variable or variables.

6.3 Expected Value for Interval Measured Random Variables
After discussing expected value for discrete random variables and understand-
ing the basic principles of integrationwe can nowmove on to expected value for
interval measured random variables, which is the most common case in Bayes-
ian inference. Since we have done all of this preparatory work this section will
be short.
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This interval measured expected value is nearly identical to (6.2), except that
the summation is replaced with integration:

E [Y ] =
∫ ∞

−∞
Yp(Y )dy,

here the limits are given as infinities just as a matter of generality: we use finite
bounds if appropriate or stipulate the bounds by identifying the support of the
integrand as in (4.2). Since most random variables (not data) that we work with
in Bayesian models are interval measured, this is the most important form of
the expected value.
As stated before, this expected value is mean of the distribution of the varia-

ble of interest as used in (4.10) from the known mean E [X ] = α
β (rate version)

of a gamma PDF. But we now have the tools to prove that this is true as an
example of working with interval measured expected value. Starting with (6.3)
and the definition of the gamma PDF for a random variable X:

E [X ] =
∫ ∞

0
(X )βαΓ(α)−1xα−1 exp[−βX ]dx

[collect exponents of x]

=

∫ ∞

0
βαΓ(α)−1xα+1−1 exp[−βX ]dx

[pull 1/β out of the first term]

=

∫ ∞

0

1
β
βα+1Γ(α)−1xα+1−1 exp[−βX ]dx

[use the relation Γ(x + 1) = xΓ(x)]

=

∫ ∞

0

α

β
βα+1Γ(α + 1)−1xα+1−1 exp[−βX ]dx

[move α/β out of the integral since it is a constant]

=
α

β

∫ ∞

0
βα+1Γ(α + 1)−1xα+1−1 exp[−βX ]︸                                      ︷︷                                      ︸

G(x |α+1,β)

dx

[now integrating a different Gamma PDF over its full range]

=
α

β
× 1

Note the manipulation of the Gamma function (the noninteger version of the
factorial function given in Section 4.2). We were also able to pull out α/β
out of the integral calculation since it is a constant ratio of two numbers and
therefore is not affected by the integration process, for an arbitrary constant k:∫
k f (x)dx = k

∫
f (x)dx. We can also derive the expected value of a random
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variable distributed inverse gamma given in Section 5.1, E [X ] = b
a−1 , a > 1,

by similar processes.
Consider how we would use simulation to get the expected value of a dis-

tribution where we could not simply look up this answer. Figure 7 was created
from an even (50-50) mixture of two normal distributions according to:

p( y|π, µ1,σ21 , µ2,σ22 ) = π1ϕ1( y|µ1,σ21 ) + π2ϕ2( y|µ2,σ22 ), (6.7)

where ϕ denotes the normal PDF as in the likelihood form of (5.2) and the
proportional prior in (5.4):

ϕ( y|µ,σ2) = (2πσ2)− 1
2 exp

[
− 1
2σ2

( y − µ)2
]
, (6.8)

and π is vector of weights containing only two values: (0.5,0.5). For the figure
we used ϕ1( y|2,1) and ϕ2(8,3). Obviously the expected value of this mixture
distribution is an evenly weighted mean of the µ parameters based on the prop-
erty of weights and the structure of the normal PDF. Now suppose we are
interested in calculating the expected value for a different mixture of distribu-
tions, N(10,10) and G(4,6), with the pair of weights: π = (0.15,0.85). There
are several ways to get the expected value but simulation is perhaps the fastest
and easiest. This is merely two lines of R or Python code (or one line to be
more clever) as shown in the adjacent code boxes.

R Code for Mixture Distribution Expected Value

y <- c(rnorm(15000,10,10), rgamma(85000,shape=4,
scale=6))

mean(y)

PYTHON Code for Mixture Distribution Expected Value

import numpy as np

y = np.concatenate((
np.random.normal(loc=10,scale=10,size=15000),
np.random.gamma(shape=4,scale=6,size=85000)))

np.mean(y)

7 Software Calculation of Bayesian Models
In previous sections, we have explored the fundamental principles of Bayes-
ian statistics and discussed how to construct Bayesian models. Nevertheless,
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in practice, it is rare to perform these calculations manually. With the dramatic
increase in computing power over the past few decades, along with the devel-
opment of robust software packages designed to handle intricate computations,
Bayesian analysis has become increasingly accessible. This section aims to
introduce some of the commonly used software tools for constructing Bayes-
ian models. The goal is to provide an overview of the range of software and
programming tools. This information will help extend the study of Bayesian
statistics beyond the material covered in this Element. And by having a sense
of the tools available, readers will be better prepared to tackle more complex
problems.

7.1 Basic Functions: Probability and Simulation Functions
Probability distributions and simulations play a crucial role in Bayesian statis-
tics. As discussed extensively in the previous sections, both prior and posterior
distributions are expressed in terms of probability. The likelihood function that
bridges the two distributions, is also technically a product of the PMF or PDF
of the observed data. Furthermore, going deep into the Bayesian realm, the
calculation of posterior distributions often doesn’t have a simple, closed-form
solution. This is where simulation methods, primarily Markov chain Monte
Carlo (MCMC), are used to draw samples from the posterior distribution and
estimate quantities of interest.
Here we start with some basic functions that are frequently used in the

analysis. These functions include calculating probabilities, manipulating dis-
tributions,and simulating data. Knowing these functions is important to under-
stand the mechanics of Bayesian models. Moreover, these functions would also
facilitate the functionalities of more advanced tools later on.
In the earlier sections, we have used rnorm to generate random values from

the normal distribution (Section 2) and dpois(), dnorm(), and dinvgamma to
generate prior and posterior densities of poisson, normal, and inverse gamma
distributions (Section 5.2). The adjacent text boxes provide some common
PMF and PDF functions in R and Python. For R, base R provides some most
fundamental distributions, and additional distributional functions are provided
by other non-base packages.

R Functions for Computing the PDFs of Function Forms

dnorm(x, mean = 0, sd = 1)
dbinom(x, size, prob)
dbeta(x, shape1, shape2)
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dnbinom(x, size, prob, mu)
dpois(x, lambda)
dunif(x, min = 0, max = 1)
dcauchy(x, location = 0, scale = 1)
dchisq(x, df, ncp = 0)
dexp(x, rate = 1)

R Functions Provided by Non-Base Packages

dexp(x, rate = 1) dinvgamma(x, shape, rate=1)
#MCMCpack PACKAGE

ddirichlet(x, alpha) #gtools PACKAGE
dmvnorm(x, mean, Cov) #mvtnorm PACKAGE
dinvchisq(x, nu, tau) #extraDistr PACKAGE
dlaplace(x, mean = 0, sd = 1) #jmuOutlier PACKAGE
dpareto(x, location, shape = 1) #EnvStats PACKAGE
diwish(W,v,S) #MCMCpack PACKAGE

These distributional functions also usually come with different forms of
functions to calculate CDF and quantiles, and generate random numbers
following the distributions. Using the normal distribution as an example:

• dnorm(x, mean, sd): Evaluates the PDF of the normal distribution at
the specified values of x with given mean and standard deviation.

• pnorm(x, mean, sd): Computes the CDF of the normal distribution up
to the values of x with given mean and standard deviation.

• qnorm(p, mean, sd): Calculates the quantiles of the normal distribution
corresponding to the given probabilities pwith specified mean and standard
deviation.

• rnorm(n, mean, sd): Generates n random numbers following the nor-
mal distribution with given mean and standard deviation.

For Python, distribution functions are usually provided through libraries,
such as SciPy and NumPy. NumPy is usually used for random number genera-
tion based on distributions while SciPy provides a wide range of distribution
functions, including probability density functions (PDFs) and cumulative dis-
tribution functions (CDFs).

PYTHON Functions for Computing the PDFs of Function Forms

scipy.stats.norm.pdf(x,loc=0,scale=1)
scipy.stats.binom.pmf(x,size,prob)
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scipy.stats.beta.pdf(x,shape1,shape2)
scipy.stats.nbinom.pmf(x,size,1 - prob,mu)
scipy.stats.poisson.pmf(x,lambda_)
scipy.stats.uniform.pdf(x,loc=0,scale=1)
scipy.stats.cauchy.pdf(x,loc=location,scale=scale)
scipy.stats.chi2.pdf(x,df,loc=0,scale=1)
scipy.stats.expon.pdf(x,loc=0,scale=1)
scipy.stats.gamma.pdf(x,shape,scale=1)
scipy.stats.dirichlet.pdf(x,alpha)
scipy.stats.multivariate_normal.pdf(x,mean,Cov)
scipy.stats.invgamma.pdf(x,a,loc=0,scale=1)
scipy.stats.laplace.pdf(x,loc=0,scale=1)
scipy.stats.pareto.pdfpdf(x,b,loc=0,scale=1)

PYTHON Code for Other Functions of the Normal Distribution
scipy.stats.norm.pdf(x,loc=0,scale=1) #PDF
scipy.stats.norm.logpdf(x,loc=0,scale=1) #Log of PDF
scipy.stats.norm.cdf(x,loc=0,scale=1) #CDF
scipy.stats.norm.logcdf(x,loc=0,scale=1) #Log of CDF
scipy.stats.norm.ppf(q,loc=0,scale=1) #Quantile
scipy.stats.norm.rvs(loc=0,scale=1,size=1) #Random number
numpy.random.normal(loc=0.0,scale=1.0,size) #with NumPy

It is also worth mentioning that, in Python, tensorflow_probability is
one of the most powerful and comprehensive library that contains a wide range
of probability distributions in flexible forms. The adjacent code box replicates
the example in Section 2:

PYTHON Code for Probability with TensorFlow

import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions
n_sims = 1000000
norm_dist = tfd.Normal(loc=3., scale=2.)
y = norm_dist.sample(n_sims)
tf.reduce_mean(tf.cast(y > 0, tf.float32))
# CDF FOR PROBABILITY > 0
(1 - norm_dist.cdf(0)).numpy()
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These functions that work with various distributions allow simulation analy-
sis like in Section 2 as well as direct querying of distributional properties. Since
Bayesian inference is fundamentally about probability distributions the use of
these tools is important for doing even basic work.

