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Abstract

We study the problem of representing a permutation C as a product of a minimum number,
/t(C), of cycles of length k. Upper and lower bounds on fk(C) are obtained and exact results are
derived for k =2,3,4.

1. Introduction

Ree (1971) proved a combinatorial theorem about permutation groups by
using a formula for the genus of Riemann surfaces. Feit, Lyndon, and Scott
(1975) gave a direct combinatorial proof of Ree's theorem and determined for a
permutation v the smallest 1(TT) = I such that TT is a product of / transpostions.
We study the problem of representing TT as a product of a minumum number of
cycles of length k and use Ree's theorem to obtain exact results for k = 2,3,4.

In Section 2 we establish some notation and state our main results which are
proved in Section 3. Some specialized results are discussed in Section 4.

The authors were led to this investigation by a question posed by Professor
R. Burns of the University of Waterloo.

2. Main results

Throughout this paper Q = {1,2, • • •, n}. The symmetric and alternating
groups on fl are denoted Sn and A,, respectively. If C is a permutation on O,
then Supp C = {i | i E. Q,, C(i) }4 i}. In particular, if C = (1), the identity permu-
tation, then Supp C = 0 . The disjoint cycle decomposition of C/ (1) into
disjoint cycles of lengths greater than 1 is denoted dcd(C). If C = (1), we adopt
the convention that the number of cycles in any disjoint cycle decomposition of
C is zero. If S is a finite set, then | S | denotes the cardinality of S.

THEOREM 2.1. Let C,,C2,--,Ck,k^3, be permutations on O. and

suppose that
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322 Marcel Herzog and K. B. Reid [2]

Let c{ = | Supp C, | and let rt be the number of cycles in dcd(d), 1 S i S It. Denote
by a,, l ^ i S k - 2 , the number of cycles in dcd(d) which do not intersect
SuppCk-i, and denote by £/„ 3 ̂  r S k, the summation of
| Supp G, fl Supp Cfe n • • • n Supp Cit | over all r-tuples (ix, i2, • • •, ir) satisfying
1 ^ i, < i2 < • • • < i, g fc.

r, S -2)2 /t.

If C £ Sn - {(1)} and dcd(C) = C, C, let «k(C) = 2J-, {(c, - l)/(Jlc - 1)},
where c< = | Supp Q |, 1 S i ̂  r, and {*} denotes the least integer greater than or
equal to x. If C = (1), let ut (C) = 2. If C can be written as a product of cycles of
length k, 1< k S n, then /k(C) denotes the smallest / such that C is a product of
/ cycles of length k. It is easy to see that if k is even, then /k(C) is denned for all
C G Sn, and if k is odd, then /k(C) is defined for all C e An. We shall use the
notation D(n, k) = {C | C G Sn and / t(C) is defined}, where 2 g k S n.

THEOREM 2.2. Let C G D(n, fc). TTten
(i) 7/fc=2, (kn/2(C)Su2(C).
(ii) // k is odd, then fk (C) S wk (C), unless C is a single cycle of odd length

less than k, in which case fk (C) = 2.
(iii) // k is even, then / k (C)g uk(C)+ 1, unless C is a single cycle of even

length less than k, in which case /k(C) = 3.

THEOREM 2.3. Let CGD(n,k), where 2S k g4 . Then fk(C)^uk(C).

For fc S5 , the statement in Theorem 2.3 is false as can be seen by noting
that for k = 5, (12)(34)(567) = (16753)(51234) and then using identity (9) for
k > 5. Note that in this paper multiplication of permutations is performed from
right to left. In particular, if au • • •, ar, ar+u • • •, a, are distinct elements of ft,
then ( a , • • • a,)(a,ar+i • • • a,) = (at • • • ar • • • as).

COROLLARY 2.4. Let C GD(n, k).

(i) // k = 2 or 3, then fk (C) = uk (C).

{ 3, if C is a transposition

M4(C) + 1, // u«(C) * u2(C) (mod 2)

u4(C), otherwise.

( i i i ) / / C/ ( 1 ) , d c d ( C ) = d - - - C n a n d c, = | S u p p C |, l g i S r ,
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We remark that the value of fi{C) was determined using different methods
by Feit, Lyndon, and Scott (1975).