7.2 Bayesian Packages and Probability Programming
For most of the time, we do not need to construct Bayesian models from scratch
like we are doing in most parts of this Element (for pedagogical purposes).
Instead, we can take advantage of software packages and libraries that offer
ready-to-use functions and tools either specifically designed for Bayesian anal-
ysis or for general probability programming that can be used to implement
Bayesian models. These tools provide efficient algorithms and implementa-
tions for posterior inference, parameter estimation, model fitting, and so on.
The following section provides a brief overview of the different types of tools.
It is important to note that the full range of these tools may exceed the scope of
this Element. Additionally, various tools often can achieve the same function-
ality. As a result, users typically only need to choose one that best suits their
needs. Nonetheless, by exploring these tools, we can have a practical under-
standing of their various functionalities and capabilities and make informed
choices when progressing toward the stage of advanced Bayesian modeling.
These packages and libraries can be roughly grouped into four main cat-

egories: (1) Bayesian specific R packages or Python libraries, (2) Bayesian
probabilistic programming platforms, (3) general probabilistic programming
framework, (4) general-purpose programming language.
Table 5 lists some example Bayesian packages/libraries in R and Python.

Packages/libraries, such as MCMCpack, pymc, nimble, and brms, enable users
to easily perform Bayesian computations without having to build Bayes-
ian models from scratch. JAGS and Stan are standalone Bayesian pro-
grams/languages that perform Bayesian analysis but are also available in R
and Python through interfaces, for example, rjags, pyjags (for JAGS) and
rstan, pystan (for Stan). Note that although brms and rstanarm also uses
Stan in the back-end, they allow users to use simple R modeling syntax to
construct models without knowing the Stan syntax. Since Python is a general-
purpose programming language (compared to R as a statistical computing
focused language), there are more general probabilistic programming libraries
providing modules for probabilistic modeling and inference, including pyro
and tensorflow_probability, which can also be used to build Bayesian
models and perform Bayesian computations leveraging PyTorch’s and Tensor-
Flow’s computational capabilities, respectively. In the context of R, for more
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Table 5 Bayesian packages and libraries in R and Python

R/Python Interfaces Back-end Written in

MCMCpack, bayesm - C++
pymc aesara, JAX Python
brms, rstanarm Stan C++
nimble JAGS C++, R
emcee - Python
rjags, pyjags JAGS C, Fortran
rstan, pystan Stan C++
pyro* pyTorch C++, Python
tensorflow_probability* TensorFlow C++, Python
Rcpp* C++ -

Note:* pyro, tensorflow_probability, and Rcpp are not specifically Bayesian
packages/libraries.

customized and efficient options, advanced users may need to use Rcpp as an
interface and write tailored Bayesian algorithms in C++ to construct more com-
plex Bayesian models. Technically, this is not very different from building a
model from scratch in other general-purpose languages including R or Python.
However, C++ as a lower-level programming language can provide signifi-
cant improvements in performance and efficiency while Rcpp interface still
allows users to access the data handling capabilities of R, therefore becom-
ing a popular choice for specifying advanced, highly customized Bayesian
models.
Bayesian-specific packages/libraries tend to provide ready-to-use Bayesian

modeling functionalities with default setups and presupplied Bayesian algo-
rithms. They tend to limit the modeling options to what the packages/libraries
currently provide. As an example, we can replicate the code in Section 5.2 using
MCMCpack and PyMC3 as shown in the adjacent code boxes.

R Code for Normal-Normal Model with MCMCpack

library(MCMCpack)
# DATA
salary <- scan("glassdoor.dat")
salary <- salary/1000
# HYPERPRIOR VALUES
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m <- 170; a <- 2; b <- 550
# POSTERIOR SAMPLES
# MCMCregress USES c0/2, d0/2 FOR INV. GAMMA PARAMETERS
posterior_samples <- MCMCregress(salary ~ 1,

n.samples = 10000,
b0 = m, B0 = 1,
c0 = a*2, d0 = b*2)

post.mu <- mean(posterior_samples[,1])
post.var <- mean(posterior_samples[,2])

PYTHON Code for Normal-Normal Model with PyMC

import numpy as np
import pymc as pm
m = 170; a = 2; b = 550
# DEFINING MODEL & SAMPLING
with pm.Model() as model:

s_sq = pm.InverseGamma('sigma_sq', alpha=a, beta=b)
mu = pm.Normal('mu', mu=m)
obs = pm.Normal('obs', mu=mu,

tau=1/s_sq, observed=salary)
trace = pm.sample(10000, tune=1000, chains=3)

post_mu = np.mean(trace.posterior["mu"])
post_var = np.mean(trace.posterior["sigma_sq"])

For standalone Bayesian programs such as JAGS and Stan, the primary
advantages are flexibility and their robust support for Bayesian calculations.
They provide a wide range of built-in distributions and functions and allow
users to have enough control over the model–fitting any model JAGS and Stan
can handle. However, although we can still interact them through R or Python,
they require different syntax.
These Bayesian packages/libraries and probability programming platforms

provide capabilities for constructing advanced and complex Bayesian mod-
els. However, it is important to recognize that there are oftentimes tradeoffs
between ease of use and flexibility. Packages like MCMCpack, pymc, and brms
provide user-friendly interfaces with simple and streamlined workflows, but
they have limitations in terms of model complexity and customization. In con-
trast, frameworks such as JAGS, Stan, and TensorFlow provide more general
and flexible solutions while requiring a steeper learning curve of the specific
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syntax and configuration, and also a deeper understanding of the underlying
concepts.

8 Evaluating and Comparing Model Results
In this section we describe different ways to present results from Bayesian
inference. As noted, Bayesians not only have the ability to describe inferential
outcomes with more information than a point estimate and curvature around it,
but they prefer to do this since this it gives readers amore nuanced and informed
picture of how information has been updated. Results can be described more
completely because of the central tenet of Bayesian inference: all unknowns
are given probability statements (distributions or values). Therefore the poste-
rior distribution at the end of the modeling process can be described with any
feature of a distribution that highlights important results and findings. These
are statements that non-Bayesians are incapable of making. In fact an attempt
to do so by a non-Bayesian would actually make them a Bayesian at that point!
Consider the normally distributed posterior distribution for the mean param-

eter µ depicted in Figure 8 given by N(3.1695,2). In this depiction the
proportion of the density to the left of zero is 0.06 and the proportion of den-
sity to the right of zero is 0.94. If this were part of a non-Bayesian one-sided
hypothesis test with a normal assumption we would fail to reject the hypothesis
that µ > 0 in the population at the ubiquitous α = 0.05. (Proclaimers of the
importance of α = 0.10 are usually those that didn’t meet the first threshold in
that world.) Conversely a Bayesian looks at this posterior distribution and can
say “there is a 94% probability that the effect is positive.” Would you bet your
own money that this is truly a positive effect? Almost everyone would. Fortu-
nately nobody actually has to bet money. It is a strong evidential statement on
its own to say that our inference implies that p(µ > 0) = 0.94 in the population
given the sample and the model. Readers can readily assess such statements
with regard to the quality of evidence.
It is critical to note again that non-Bayesians cannot make such a probabi-

listic assertion as done earlier, and those researchers in the social sciences and
elsewhere often revert to the contorted (and wrong) logic of the Null Hypothe-
sis Significance Test (NHST) (Gill, 1999). This approach to hypothesis testing
has long dominated basic statistical decision-making despite literally thousands
of published articles across many scientific fields noting its deep and critical
flaws. The worst feature is that it is built on a logical paradigm that fails to
hold: if the null hypothesis of no effect is true then the data are highly likely to
follow an expected pattern; the data do not follow this expected pattern because
they produce a test statistic in the tail of the null distribution implied by this
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Figure 8 Areas under a normal posterior distribution for µ

expected pattern; thus the null is highly unlikely. This is called Probabilistic
Modus Tollens because it adds a probabilistic element (“highly likely”) to the
correct but deterministic logic ofModus Tollens. Consider the following exam-
ple: if a person is a US citizen then it is highly unlikely she is a member of the
US Congress (approximately 535/320M); the person is a member of the US
Congress; therefore it is highly unlikely she is a US citizen. The key problem
is that the NHST is built on the conditional probability p(D|H0), meaning the
probability of seeing the data at hand given the null is true. But many inter-
pret it as the conditional probability p(H0 |D), which it is not true because the
null was assumed to be true first in order to perform the test. We know from
Bayes’ Law that these two quantities are not equal. This also leads to common
misconceptions about interpreting p-values and “stars” on regression tables.
Stars are stupid because they imply that two stars (usually a p-value less than
0.01) mean that the null hypothesis is likely than when there is only one star
(usually a p-value less than 0.05). Also, the dichotomization of the decision
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Table 6 Counts of hate message retweets by Twitter users

Minimum 1st Quartile 2nd Quartile 3rd Quartile Maximum

2.000 2.000 2.000 4.000 97.000

(“significant” versus “non-significant”) based on completely arbitrary p-value
cutoffs that have no theoretical basis whatsoever is ridiculous and harmful to
science. There are other problems as well, and yet it remains the most common
statistical decision tool. A lively discussion about why the NHST endures in
science is found in Stunt et al. (2021). The key point here for our purposes is
that Bayesian inference is completely free of all of the pathologies associated
with the NHST since all inferential statements aremadewith regular probability
assertions such as “there is a 94% probability that the effect is positive.”

8.1 Retweeting Hate Messages
As a running example for this section consider a paper by Founta et al. (2018)
looking at eight months of about 80,000 abusive messages sent by Twitter users
in 2017, using crowdsourcing to annotate a set of abuse-related labels, as well
as other related data. For this example we take a subset of 1,960 of their col-
lected data wherein they count the number of retweets of offensive, abusive,
or hateful messages. There are four obvious outliers at (102,143,212,219) that
are substantially different than the rest of the data and there is something dif-
ferent going on with these cases. Including such cases leads to overdispersion
with Poisson modeling and there are lots of alternative model specification,
which we do not discuss here for pedagogical simplicity. Our solution is to
remove these four very different cases for simplicity, with the idea that inter-
ested researchers can analyze them separately. The resulting data have mean
4.76943, variance 57.22302, and sum 9329. Table 6 shows that they are also
still somewhat right-skewed with a few hate messages getting many retweets.
Since these y are counts we employ the Gamma-Poisson conjugate model

from Section 4.2:

p(θ |y) = (β + n)α+
∑n

i=1 yiΓ

(
α +

n∑
i=1

yi

)−1
θα+

∑n
i=1 yi−1 exp[−(β + n)θ]. (8.1)

for specified hyperpriors α = 50 and β = 10 from the gamma prior. The prior
to posterior update is shown in the first panel of Figure 9. This is an exam-
ple where the data have a lot to say obviously. The posterior distribution is
G(9379,1966). The prior was constructed based on two criteria. First is the
idea of mean-matching since the expected value of a set of data distributed
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Poisson is the intensity parameter, so the prior mean was set to 50/10 ≈ 4.77.
Second is the objective to specify a conservative diffuse form with the magni-
tude of the two hyperparameter values. It turns out, however, that this model
is not very sensitive to the specification of these values because the data are
large and influential in the balance between prior information and likelihood
information.
The second panel of Figure 9 shows only the posterior distribution with a

narrower range of the support shown at [4.6 : 5.0]. The shading denotes the
posterior quartiles where the range between the first and second quartile (the
median) is slightly narrower than the range between the second and third quar-
tiles, indicating a little bit skewness that is not obvious from the shape of
the posterior distribution alone. We can also ask questions like what is the
π(θ |y) > 4.75 (or any other desired threshold)? In this case it is 0.6610584,
suggesting that the model implies a strong move away from the original data
mean for the Bayesian estimate of the intensity parameter with two-thirds of
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Table 7 Posterior summary of θ hate retweets

Minimum 1st Quartile 2nd Quartile 3rd Quartile Maximum

4.548 4.737 4.770 4.804 5.021

the posterior density above 4.75, which is equal to the data mean in a standard
non-Bayesian MLE analysis. Since the data are large and the prior is deliber-
ately weak, it indicates the model structure is highly influential.

8.2 Bayesian Point Estimates
Point estimates are obviously informative and are the basis of basic non-
Bayesian inference. Plus, there are times when Bayesian results are intuitively
conveyed by point estimates. It is important, however, to recognize that the
uncertainty measure of Bayesian posteriors comes from a description of the
posterior variance rather than the curvature around an MLE. Usually these are
similar measures but they carry with them very different theoretical bases.
In the case of hate message retweets earlier we determined that the posterior

distribution of the θ Poisson intensity parameter is given by G(9379,1966),
therefore:

θ |y = α
†

β†
=
9379
1966

= 4.77060 Var(θ |y) = α†

(β†)2
=

9379
19662

= 0.00243.

This information is reflected in the shape of the posterior in Figure 9. Of course
quantiles are a form of point estimates so we can simply report the posterior
quantiles as shown in Table 7. It is very important to remember that these poste-
rior parameter quantiles are not the same as the data quantiles given in Table 6.
In the R and Python code (adjacent code boxes) these quantile values were pro-
duced by a simple form of simulation whereby 1M values are drawn randomly
from the posterior distribution of θ and then analyzed as if they were regular
data. With this large number of simulated values, only the minimum and the
maximum will differ (slightly) on repeated trials. This idea of simulating pos-
terior results is an extremely easy method that produces the same answer as an
analytical solution, as introduced in Section 2.

R Code for Gamma Posterior Intervals
# SETUP
hate.retweets <- read.csv("hate.retweets.csv",

header=FALSE)
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num.retweets <- rep(NA,nrow(hate.retweets))
for (i in 1:nrow(hate.retweets))

num.retweets[i] <- sum(!is.na(hate.retweets[i,]))
y <- num.retweets[num.retweets < 100]
n <- length(y)

# HYPERPRIOR VALUES
m <- 5; a <- 50; b <- 10

# POSTERIOR PARAMETERS
post.a <- a + sum(y)
post.b <- b + n
post.mean <- post.a/post.b
post.var <- post.a/(post.b^2)

# POSTERIOR DENSITY TO THE RIGHT OF 4.75
1-pgamma(4.75,shape=post.a,rate=post.b)

# GRAPH OF PRIOR-POSTERIOR AND POSTERIOR QUANTILES
par(oma=c(5,5,2,2), mar=c(0,0,0,0),cex.lab=1.25,

mfrow=c(1,2))
ruler <- seq(from=3,to=7,length=500)
plot(ruler,dgamma(ruler,a,b),type="l",lwd=3,col="grey70",

ylab="",xlim=c(3,7),ylim=c(0,8))
mtext(side=1,outer=FALSE,expression(paste(theta,

" Support")), cex=1.5,line=3)
mtext(side=2,outer=TRUE,"Density",cex=1.5,line=3)
lines(ruler,dgamma(ruler,post.a,post.b),lwd=4,

col="grey30")
text(4,0.75,"Prior",col="grey70",cex=1.25,adj=0.5)
text(5.72,6,"Posterior",col="grey10",cex=1.25,adj=0.5)
curve1.x <- seq(5.25,7.4,length=20)
curve1.y <- 4.50+sin(curve1.x)
lines(curve1.x,curve1.y,lwd=3,lty=2,col="red")
plot(ruler,dgamma(ruler,post.a,post.b),lwd=4,

col="grey30",ylab="", xlab="",yaxt="n", type="l",
xlim=c(4.55,5.0),ylim=c(0,8))

mtext(side=1,outer=FALSE,expression(paste("Posterior ",
theta, " Support")),cex=1.5,line=3)

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009341189
Downloaded from https://www.cambridge.org/core. IP address: 18.188.19.96, on 17 Nov 2024 at 20:17:33, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009341189
https://www.cambridge.org/core


Bayesian Social Science Statistics 65

g.quantiles <- qgamma(c(0.25,0.5,0.75),post.a,post.b)
for (i in ruler[1:259]) segments(i,0,i,

dgamma(i,post.a,post.b), col="grey85",lwd=5)
for (i in ruler[260:264]) segments(i,0,i,

dgamma(i,post.a,post.b), col="grey75",lwd=5)
for (i in ruler[264:268]) segments(i,0,i,

dgamma(i,post.a,post.b), col="grey50",lwd=5)
for (i in ruler[269:500]) segments(i,0,i,

dgamma(i,post.a,post.b), col="grey30",lwd=5)
lines(ruler,dgamma(ruler,post.a,post.b),lwd=5,

col="grey30")
abline(h=0,lwd=3)
curve2.x <- seq(4.40,4.70,length=20)
curve2.y <- 4.27+cos(curve1.x)
lines(curve2.x,curve2.y,lwd=3,lty=2,col="red")
segments(curve2.x[20],curve2.y[20],curve2.x[20]-0.009,

curve2.y[20]+0.30,lwd=3,col="red")
segments(curve2.x[20],curve2.y[20],curve2.x[20]-0.022,

curve2.y[20]-0.08,lwd=3,col="red")

# QUANTILES OF THE POSTERIOR FOR theta
n.sims <- 1000000
theta.large.sample <- rgamma(n.sims,post.a,post.b)
summary(theta.large.sample)

PYTHON Code for Gamma Posterior Intervals
import pandas as pd
import numpy as np
from scipy.stats import gamma, poisson, gaussian_kde
import matplotlib.pyplot as plt
from matplotlib.patches import ConnectionPatch

# SETUP
hate_retweets = pd.read_csv("hate.retweets.csv",

header=None)
num_retweets = hate_retweets.count(axis=1).values
y = num_retweets[num_retweets < 100]
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n = len(y)

# HYPERPRIOR VALUES
m = 5; a = 50; b = 10

# POSTERIOR PARAMETERS
post_a = a + np.sum(y)
post_b = b + n
post_mean = post_a / post_b
post_var = post_a / (post_b**2)

# POSTERIOR DENSITY TO THE RIGHT OF 4.75
p = 1 - gamma.cdf(4.75, post_a, scale=1/post_b)
print(p)

# GRAPH OF PRIOR-POSTERIOR AND POSTERIOR QUANTILES
fig, axs = plt.subplots(1, 2, figsize=(12, 6))
ruler = np.linspace(3, 7, 500)
axs[0].plot(ruler, gamma.pdf(ruler, a, scale=1/b),

color='0.7', linewidth=3, label='Prior')
axs[0].plot(ruler, gamma.pdf(ruler, post_a,

scale=1/post_b), color='black',
linewidth=3, label='Posterior')

axs[0].text(4, 0.75, "Prior", color='0.7', fontsize=12)
axs[0].text(5, 6, "Posterior", color='0.3', fontsize=12)
axs[0].set_xlabel('$\Theta$ Support')
axs[0].set_ylabel('Density')
axs[0].set_ylim(-0.25, 8.25)
axs[1].plot(ruler, gamma.pdf(ruler, post_a,

scale=1/post_b), color='black', linewidth=3)
axs[1].set_xlim(4.55, 5.0)
axs[1].set_ylim(-0.25, 8.25)
axs[1].set_xlabel('Posterior $\Theta$ Support')
axs[1].tick_params(which='both', left=False,

labelleft=False)
axs[1].fill_between(ruler, gamma.pdf(ruler, post_a,

scale=1/post_b), color='0.85')
con = ConnectionPatch(

xyA=(0.5, 3.55), coordsA=axs[0].get_yaxis_transform(),
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xyB=(0.3, 5), coordsB=axs[1].get_yaxis_transform(),
linestyle='dashed', arrowstyle="->", lw=2,
color='red',
connectionstyle="angle,angleA=-150,angleB=-20,rad=50")

axs[1].add_artist(con)
plt.subplots_adjust(wspace=0)
plt.show()