3. Proofs

For the proof of Theorem 2.1 we require two lemmas.

LEMMA 3.1. If 0<l < n, then

PROOF. The proof is by induction on / and n. If / = 1 and n S 2, then

2 f,n)(-1)k = - ( ! -")> s^ce (* ~ 1)" = 2 (?) *""*(- I)"- So suppose the

Lemma holds for all /' < / and n' < n satisfying 0 < /' < n', where 1 < / < n. If

n = l + \, then ^ I j ) ( j + {)(" 1)'+' = (~ 1)(~ !)'• So we assume that l + Kn.

Then

= - ( ( / - n ) ( - I)'"1) (by the inductive hypothesis)

By induction the lemma follows.
The notation in the statement of Theorem 2.1 is used in the next lemma.

LEMMA 3.2. Let G be the group generated by d , C2, • • •, Ck, and let Fix G

be the subset of ft fixed by G. Then

2(n - | Fix G |) = 2 ^ - 2 / 3 + 22/4 + (-l)*(fc-2)2A.
i - l

PROOF. Let A = ft - Fix G. Each element of A occurs at least twice among
the d, 1 g i g fc, since Ck = Cx • • • Ck-t. Suppose x G A occurs exactly /, times.

Then x is counted /, times by 2 c» a°d x contributes I * I to 2 h 3 = / = K
i-l \] I
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where we understand ( , ) = 0 for k > I. Thus, x contributes

(1) £ c, - £ J3 + 2 2 / 4 - • • +(-l)fc(/c - 2 ) 2 h-
i = l

On the other hand, by Lemma 3.1, with / = 2 and n = lx, x contributes 2 to
(1), and the Lemma follows.

PROOF OF THEOREM 2.1. For a permutation D?^(l) on ft define v(D) =
( / , - l ) where D is a product of disjoint cycles of lengths U,--,lm. Let

= 0. Let T be the number of orbits of the group G generated by
C , C2, • • •, Ck. Then by a theorem of Ree (1971) (Feit, Lyndon, and Scott (1975)
gave a combinatorial proof; a similar proof was produced by the authors)

(2) 2Tg2n-i
i = l

Lemma 3.2 and (2) imply that

2T g 2| Fix G I + J>f - £ /3 + 2 £ I4 + ( - l)k (k - 2)2 h-

On the other hand, clearly
fc-2

T g I Fix G I + /*_! + 2 <*••>

so the Theorem follows.
The case k = 3 of Theorem 2.1 is stated as a Corollary since it is that case

which concerns us in what follows.

COROLLARY 3.3. Let C, X, and D be permutations on ft such that CX = D.
Let r, t, s be the number of components in dcd(C), dcd(X), dcd(D), respectively.
Let

k = I Supp X |, / = I Supp X - Supp D\, m = \ Supp X - Supp C |,

and denote by a the number of cycles in dcd(C) which do not intersect SuppX.
Then

RROOF. The Corollary follows immediately from Theorem 2.1 using the
fact that fe - (m + /) = I C n X n D I = S J3.

Before we prove Theorem 2.2, we use the above notation to obtain a result
on uk(C) which will be used to prove Theorem 2.3.
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THEOREM 3.4. Let C, X, and D be as in Corollary 3.3. If t = I, i.e. X is a
single cycle of length k g 2, then

(i) | Supp C | + m = | Supp D\ + l,
(ii) uk(C)- u k ( D ) g ((r - a)(fc - 4 ) + (fc + l)-2m)/(fc - 1).

PROOF. Part (i) is immediate. To prove (ii), let dcd (C) = C, • • • C,
dcd(D) = D, • Ds, and X = (12 • • • fc). Let ct = | Supp Q \, 1 S i S r,, and df =
| Supp Di |, 1 g i g s. Suppose that a < r. Arrange the Q so that
Supp C, D {1,2, • • •, k} ^ 0 if and only if l g i g n, where rx = r - a. Then
C+i, ••• ,C, are cycles in dcd(D), say the last r — ri of them, so that after
cancellation in CX = D we obtain Ci • • • C,(12 • • • fc) = D : • • • Ds-r+r i .
By Corollary 3.3,

(3) r, + (s-r + ri)+m +l^k + 1.