# QUANTILES OF THE POSTERIOR FOR theta
n_sims = 1000000
theta_large_sample = np.random.gamma(post_a, 1/post_b,

size=n_sims)
pd.DataFrame(theta_large_sample).describe()

8.3 Intervals and Sets
Bayesians generally prefer to give interval estimates rather than point estimates,
although some publishing outlets require point estimates by rule or culture. The
Bayesian analogue of the confidence interval is the credible interval, which
looks exactly the same except that the interpretation is completely different.
The correct, but often misunderstood, definition of the 1−α confidence interval
is: an interval that over 100(1 − α)% of replications contains the true value of
the parameter on average, as noted previously. Conversely, the definition of
the Bayesian credible interval is: an interval that has a (1 − α) probability of
containing the true value of the parameter. These are very different statements.
One of the reasons that early students of statistics misinterpret the standard
confidence interval is that it is built directly on the very frequentist idea of
replicating the same experiment multiple times as described in Section 2, but in
introductory texts it is applied to a single sample problemwith an “as if” sleight-
of-hand. In fact, with a confidence interval the probability of coverage is either
zero or one, since it either covers the true θ value or it doesn’t. It turns out that
most of these students (and others!) who misinterpret the confidence interval
are actually thinking in terms of the credible interval, but this interpretation
is reserved for Bayesian inference where all unknown quantities are treated
probabilistically and “confidence” has no meaning.
For the moment we will only consider unimodal posterior forms of the pos-

terior distribution, which are very common. The Bayesian credible set is not
unique since the only criterion is the (1 − α) coverage requirement of the
posterior distribution:
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1 − α =
∫
C
π(θ |y)dθ (8.2)

whereC is a contiguous subset of the parameter spaceΘ. The coverage require-
ment can be met in different ways as long as the included posterior density
reaches the (1−α) level. Most of the time in practice, it is calculated in exactly
the same way as the confidence interval. For instance calculating a 95% cred-
ible interval under the Gaussian normal assumption means marching out 1.96
standard errors from the posterior mean (or mode) in either direction, just as the
analogous confidence interval is usually created. However, this is most appro-
priate for symmetric distributions where the interpretation is easier. With an
asymmetric distribution it can be confusing since there will be higher density
areas left out of the interval than some equal sized intervals inside the interval.
An obvious and easily interpreted alternative is to require that the x-axis areas
outside the interval always have lower density above them than the areas inside
the interval. More formally, a (1 − α) equal tail credible interval [L:H] meets
the condition that:

α

2
=

∫ L

−∞
π(θ |y)dθ and

α

2
=

∫ ∞

H
π(θ |y)dθ, (8.3)

which can be calculated in softwarewith quantile functions knowing the param-
eters of π(θ |y). The integral limits of (−∞,∞) earlier are given for generality. If
there exist specific limits for a given posterior they are specified in these forms,
such as the lower limit of zero for the gamma PDF.
We can also easily accomplish this criterion in a more general way using

Monte Carlo simulation again with the 1M values drawn before. The procedure
is to sort this large sample and then just pick the quantiles of interest empirically
corresponding to the desired α values. This is provided in the adjacent R and
Python code boxes for different α values, and the algorithm is as follows:

• generate big.sample.size = 1M values (or some other large number) from
the posterior distribution, and label this θ large sample

• sort these values and save them in a new object, θsorted large sample
• for a desired α level choose the two values from this sorted vector at the
positions: α/2 × big.sample.size, and (1 − α/2) × big.sample.size.

Since the draws are sorted and the distribution is unimodal we are guaranteed to
have the α/2 tails identified by these two thresholds that determine where the
lowest density starts and stops on either end. These values for the θ parameter
in the hate message retweets model are shown in Table 8. With this tool there
will be some rounding error, but with large-n datasets it is small (around 1/

√
n).
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Table 8 Credible intervals for θ in hate message retweets analysis

1 − α = 0.90 1 − α = 0.95 1 − α = 0.99 1 − α = 0.999

[4.708:4.834] [4.690:4.852] [4.657:4.886] [4.620:4.925]

R Code for Gamma Posterior Credible Interval
This example continues code from Section 8.2.

# CREDIBLE INTERVALS FOR theta
n.sims <- 1000000
vals <- c(0.001,0.01,0.05,0.10)
sort.theta.sample <- sort(theta.large.sample)
round(sort.theta.sample[c(n.sims*vals,

n.sims*(1-vals))],3)

PYTHON Code for Gamma Posterior Credible Interval
This example continues code from Section 8.2.

# CREDIBLE INTERVALS FOR theta
n_sims = 1000000
vals = np.array([0.001,0.01,0.05,0.10])
s_theta_sample = np.array(sorted(theta_large_sample))
print(np.round(s_theta_sample[

np.floor(n_sims*vals).astype(int)], 3))
print(np.round(s_theta_sample[

np.floor(n_sims*(1-vals)).astype(int)], 3))

Code for Credible Interval from Drawn Data
As an illustrative numerical example, suppose we have 1M sorted numer-
ical values sampled from a standard normal distribution and we want a
99% credible interval. Then for interval endpoints we pick the 1000000×
0.005th and the 1000000 × 0.995th value of the sorted vector. In R:

n.sims <- 1000000
sort.x <- sort(rnorm(n.sims))
sort.x[n.sims*0.005]
sort.x[n.sims*0.995]
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And in Python(with numPy):

n_sims = 1000000
x = np.random.normal(0, 1, n_sims)
sortx = np.sort(x)
print(sortx[int(n_sims * 0.005)])
print(sortx[int(n_sims * 0.995)])

What if we had a multimodal posterior form, or we had no a priori idea how
many modes existed? Using either of the credible interval approaches with a
multimodal prior could result in some lower density areas being included in
the interval at the expense of higher density areas. There could also be non-
contiguous regions of the (1−α) criteria about inclusion and exclusion. To see
this consider Figure 10 where there are two equal modes (although they do not
have to be equal) and the (1 − α) range of the support has two regions. This is
a difficulty for the standard credible interval calculation because it would end
up containing low regions of density, particularly the one in the middle of this
figure. So what we want is a tool that gives the highest (1 − α) density region
regardless of contiguity. This is called the Highest Posterior Density (HPD)
interval and it is depicted in Figure 10 by the two intervals labeled C. Looking
at the horizontal line at k, imagine moving it up and down vertically. Moving
it up increases the left-out area increasing the value of α, and moving it down
decreases the left-out area decreasing α. So the way to determine the size and
location of the noncontiguous regions with the highest density is to calibrate k
for the desired 1−α coverage. This approach picks the right regions of inclusion
and exclusion regardless of the modality of the target distribution.
More formally, a 100(1 − α)% highest posterior density (HPD) interval

for some θ posterior estimate is the subset of the support of the posterior
distribution for the parameter θ that meets the criteria:

C = {θ :π(θ |y) ≥ k},

where k is the largest number such that:

1 − α =
∫
θ:π(θ |y)≥k

π(θ |y)dθ

The role of k in defining the area of integration is determined by the ≥ inequal-
ity statement, meaning that the vertical distance between the red line and PDF
value in Figure 10 must be nonnegative. Since k also determines the excluded
areas it is specified by α. Calculation of HPDs can be accomplished analyti-
cally but it is almost always done computationally. Consider an example where
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k

C Intervals

(1 − α)

Figure 10 Highest posterior density interval for a bimodal distribution

we draw (simulate) a mixture distribution with equal numbers of N(1,1) and
N(7,2) distributed values. This example is more general than it seems since
we have already seen that a convenient way of calculating posterior quantities,
even when we have the exact parameterization of the distribution, is using a
large set of simulated draws from the distribution and calculating these quan-
tities empirically as if they were data. Using these simulated mixture data with
two modes we will implement a simple HPD algorithm that uses a density esti-
mate to provide a crude histogram that can be summed with different values of
k cutting across horizontally. Starting at the highest mode this algorithm low-
ers k until the α criteria is met for the HPD. This is given in the adjacent code
boxes for a 1 − α = 0.95 HPD, as graphed in Figure 11.

R Code for HPD Interval from Drawn Data
n.sims <- 10000
mix.dat <- c(rnorm(n.sims/2,1,1), rnorm(n.sims/2,7,2) )
mix.dens <- density(mix.dat)
alpha <- 0.05
decrement <- 10000
target <- sum(mix.dens$y * mix.dens$x) * alpha
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exclude <- sum(mix.dens$y * mix.dens$x)
k <- max(mix.dens$y)
while (exclude > target) {

k <- k - k/decrement
exclude <- sum(mix.dens$y[mix.dens$y < k]

* mix.dens$x[mix.dens$y < k])
print(paste("exclude: ",exclude," k: ",k))

}

PYTHON Code for HPD Interval from Drawn Data
n_sims = 10000
mix_dat = np.concatenate((

np.random.normal(1, 1, int(n_sims/2)),
np.random.normal(7, 2, int(n_sims/2))))

mix_dens = gaussian_kde(mix_dat)
# SET n=512 TO REPLICATE density() FUNCTION IN R
dens_x = np.linspace(min(mix_dat), max(mix_dat), 512)
dens_y = mix_dens(dens_x)
alpha = 0.05
decrement = 10000
target = np.sum(dens_x * dens_y) * alpha
exclude = np.sum(dens_x * dens_y)
k = max(dens_y)
while exclude > target:

k -= k / decrement
mask = dens_y < k
exclude = np.sum(dens_y[mask] * dens_x[mask])
print(f"exclude: {exclude} k: {k}")

8.4 Comparing Different Models
There aremanyways to compare alternativemodel forms in Bayesian statistics.
In this section we will concentrate on one intuitive version where alterna-
tive hyperprior values produce different models and we consider which model
implies data that are closer to the observed data y. The key principle is that since
all uncertainty is described probabilistically and the end-product of a given
analysis is a posterior distribution, we can use simulated draws to produce dis-
tributions for various quantities of interest. For the hate retweets data we will
compare two posterior distributions for θ with the gamma-Poisson conjugate

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009341189
Downloaded from https://www.cambridge.org/core. IP address: 18.188.19.96, on 17 Nov 2024 at 20:17:33, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009341189
https://www.cambridge.org/core


Bayesian Social Science Statistics 73

10 150 5

0.
00

0.
05

0.
10

0.
15

Support

D
en

si
ty

0.95 HPD Interval: [−1.631:10.766]

k = 0.018

Figure 11 Highest posterior density interval from simulation

setup: one performed previously in (8.1), and another with a more diffuse prior
distribution according to G(1,1000). The core steps are:

• for each model to be compared draw a large number of samples from the
posterior distribution for the estimated parameter (θ in this case)

• for each one of these draws plug it into the original PMF or PDF of the data
and draw a simulated version of y

• compare these simulated y’s with the true y’s to see which model best fits
the data.

With this procedure the uncertainty from the distribution of the posterior esti-
mate is expressed in the simulated data values. Conversely, if we had just used
the mean of the posterior draws this would be ignoring the distributional uncer-
tainty that exists because the result of the Bayesian models was a posterior
distribution not a point estimate.
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Table 9 Summary of data and predicted data, hate retweets

Min. 1st Q. 2nd Q. Mean 3rd Q. Max.

Data 2 2 2 5.1045 4 219
m = 5,a = 50,b = 10 2 4 5 5.2666 7 21
m = 2,a = 1,b = 1000 2 3 4 3.8357 5 16

Returning to the hate message retweets data we stipulate two sets of hyper-
priors as shown in the first column of Table 9, where the first set of values are
the ones used in the original conjugate analysis (Section 8.1) and the second
set represents a more skeptical version of the same prior. These are updated
according to the analysis in Section 8.1, and 100,000 draws from each poste-
rior are produced. Using these posterior parameter values for θ we draw many
data draws for the two different model setups. The results are then compared
with the original data to see which model more accurately simulates data that
resemble the known data. This can be done in many different ways, including
graphing, but here a simple summary is given in Table 9. Notice that the original
specification of the hyperparameters gives a more accurate mean summary of
the predicted data. Also, both specifications struggle with predicting the larger
values even after leaving out four very big outliers, which is not surprising.
There is just something substantively different about the extreme cases here,
and they may need to be qualitatively analyzed separately. This is obviously
not an uncommon phenomenon in social science data.

R Code for Hate Retweets Model Comparison

m1 <- 5; a1 <- 50; b1 <- 10
m2 <- 2; a2 <- 1; b2 <- 1000
post.a1 <- a1 + sum(y); post.b1 <- b1 + n
post.a2 <- a2 + sum(y); post.b2 <- b2 + n
theta1.vals <- rgamma(100000,shape=post.a1,rate=post.b1)
theta2.vals <- rgamma(100000,shape=post.a2,rate=post.b2)
y1 <- y2 <- NULL
for (i in 1:1000) {
y1 <- c(y1,rpois(n,sample(theta1.vals,1,replace=TRUE)))
y2 <- c(y2,rpois(n,sample(theta2.vals,1,replace=TRUE)))

}
y1 <- y1[y1 > 1]; y2 <- y2[y2 > 1]
rbind(summary(y),summary(y1),summary(y2))
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PYTHON Code for Hate Retweets Model Comparison

m1, a1, b1 = 5, 50, 10
m2, a2, b2 = 2, 1, 1000
post_a1 = a1 + np.sum(y)
post_b1 = b1 + len(y)
post_a2 = a2 + np.sum(y)
post_b2 = b2 + len(y)
theta1_vals = gamma.rvs(a=post_a1, scale=1/post_b1,

size=100000)
theta2_vals = gamma.rvs(a=post_a2, scale=1/post_b2,

size=100000)
y1 = []; y2 = []
for _ in range(1000):

y1.extend(poisson.rvs(
mu=np.random.choice(theta1_vals, 1, replace=True),
size=len(y)))

y2.extend(poisson.rvs(
mu=np.random.choice(theta2_vals, 1, replace=True),
size=len(y)))

y1 = np.array(y1)
y2 = np.array(y2)
y1 = y1[y1 > 1]
y2 = y2[y2 > 1]
print(np.percentile(y, [0, 25, 50, 75, 100]))
print(np.percentile(y1, [0, 25, 50, 75, 100]))
print(np.percentile(y2, [0, 25, 50, 75, 100]))

One of the themes of this section has been that full descriptions of posterior
distributions are generally more useful than point estimates in terms of describ-
ing model results. Of course point estimates can be easily produced from these
full distributions if desired. This is also where the value of simulation is evident.
If we have the parametric definition of the posterior distribution of interest,
then generating 100,000 values or more from this distribution in R or Python is
straightforward and fast with modern computers. Since all unknown quantities,
including the posterior distribution, are described probabilistically in Bayes-
ian inference, then all of this simulation work is on the probability metric and
therefore intuitive. Straight likelihood inference, as described in Section 3, does
not allow such direct statements such as: what is the probability that the effect
is above or below some threshold of interest, what is the probability that one
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model fits better than another, and what is the predicted probability of future
data. Furthermore, armed with many draws from a parameter’s posterior dis-
tribution we have huge flexibility in calculating general summaries of interest,
such as credible intervals, quantiles, and transformations. These strategies are
highlighted in the detailed case study provided in the next section.

9 Case Study I: Election Polling and Bayesian Updating
In this section, we focus on a practical application of Bayesian principles and
mechanics we have been discussing throughout the Element with a detailed
case study. As noted, one major advantage of Bayesian statistics is its ability
to incorporate prior knowledge and update with new information as it becomes
available. The key tenet of Bayesian inference is to this use prior information
combined with data information to produce an updated distribution for each
parameter of interest as described in detail in Section 4. In this section, we
will apply this principle to the context of election polling data. This process
will involve using previous election results as prior belief and Bayesian updat-
ing to refine the distributional knowledge, reflecting the most current state of
information.
Election polling is likely familiar to anyone who generally follows politics,

in addition to political pundits and analysts. For the past several decades, since
the dawn of modern survey research, polling has been an extremely impor-
tant tool for gauging voter sentiment for candidates before the election date
and often predicting election outcomes (Gelman, Hullman, Wlezien, & Mor-
ris, 2020; Stein et al., 2020; Stoetzer, Leemann, & Traunmueller, 2024). In the
2020 US election cycle, FiveThirtyEight tracked over 4,000 surveys by 240
pollsters, a mix of over 1,100 national and 3,000 state-level polls. For highly
contested battleground states, fresh polls were released nearly daily as Election
Day neared. This continually evolving information source is crucial not just
for the media, tasked with deciphering campaign trends to the public, but also
for political strategists deciding on campaign resource allocation and academic
researchers studying political behavior dynamics and shifts. The richness of
polling data comes with its own set of challenges, and users of such data should
be versant in the concept of total survey error (Groves & Lyberg, 2010). The
data is often noisy, even without considering recent issues of response rates
and polling errors, so it poses significant hurdles to statistical analysis. Impor-
tantly, each poll, conducted at different points with a unique sample before the
election, only provides a snapshot of voter sentiment at that particular moment.
In the face of these challenges, the Bayesian approach presents a powerful

and flexible approach. It allows us to incorporate prior knowledge and adapt
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our predictions as new data becomes available, which is particularly advanta-
geous when dealing with a multitude of polls released at different times. Instead
of treating each poll as an isolated snapshot, the Bayesian approach allows us
to iteratively update our model, absorbing the new data and refining our pre-
dictions. It also provides a natural yet systematic way to manage the balance
between prior knowledge and new data, letting the data speak more loudly as
it accumulates while still allowing the prior information to contribute to our
understanding. Also by assigning probability distributions to our uncertainties,
the Bayesian method creates a natural mechanism to account for the inherent
noise and variability in polling data. Through this case study, we hope to pro-
vide a tangible demonstration of the unique strengths of analysis in managing
uncertainty and making sense of complex, dynamic data.

9.1 Polling Data
Here we focus on the most recent 2020 US presidential election, which pro-
duced a wealth of polling data given the perceived closeness of the race and
the dramatic politicking. The current state-of-the-art approach for using pre-
election polls to gauge voter preference is poll aggregation that combines
a large number of surveys (Lauderdale, Bailey, Blumenau, & Rivers, 2020;
Madson & Hillygus, 2020), which is heavily used by media outlets such as
FiveThirtyEight and The Economist. This approach can not only maximize the
rich information embedded within different polls, but also mitigate the issues of
variability across individual polls due to differences in methodologies, sample
sizes, timing, scopes, and so on. However, the use of aggregation is not without
its cautions (Isakov & Kuriwaki, 2020).
In the polling data collected by FiveThirtyEight during the 2020 election, the

earliest national poll was from November 2018, during the 2018 midterm elec-
tions; the latest national and key states’ polls are right before Election Day. As
usual, there also tends to be a much larger number of national polls compared
to individual states. They can be used to estimate the popular vote providing a
broad overview of the country-wide voter but still have a gap in terms of pre-
dicting the outcomes of individual states, which is important in the electoral
college system. Among states, the number of polls conducted also varies from
state to state, with key battleground states such as Wisconsin and Pennsylvania
having 600 to 1,000 polls and some states having only 100.
Table 10 displays the top six rows of the collection of pre-election polls from

the 2020 US presidential election cycle. Each row in the dataset corresponds to
a poll conducted at a certain time and state. The variables in the dataset are as
follows:
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Table 10 Polling data

poll_id pollster state end_date sample_size dem_share

1 72653 Ipsos Arizona 2020-11-02 610 0.51
2 74946 The Political Matrix/The Listener Group Florida 2020-11-02 966 0.479
3 72862 Trafalgar Group Georgia 2020-11-02 1041 0.477
4 72621 PPP Iowa 2020-11-02 871 0.505
5 72861 Trafalgar Group Nevada 2020-11-02 1024 0.496
6 72647 Susquehanna Pennsylvania 2020-11-02 499 0.496
7 … … … … … …
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• poll_id: a unique identifier for each poll
• pollster: the organization that conducted the poll
• state: the US state where the poll was conducted, where the term
“National” is used when the poll was conducted across the entire United
States

• end_date: the date when the survey ended
• sample_size: the number of respondents in the poll
• dem_share: the proportion of respondents (two-party share) who indicated
they would vote for the Democratic candidate (i.e., Joe Biden).