N o w

- i fc-i

So by part (i) and (3),

uk(C)-uk(D)g (l/(fc - 1))(|Supp C | - r, - |SuppD | + 5 - r + r,)

+ r,(fc - 2)/(fc - 1)

= ( / - m - r 1 + 5 - r + r1 + r,(fc - 2)/(k - 1)

g (r,(fc - 4) + (k + 1) - 2m )/(fc - 1).

If r = a, uk(C)- uk(D)= — 1. In any case (ii) follows.

COROLLARY 3.5. Let C, X and D be as in Theorem 3.4. 7 / 2 S k g 4 o r
O g r - a g l , f/ien uk(C)-

PROOF. If r = a, then u t ( C ) - uk(D) = — 1. So suppose that r - a & 1. If
r - a =1 , then by Theorem 3.3, uk(C)- uk(D)^ [(2k -3)/(fc - 1)] < 2. Also,

{ [5/3], if fc = 4

[3/2], if fc = 3 (since r - a g? 1)

[1/1], if fc=2.

(Here [x] denotes the greatest integer less than or equal to x.)
Before we prove a special case of Theorem 2.2 we discuss several permuta-

tion identities which will be useful. A permutation on Q. is said to be even (odd)
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if it can be written as a product of an even (odd) number of transpositions. So a
cycle is even if and only if it is of odd length. If i/- j , let a, and a, {b, and b,) be
distinct elements of Cl. The following identities are easily verified:

(4) ( a i a 2 • • - a2m+l) = (a , • • • am+l)(am+l • • • a2m+l) = K,K2,

where

|SuppK, | = m +1 , i = 1,2.

If 1< m < r, then

(5) (a , • • • am)(am+x • • • a2,) = (am+,a,ar+2- • • a2,)(a, • •• am • • • ar+1) = K,K2,

where

|SuppK, | = r + l , i = 1,2.

Suppose that 2 g s S r S n. Let R = (ata2 • • • a,) and S = (b,b2 • • • bs). If
i? and a P £SuppS, then

(6) RS = R (b,ar)(bia,)S = (a, •• • a,/>,)(&, • • • bsar) = K,K2,

where
| Supp K,\ = r + l and | Supp K21 = s + 1.

Next, suppose that Supp S C Supp R. Adjust notation so that bt = a,. If r < n
and x G £1 - Supp i?, then

(7) i?S = R(xar)(b1x)S = (a, • • • a,jc)(fc, • • • b,x)= KtK2,

where

| Supp Kt | = = r + l and |SuppJC2| = s + 1.

Identities (6) and (7) are special cases of a process which allows us to
lengthen cycles without altering their product. By combining (4), (6) and (7) and
then (5), (6) and (7), we obtain the following two general identities. Again, if
i/ j , then a, and a, are distinct elements of O.

For each / = 1,2, • • -, n - m, there exist two cycles, K, and K2, each of
length m + I, so that

(8) (a,a2---a2m+1)=K1K2.

If m < r, then for each / = 1,2, • • •, n - r, there exist two cycles, K, and K2, each
of length r + /, so that

(9) (a1---am)(am+,---a2r)=KlK2.

The lengthening process referred to above is described in part (ii) of our
next result.
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THEOREM 3.6. Let C be a permutation on CI. Suppose that Ccan be written as

the product of cycles (not necessarily disjoint) of lengths lu l2, • • •, lr.

(i) / / n is a permutation on {1,2, •••, r}, then there are cycles Ci, • • •, C, such

that C= C<- C, and | Supp Q | = / , ( 0 , l i i S r .

(iij Ifh g l2 S • • • g /, and {du d2, • • •, dr} is a set of nonnegative integers such
that d, = d2 + • • • + A = n - /,, then C can be written as the product of r cycles of
lengths /, + di, l2 + d2, • • -, I + dr.

PROOF. Part (i) follows from the fact that if A and B are permutations on
ft, then AB = BAB and AB = B~XAB has the same cycle structure as A.