9.2 Bayesian Setup
The objective of our analysis is to leverage multiple polls to estimate the vot-
ers’ preferences of each state for the candidates before the election. To mimic
the real, dynamic nature of the electoral process – as the election draws closer,
fresh and more accurate polling data becomes available – we also use an updat-
ing strategy that can incorporate the new data into our estimations, continually
refining our model and reflecting the evolving state of the electoral process.
For the sake of pedagogical simplicity, we will not be addressing some prac-
tical issues in this area that polling practitioners are routinely concerned with,
such as pollster biases, correlations between units, missing data/refusals, lack
of attention, andmode of collection. Nevertheless, our analysis retains a simple,
but similar, structure and can later naturally expand to more complex models
and incorporate additional information. It is worth noting that the majority of
those more advanced models adhere to the Bayesian framework.
To begin with, start with the basic process of using multiple polls to estimate

voters’ preferences for each state. In state j, the actual proportion of voters
favoring the Democratic candidate is θj. And for a particular state poll k, there
are yjk voters out of the njk polled voters favoring the Democratic candidate.
While we have not seen double subscripting before in this discussion, the addi-
tional complexity of notation is minor. We specify a binomial process to draw
a random sample,

yjk ∼ Binomial(θj,njk), (9.1)

that was described in detail in Section 6.1 for the number of successes in a fixed
number of independent individual Bernoulli trials with the same probability of
success. Here, each poll is treated as a random sample from a binomial distri-
bution, where θj is now the probability of success defined as a voter favoring
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the Democratic Party candidate in the jth state, and njk is the number of trials,
meaning potential voters polled. Empirically the θj values are estimated from
the proportion of support for the Democrat in state j starting with the binomial
likelihood function, which means that we need to specify a prior for these in
the Bayesian modeling process. A common choice of prior in this setting is
the beta distribution since it is not only conjugate to the binomial likelihood
function producing a beta form for the posterior (Table 3 in Section 5.1), it also
automatically provides the appropriate bounds for the θj parameters. The beta
PDF is given by for an arbitrary random variable X:

BE(X |α, β) = Γ(α + β)
Γ(α)Γ(β)X

α−1(1 − X ) β−1, 0 < X < 1,0 < α, β, (9.2)

where Γ() denotes the Gamma function given in Section 4.2. Another virtue
of this choice is that the shape of this distribution is very flexible within the
support [0 : 1] depending on the choice for α and β: it can be unimodal or
bimodal, symmetric or skewed, and skewed left or right. Since we are applying
this choice to each of the 50 states and Washington D.C. we are asserting j =
1, . . . ,51 beta priors: θj ∼ BE(αj, βj), with different versions of αj and βj. To
inform these prior choices for our analysis of the 2020 election we turn to the
2016 presidential election to provide an informed prior baseline.
For each state j and poll k combination we have observed yjk for the Demo-

cratic candidate support and njk for the number of respondents, in that state/poll
combination. This a basic example of a Bayesian hierarchical model, which
are very powerful ways to analyze data from different sources and at differ-
ent levels of aggregation. In the following empirical example we will confine
ourselves to a single state (Georgia) or individual states separately for the ped-
agogical purpose of simplicity but more elaborate Bayesian models can easily
incorporate this hierarchy, and this will be done later. This decision means that
the j notation is superfluous but we leave it in the following expressions as
a reminder of Bayesian modeling flexibility. The likelihood function for this
setup thus sums across the K polls selected for any given model available for
use in a state j:

L(θj |yjk,njk) =
K∏
k=1

(
njk
yjk

)
θ
yjk
j (1 − θj)njk−yjk . (9.3)

The double subscripting jk is a reminder of the state j and poll k crossing.
The posterior distribution for a single state j is given proportionately by the

beta prior times the binomial likelihood function:
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π(θj |yjk,njk, αj, βj) =
Γ(αj + βj)
Γ(αj)Γ(βj)

θ
αj−1
j (1 − θj) βj−1

×
K∏
k=1

(
njk
yjk

)
θ
yjk
j (1 − θj)njk−yjk

[use proportionality to dispose of constants]

∝ θαj−1
j (1 − θj) βj−1

K∏
k=1
θ
yjk
j (1 − θj)njk−yjk

[move the products into the exponents as sums]

= θ
αj−1
j (1 − θj) βj−1θ

∑K
k=1 yjk

j (1 − θj)
∑K

k=1(njk−yjk)

[collect terms]

= θ
αj−1+

∑K
k=1 yjk

j (1 − θj) βj−1+
∑K

k=1(njk−yjk).

To see the resulting distributional form we can define:

something = αj +
K∑
k=1

yjk

something else = βj +
K∑
k=1

(njk − yjk)

so that the last line in the posterior calculation earlier is:

π(θj |yjk,njk, αj, βj) ∝ θ something−1j (1 − θj) something else−1.

Now it is straightforward to see from the definition in (9.2) that the
derived posterior distribution is the kernel of another beta distribution given
by BE(αj +

∑K
k=1 yjk, βj +

∑K
k=1(njk − yjk)). Notice again the obvious

compromise here between prior information (αj, βj) and data information(∑K
k=1 yjk,

∑K
k=1(njk − yjk)

)
, which is always present in Bayesian inference.

Now we have a complete recipe for analyzing and summarizing the posterior
distribution of θj given that we have ( yjk,njk, {αj, βj}), and no more analytical
work is required.
With the posterior distribution fully determined, we now can think about

how prior belief ({αj, βj}) and data information (yjk, njk) collectively affect
the posterior distribution. The mean of a variable X distributed BE(α, β) is
E [X ] = α/(α + β), and the variance is Var[X ] = (αβ)/((α + β)2(α + β + 1)).
Another distributional summary of dispersion is the “concentration,” denoted
by κ = α + β, and is the extent to which density is concentrated near the mean.
As demonstrated in Figure 12, a larger κ makes the beta distribution narrower
and more concentrated. Consequently, the selection of κ = α + β for the prior
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Figure 12 Beta distributions with different concentrations

has further implications. It sets the tone for how “assertive” or “persuasive” our
prior beliefs appear when confronted with new data. Furthermore, for posterior
beta distribution, each new data point – a tally of support for Democratic or
Republican candidates – incrementally augments

∑K
k=1 yjk and

∑K
k=1(njk − yjk)).

Given the substantial sample size often inherent in surveys – running into hun-
dreds or thousands – the influx of new data information can dramatically sway
our prior beliefs and result in a rapid reduction in uncertainty. To put it in per-
spective, we probably would not think another 1000 respondents’ opinions are
equivalent to another 1000 coin flips in terms of reducing uncertainty.
In this light, instead of representing raw count, it makes more sense to con-

sider the parameters of the beta distribution as “weights” for success’s and
failure’s contributions to the distribution. Therefore, we can scale down njk
and correspondingly yjk to reflect our uncertainty. In the following analysis,
we impose a w0 = 0.1 base weight for each poll, which translates to each poll
carrying just a tenth of its original weight in the posterior distribution – a subtle
adjustment that enables us to accommodate our degree of uncertainty. Going
back to the prior distribution, we are now in a position to fine-tune the degree of
influence we wish our prior beliefs to exert. A smaller κ = α+ β implies a more
malleable prior, easily swayed by new data; and to make our prior beliefs have
stronger input, we would specify large κ = α + β. For this example, we choose
a κ = 500, which is equivalent to a survey with an unweighted sample size of

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009341189
Downloaded from https://www.cambridge.org/core. IP address: 18.188.19.96, on 17 Nov 2024 at 20:17:33, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009341189
https://www.cambridge.org/core


Bayesian Social Science Statistics 83

5000. This prior would exert a somewhat notable influence on states with few
polls but will fade in on heavily polled states. This is precisely the reason why
certain states have only few polls – for deep red or blue states, there is not much
additional information polls can provide compared to historical election data.
Next, to bring the model closer to reality and reflect the dynamics of polling,

we also impose a temporal weight w(t) on the posterior variables. It is reasona-
ble to think that polls conducted several months or even more than a year prior
to the election are weak predictors of the final results. This temporal weighting
allows us to prioritize and emphasize more recent polls, which are generally
considered to provide a better reflection of the current public opinion. We use
a long memory weight function (Christensen and Florence, 2008):

wt =
1 −

t
70 , t ≤ 56

0.2, t > 56

With these weights in place, our posterior distribution now becomes

π(θj |yjk,njk, αj, βj) = θ
αj−1+

∑K
k=1 w0wtyjk

j (1 − θj) βj−1+
∑K

k=1 w0wt(njk−yjk)

where w0wtyjk and w0wt(njk − yjk) are simply weighted versions of the origi-
nal binomial parameters. While n and y in the binomial distribution technically
require integers, this weighted version is justifiable in the sense that we care
more about the data proportions (y/n, i.e., the proportion of voters support-
ing Biden) instead of the raw count. And this will be clearer in the simulation
process later.

9.3 Implementation in Software
The strategy is to use simulation again by generating a large number of samples
of θj from this beta distribution computationally. For the 2020 US presidential
election a state of high interest is Georgia since the Democrat beat the Repub-
lican by merely 12,670 votes and a margin of 0.239% (according to an audit
required by state law). So we use (θGA,yGA,k,nGA,k) for the empirical example
with α = 95, β = 105 (κ = α + β = 200) prior parameters. We chose these
values using the 2016 election results where the then Democratic candidate
Hillary Clinton received 47.3% of the two-party vote share (95/200 = 0.473).
It is important to note that the choice of κ = 200 is somewhat arbitrary but
represents a relatively informative prior since it would result in a narrower beta
distribution. The adjacent code boxes show the calculation steps of the posterior
distribution for the Biden (Democrat) vote share with poll aggregation.
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R Code for Calculating Georgia Posterior Distributions

# POLLING DATA
polls <- read.csv("polls2020.csv")
polls$end_date <- as.Date(polls$end_date)
ga <- subset(polls, state=="Georgia")

# KAPPA, BASE WEIGHT, etc.
kappa <- 500; w0 <- 0.1
ruler <- seq(0,1,length=5000)
days <- as.numeric(as.Date("2020-11-02")-ga$end_date)

# PRIOR
alpha <- 0.473*kappa; beta <- kappa-alpha
prior <- dbeta(ruler,alpha,beta)

# LONG MEMORY TEMPORAL WEIGHT
wt <- ifelse(days > 56, 0.2, 1-days/70)

# COMPUTE POSTERIOR
sum_n <- sum(ga$sample_size*w0*wt)
sum_y <- sum(ga$dem_share*ga$sample_size*w0*wt)
post_alpha <- alpha+sum_y
post_beta <- sum_n-sum_y+beta
posterior <- dbeta(ruler,post_alpha,post_beta)

PYTHON Code for Calculating Georgia Posterior

# POLLING DATA
polls = pd.read_csv("polls2020.csv")
polls['end_date'] = pd.to_datetime(polls['end_date'])
ga=polls[polls["state"]=="Georgia"]

# DEFINE KAPPA AND BASE WEIGHT
kappa,w0=500,0.1
ruler=np.linspace(0,1,5000)
days=(pd.to_datetime("2020-11-02")

- ga['end_date']).dt.days
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# PRIOR
alpha,beta=0.473*kappa,kappa-0.473*kappa
prior=stats.beta.pdf(ruler,alpha,beta)

# LONG MEMORY TEMPORAL WEIGHT
wt=np.where(days>56,0.2,1-days/70)

# COMPUTE POSTERIOR
sum_n=(ga['sample_size']*w0*wt).sum()
sum_y=(ga['dem_share']*ga['sample_size']*w0*wt).sum()
post_alpha=alpha+sum_y
post_beta=sum_n-sum_y+beta
posterior=stats.beta.pdf(ruler,post_alpha,post_beta)

We can also calculate the point estimate and highest posterior density
intervals for Biden’s two-party vote share. For a beta distribution, the mean
(expected value) is calculated as E [X ] = α/(α + β) and thus does not require
simulation. For this posterior mean is 0.514, which reflects the small margin of
victory. The HPDs for four levels of 1− α are given in Table 11. It is clear that
the data from the aggregated polls have a lot to say in the prior versus data trade-
off since the resulting posterior intervals at any of these four levels are narrow.
It is also worth noting that this beta distribution is also slightly right-skewed.

R Code for Estimates of Biden’s Support

# POINT ESTIMATE
post_mean <- post_alpha/(post_alpha+post_beta)

# CREDIBLE INTERVALS
n_sims <- 1000000
post_samples <- rbeta(n_sims, post_alpha,post_beta)
sorted_samples <- sort(post_samples)
vals <- c(0.001,0.01,0.05,0.10)
round(sorted_samples[c(n_sims*vals, n_sims*(1-vals))],4)

# USE HDInterval PACKAGE
library(HDInterval)
hdi(post_samples,credMass=0.95)
sapply(1-vals,

function(vals) hdi(post_samples,credMass = vals))
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PYTHON Code for Estimates of Biden’s Support

# POINT ESTIMATE
post_mean = post_alpha / (post_alpha + post_beta)
print(post_mean)

# CREDIBLE INTERVALS
n_sims = 1000000
post_samples = stats.beta.rvs(post_alpha, post_beta,

size=n_sims)
sorted_samples = np.sort(post_samples)
vals = np.array([0.001, 0.01, 0.05, 0.1])
lower = [np.round(sorted_samples[int(n_sims*val)],3)

for val in vals]
upper = [np.round(sorted_samples[int(n_sims*(1-val))],3)

for val in vals]
print(list(zip(lower, upper)))

# USE az.hdi() TO CALCULATE THE HDI
hdi = az.hdi(post_samples, hdi_prob=0.95)
print(hdi)

## ITERATE THROUGH EACH VALUE
ci = [az.hdi(post_samples, hdi_prob=val)

for val in 1 - vals]
print(ci)

print("99.9%: ",
f"[{round(ci[0][0],4)},{round(ci[0][1],4)}]")

print("99%: ",
f"[{round(ci[1][0],4)},{round(ci[1][1],4)}]")

print("95%: ",
f"[{round(ci[2][0],4)},{round(ci[2][1],4)}]")

print("90%: ",
f"[{round(ci[3][0],4)},{round(ci[3][1],4)}]")

9.4 The Dynamics of Election and Posterior Update
Our previous analysis leveraged all available polls leading up to Election Day,
aiming to estimate the overall support for Biden in Georgia. However, both
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Table 11 Credible intervals for estimated Biden support in Georgia

1 − α = 0.90 1 − α = 0.95 1 − α = 0.99 1 − α = 0.999

[0.5101:0.5207] [0.509:0.5217] [0.507:0.5236] [0.5048:0.5261]

the election and polling are inherently dynamic processes. As the election
progresses, more data becomes available and potentially offers more accurate
insights into the state of the race as they are fielded closer to the final election.
To show this evolving nature of the election and polling, we can take advantage
of the Bayesian approach that reflects a natural balance between prior and data
and adapt our analysis to function more dynamically.
For any given point in time, we can use all polls conducted up to that date

to estimate voter preferences. As we move closer to the election, we include
more polls and more recent polls in our model. This means that as new polls are
conducted, our estimate of voter preferences is continually updated to reflect
the most current data. The adjacent code boxes implement this process in both
R and Python. We begin by establishing a sequence of months over which we
will examine the polls. The loop iterates over each month in the sequence. For
each month, it selects all polls conducted in Georgia up to that month.

R Code for Dynamic Estimation of Voter Preferences

months <- seq(1,11,1)
ruler <- seq(0,1,length=5000)

# PLACEHOLDERS TO STORE VALUES
posteriors <- matrix(NA, nrow=length(months),ncol=5000)
post_est <- rep(NA, length(months))
post_ci <- matrix(NA, nrow=length(months),ncol=2)

# PRIOR
alpha <- 0.473*kappa; beta <- kappa-alpha
priors <- dbeta(ruler,alpha,beta)

# ITERATE THROUGH EACH MONTH
for (m in 1:length(months)){
today <- as.Date(paste0("2020-",months[m],"-03"))
ga <- polls[polls$state=="Georgia" &

polls$end_date <= today,]
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days <- as.numeric(max(ga$end_date)-ga$end_date)
# WEIGHTS
w0 <- 0.1
wt <- ifelse(days > 56, 0.2, 1-days/70)
# POSTERIOR
sum_n <- sum(ga$sample_size*w0*wt)
sum_y <- sum(ga$dem_share*ga$sample_size*w0*wt)
post_alpha <- alpha+sum_y
post_beta <- sum_n-sum_y+beta
posteriors[m,] <- dbeta(ruler,post_alpha,post_beta)
# ESTIMATES AND CREDIBLE INTEVALS
post_est[m] <- post_alpha / (post_alpha+post_beta)
post_ci[m,] <- hdi(rbeta(n_sims,post_alpha,post_beta),

credMass=0.95)
}

PYTHON Code for Dynamic Estimation of Voter Preferences

months = np.arange(1, 12, 1)
ruler = np.linspace(0, 1, 5000)

# PLACEHOLDERS TO STORE VALUES
posteriors = np.empty((len(months), 5000))
post_est = np.empty(len(months))
post_ci = np.empty((len(months), 2))

# PRIOR
alpha = 0.473 * kappa
beta = kappa - alpha
priors = stats.beta.pdf(ruler, alpha, beta)

# ITERATE THROUGH EACH MONTH
for m in range(len(months)):
today = pd.to_datetime(f"2020-{months[m]}-03")
ga = polls[(polls['state']=='Georgia') &

(polls['end_date']<=today)]
days = (ga['end_date'].max()-ga['end_date']).dt.days
# WEIGHTS
w0 = 0.1
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wt = np.where(days>56,0.2,1-days/70)
sum_n = (ga['sample_size']*w0*wt).sum()
sum_y = (ga['dem_share']*ga['sample_size']*w0*wt).sum()
post_alpha = alpha+sum_y
post_beta = sum_n-sum_y+beta
posteriors[m, :] = stats.beta.pdf(ruler,

post_alpha, post_beta)
post_est[m] = post_alpha/(post_alpha+post_beta)
post_ci[m, :] = az.hdi(stats.beta.rvs(post_alpha,

post_beta, size=n_sims), hdi_prob=0.95)

Figure 13 illustrates the evolution of posterior distributions of Biden’s sup-
port, demonstrating how the accumulation of polling data over time refines our
estimations. In the early stages, ten months prior to the election, when there
were only few polls available, the posterior distribution is more spread, and
our inference is largely influenced by the prior at this stage. As the election
nears and more polls become available, the posterior distribution gradually nar-
rows showing increased precision. The influence of the prior diminishes as the
freshly obtained polling data provides updated insights into the evolving state
of the race. In other words, the posterior distribution more accurately reflects
the current state of the race. This is also reflected in Figure 14, which we fre-
quently see in the election coverage. As Election Day approaches, the credible
intervals of the estimates become increasingly narrower with more polls and
more updated information.