For part (ii) we shall prove only the case r = 3, the proof of which clearly
indicates the general procedure. So, let C = EXE2E3, where Et is a cycle of
length /j, l s j g 3 , and, by (i), we may assume that / , g / 2 g /3. By identites (6)
and (7), there exists a product of transpositions, say D2, so that EXD2 is a cycle of
length U +d2 and D2

iE2 is a cycle of length 12+d2. Now C =
(EiD2)E3(D2'E2)

E\ Again by (6) and (7), there exists a product of transpositions,
say D3, so that E,D2D, is a cycle of length U + d2 + d3 and Dj '£) is a cycle of
length h+di. Since C = (EiD2Di)(DllE1)(D2lE2)

E\ the result for r = 3 follows.
We now proceed to the proof of Theorem 2.2. A special case arises when all

the cycles in dcd (C) have length less than k.

LEMMA 3.7. Let CGD(n, k), and if CV (1) suppose that dcd(C) =
C, • C, where c, = | Supp C, | < k, l S i g r . Then /k((l)) = 2. If C/ (1), then

(i) If k is odd, then fk(C)^r, unless r = \ and cx is odd, in which case
fk(C) = 2, and

(ii) // k is even, then fk (C) S r + 1, unless r = 1 and d is even, in which case
A(C) = 3.

PROOF. Assume C^ (1). The proof is by induction on r. First, suppose
r = 1. Then fk(C)^2, as c, < k. If c, is odd, then by identity (8), fk(C) = 2 as
required. If ct is even, then by parity k is even. Let C = d = (ax • • • a2u) and let
Ki = (ai- • • a2ua2u+, • • • ak) = C1(a2u • • • ak), where a, and a, are distinct ele-

ments of ft if iV /. As k - 2u + 1 is odd and less than k, there exist two cycles K2

and K-s of length k such that /C, = C1K2K3. Thus, / k (C)g3 , and since C, is an
odd permutation, fk(C) = 3.

Next, suppose that r = 2. If ct 4- c2 is even, then by identity (9) C can be
written as the product of two cycles of length k and fk(C)^2, as required. So
assume that Ci + c2 is odd, Ci > c2, and let d = k - Ci. By identities (6) and (7),
C = C[C2, where C\ (C2) is a cycle of length k (c2 + d, respectively). Since C is
an odd permutation, and C G D(n, k), k must be even. So c2+ d must be odd as
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C = C\C2. Hence, by identity (8), C2 can be written as the product of two cycles
of length k and fk(C)^3 = r + 1, as required.

Now suppose that r > 2 and that the Lemma holds for all r' < r. Without loss
of generality, assume that ct =£ c2 § • • • § c, (see Theorem 3.6 (i)). Let d = k - ct.
If d > S;.2(k - c, - 1)S (r - l)(d - 1), then d = 1 and c, = k - 1, 1 S i =S r. By
identity (6), C = C;C2C3 • C, where C{ and C2 are cycles of length fc. If r > 3,
then by application of the induction hypothesis to C3 •• • C, the result follows. So
assume r = 3. Suppose k is odd. Since ct = k-l, l S i g 3 , C is an odd
permutation. However, C €E D(n, k), so C is an even permutation, a contradic-
tion. Consequently, k is even. But then, by identity (8), C3 can be written as the
product of two cycles of length k, and fk (C) S 4 = r + 1, as required. Thus, it may
be assumed that there exists a partition d = d2+ • • • + dn where d, S k - d - 1,
2 S J S r. By Theorem 3.6 (ii), C=C[-C'r, where C\ is a cycle of length c, + 4,
2 ^ i S r , and C\ is a cycle of length k. Note that c, + d, < k, 2S i S r, so by
application of the induction hypothesis to C2 • • • C'r, the result follows. By
induction the Lemma is proved.

PROOF OF THEOREM 2.2. Let dcd(C) = C, • • • C, and c, = | Supp C, |, I S
i ^ r . S i n c e ( a , • • • a k • • • a 2 k - i • • • ) = ( a i • • • a k ) ( a k • •• a 2 k - l ) ( a 2 k - l • • • ) • • •, C

can be written as a product of e = 2- = , [(c( - l)/(/c - 1)] cycles of length k and at
most r disjoint cycles of lengths less than k, say these are R,- • • R,, ( S r .