9.5 Simulation and Election Forecasting
Based on the example of Georgia, we can now expand our analysis to all US
states. Given that the electoral college system in the United States is state-
based, with each state contributing a certain number of electoral votes toward
the total, we can simply replicate the previous process for each state, calcu-
lating a posterior distribution for each state during different periods over the
election cycle. Eventually, we can obtain an estimate of the vote share (θj)
for all 51 states and Washington D.C. For each state, we use their respective
previous election results as prior with a fixed κ = 500. We then establish a
sequence of dates fromMarch to November 2020, over which we will examine
the polls. Once we obtain the estimated support for Biden per state, we can use
these estimates as probabilities in binomial distributions to simulate the elec-
toral support. Specifically, for each θj estimate, we draw 50,000 values from
the posterior distribution as probability and plug them in binomial distribution
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Figure 13 Updating posterior distributions with more polling data
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with a N = 5000, which is equivalent to 5,000 Bernoulli trials (i.e., voters in
our case). As we are concerned more about the proportions of outcomes rather
than the absolute number, the number ofN does not matter much as long as they
are large enough. Then, if over 50% of the voters support Biden in simulation,
we will assume that he wins the state and its electoral college votes (without
considering the minor exceptions of Maine and Nebraska, although it is not dif-
ficult to simulate the split electoral votes with additional data of the polls and
the previous election results at the congressional district level). We will then
sum up the electoral votes of the states won by the Democratic candidates to
get the total number of electoral votes. This essentially creates a process from
raw support to predicted electoral college outcomes.
The adjacent code boxes implement this process in both R and Python.

We first load a dataset that contains the previous election results and electoral
college votes for each state. The two loops iterate over each state and each spec-
ified date. For each date, it selects all polls conducted up to that date. Finally,
we simulate random beta-distributed values based on posterior distribution and
use the simulated value as probability to generate binomial distributions. Then,
using these results we can assign the electoral college votes based on whether
Biden receives 50% andmore support or not. Figure 15 presents the forecasting
results from March to November 2020.

R Code for Simulating Electoral Outcomes of the U.S.

# 2016 ELECTION AND ELECTORAL COLLEGE DATA
election2016 <- read.csv("data/election2016.csv")
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states <- unique(election2016$state)
n_sims <- 50000; n_state <- length(states)
# DATES
months <- seq(4,11,1)
dates <- as.Date(c(paste0("2020-",months,"-03"),

paste0("2020-",months[-length(months)],"-10"),
paste0("2020-",months[-length(months)],"-17"),
paste0("2020-",months[-length(months)],"-24")))

dates <- dates[order(dates)]; n_date <- length(dates)
# KAPPA & BASE WEIGHT
kappa <- 500; w0 <- 0.1

sim_res <- array(data=NA,dim=c(n_state,n_sims,n_date))
for (i in 1:n_state){
cat(states[i], "\n")
state_dat <- polls[polls$state==states[i],]
state_dat <- state_dat[order(state_dat$end_date),]
alpha <- election2016[election2016$state==

states[i],]$dem_share*kappa
beta <- kappa - alpha
for (d in 1:length(dates)){
sub_dat <- state_dat[state_dat$end_date < dates[d],]
if (nrow(sub_dat) > 0) {
days <- as.numeric(max(sub_dat$end_date)-

sub_dat$end_date)
wt <- ifelse(days > 56, 0.2, 1-days/70)
sum_n <- sum(sub_dat$sample_size*w0*wt)
sum_y <- sum(sub_dat$dem_share*

sub_dat$sample_size*w0*wt)
post_alpha <- alpha+sum_y
post_beta <- sum_n-sum_y+beta

} else {
# FOR STATES WITH NO POLLS YET, USE PRIOR
post_alpha <- alpha
post_beta <- beta

}
# SIMULATE THETA FROM POSTERIOR
pis <- rbeta(n_sims, post_alpha, post_beta)
# DRAW SIMULATED BINOMIAL OUTCOMES
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outcomes <- rbinom(length(pis), 2000, pis)/2000 > 0.5
# CALCULATE ELECTORAL COLLEGE VOTES
evs <- ifelse(outcomes,
election2016[election2016$state==states[i],]$ev,
0)

sim_res[i,,d] <- evs
}

}
# CALCULATE BIDEN'S CHANCE OF WINNING
ev_sum <- apply(sim_res, c(2,3), sum)
biden_win <- apply(ev_sum, 2, function(x) sum(x>=270))/

n_sims

PYTHON Code for Simulating Electoral Outcomes of the U.S.

# 2016 ELECTION AND ELECTORAL COLLEGE DATA
election2016 = pd.read_csv(

"election2016.csv")
states = election2016['state'].unique()
n_sims, n_state = 10000, len(states)
# DATES
months = range(4, 12)
dates = pd.to_datetime(

np.concatenate([
[f"2020-{m}-03" for m in months],
[f"2020-{m}-10" for m in months[:-1]],
[f"2020-{m}-17" for m in months[:-1]],
[f"2020-{m}-24" for m in months[:-1]],

])
).sort_values()
n_date = len(dates)
# DEFINE KAPPA
kappa, w0 = 500, 0.1
# SIMULATION
sim_res = np.empty((n_state, n_sims, n_date))
# ITERATE THROUGH DATES AND STATES
for i, state in enumerate(states):

s_dat = polls[polls['state'] == state]
s_dat = s_dat.sort_values('end_date')
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d_share = election2016[election2016['state']==state]
alpha = d_share['dem_share'].item()*kappa
beta = kappa-alpha
for d, date in enumerate(dates):

sub_dat = s_dat[s_dat['end_date']<dates[d]]
if not sub_dat.empty:

days = (sub_dat['end_date'].max() -
sub_dat['end_date']).dt.days

w0 = 0.1
wt = np.where(days >56,0.2,1-days/70)
sum_n = (sub_dat['sample_size'] *

w0*wt).sum()
sum_y = (sub_dat['dem_share'] *

sub_dat['sample_size'] * w0*wt).sum()
p_a, p_b = alpha+sum_y, sum_n-sum_y+beta

else:
# FOR STATES WITH NO POLLS YET, USE PRIOR

p_a, p_b = alpha, beta
# SIMULATE THETA FROM POSTERIOR
pis = stats.beta.rvs(p_a,p_b,size=n_sims)
# DRAW SIMULATED OUTCOMES FROM THE BINOMIAL
outcomes = stats.binom.rvs(n=5000,p=pis,

size=n_sims)/5000>0.5
# CALCULATE ELECTORAL COLLEGE VOTES
evs = np.where(outcomes,

d_share['ev'].item(), 0)
sim_res[i, :, d] = evs

ev_sum = sim_res.sum(axis=0)
# CALCULATE BIDEN'S CHANCE OF WINNING
biden_win = np.apply_along_axis(

lambda x: np.bincount(x>=270, minlength=2),
0, ev_sum)/n_sims

With this case study, we demonstrate that the Bayesian framework provides
a flexible yet realistic way of accounting for the diverse and dynamic nature
of elections and polling. This Bayesian approach enables the combination of
prior beliefs from previous elections with dynamically observed new data in a
coherent and principled manner. The prior distributions based on previous elec-
tion results reflect our initial beliefs about the parameters of interest (i.e., the
proportion of voters favoring a candidate in each state), which is particularly
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Figure 15 Simulating outcomes with posterior distributions of states

important when there is not much data available for the state. We then update
our beliefs as more data become available to obtain posterior distributions. One
of the notable advantages of Bayesian analysis is its ability to provide probabi-
listic estimates of the parameters of interest. This is particularly demonstrated
in our final simulation analysis, where we obtain the posterior distributions
instead of one single estimate and use a range of plausible values to simu-
late the electoral outcomes. This seamless integration provides a simple, yet
comprehensive, analysis of the polling results.
This case study, using aggregated polling data, can be seen as a simpler ver-

sion of the more advanced polling and election forecasting techniques. We use
the beta distribution as the prior distribution and its conjugacy with binomial
distribution to produce a beta form for the posterior. But it can be demonstrated
using the Central Limit Theorem, as y and n− y become large with fixed α and
β, E(θ |y) ≈ y/n and var(θ |y) ≈ 1

n
y
n
(
1 − y

n
)
approaches zero. This often justi-

fies the use of normal distribution to approximate the posterior distribution. In
fact, we can also transform the binomial parameter θ to a logit scale, making it
more appropriate for a normal approximation (Gelman et al., 2015). This essen-
tially expands our analysis to the state-of-the-art election forecasting technique
that uses both polling results and “fundamentals” (i.e., structural factors that
influence voter decisions) and takes into account various correlations, where
Bayesian approach also plays a crucial role.
To conclude, this section highlights the value of Bayesian analysis by

leveraging prior beliefs, updating them with observed data, and quantifying
uncertainty. It underscores the flexibility, coherence, and probabilistic nature

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009341189
Downloaded from https://www.cambridge.org/core. IP address: 18.188.19.96, on 17 Nov 2024 at 20:17:33, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009341189
https://www.cambridge.org/core


96 Quantitative and Computational Methods for the Social Sciences

of Bayesian methods. These features make Bayesian analysis a powerful tool
in social science studies. The concepts explored in this section and throughout
the discussion lay the groundwork for more advanced techniques and highlight
the value of the current Element in guiding readers through the intricacies of
Bayesian analysis in the context of elections and beyond.
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All code and data accompanying this Element are stored in the GitHub reposi-
tory: https://github.com/jgill22/Bayesian.Social.Science.Statistics, and can also
be run interactively via Code Ocean: https://codeocean.com/capsule/8772484.
And we confirm we want to keep the Code Ocean capsule where we mention
it in the text, i.e. after the end of Chapter/Section 1.
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