Thus, the Theorem holds if t = 0; in particular (i) follows. So suppose that
k>2 and t > 0 . If t > 1, then the Theorem follows immediately from Lemma
3.7; so assume that t = 1. If r g 2, then the Theorem follows from identity (9) (if
k + | Supp Ri | is even) and Lemma 3.7. So, assume that r = 1.

If k is odd, then ri = | Supp i?i | is odd since C is in D(n,k) and hence an
even permutation. If e^O, then let

C = (fll • • • ae(k-i)Qe(|t-i)-H " • • fl«(H-l)+r,)

= (a i • • • ak)(ak • • • a2k-\) • • • (a( e_I X k_i) +i • • • at(k-i)+i • • • a«(k-i)+,,)

= Ki • • • K.c-iL,

where Ki • • • Ke-i is«a product of cycles of length k if e > 1, K, • • • Kt-t is (1) if
e = 1, and L is a cycle of odd length k - 1 + r,. By identity (8), / k(C) ^ «t(C). If
e = 0, then / t ( C ) = 2 by Lemma 3.7 (i), as required.

Finally, suppose that k is even. If | Supp Ri | is even, then either e = 0 and
fk (C) = 3 by Lemma 3.7 (ii), or e ̂  0 and as above fk (C) S uk (C) by identity (8).
If | Supp/?! | is odd, then again by Lemma 3.7 ( i i ) , / t (C)S uk(C)+ 1, as required.

The Theorem follows.
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PROOF OF THEOREM 2.3. Fix k, 2 ̂  k ^ 4. The proof is by induction on
fk(C). If /k(C)= 1, then C is a cycle of length k and uk(C)= 1. Suppose that
/ , , (C)=m>l and that the Theorem holds for all values of fk(C')<m. If
C = KtK2• • Km, where K, is a cycle of length k, l S i S m , then fk(CK~J)S
m - 1, so that by that induction hypotheses fk(CK~m

1)^ uk(CK^,'). Suppose
that m^uk(C)-l. Then uk(CK~m')Sfk (CK~J)S m - 1 § M C ) - 2, hence
u t (C) - «k(CK^)&2, contrary to Corollary 3.5. Thus, / t (C)= m g

PROOF OF COROLLARY 2.4. Since uk ((1)) = 2 for all 2 ̂  fc g n, the Corol-
lary holds for C = (1). Thus, assume that Cy (1). Part (i) follows from Theorem
2.2 (i), (ii) and Theorem 2.3. For part (ii), 0 g /4(C) - «4(C) S 1 by Theorem 2.2
(iii) and Theorem 2.3, unless C is a single transposition, in which case ft(C) = 3.
So assume that C is not a transposition. Certainly /4(C) = /2(C) (mod 2), so by
part (i) /4(C) = u2(C) (mod 2), and (ii) follows. To prove part (iii) let C =
Kx • • • Km, where m = fk (C) and KL is a cycle of length l c , l S i g m . Then by part
(i) 2J-, (c( - 1) = /2(C)=i 2" i/2(/C) = m(k- 1). Part (iii) follows. This completes
the proof of the Corollary.

4. Specialized results

The argument used in the proof of Corollary 2.4 (iii) yields two results worth
noting.

COROLLARY 4.1. Let CGD(n,k), C ^ (1). Suppose that dcd(C) =
G • • • C, and c, = | Supp C,\, l S i g r.

(i) / / r = 1, f/ien A (C) § {(| Supp C \ - l)/(k - 1)}.
(ii) 1/ C = Kx •• • Km, where m = fk (C) and K, is a cycle of length k,

l g i S m , such that C , = K,-- Kh, C2 = Kil+1 • • • Kh, • •, C, = K i r _ 1 + 1 • • • Km,

1 ̂  it < i2- • • < i,-, < m, then fk(C) m uk(C).

The case when C is a single cycle is treated next.

THEOREM 4.2. Let C S D(n,k)be a single cycle of length c. Ifk is even and
c - 1 = (k - \)q + t, 0 S t § k - 2, then

!

uk (C), if t = 0 or t is odd and not c - 1

uk(C) + l, // t^O and t is even

3, if t = c - 1 and t is odd,
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PROOF. AS in the proof of Corollary 2.4 (ii), fk(C) = c-\ (mod2). But

uk (C), if t - 0 or t is odd and not e - 1

= \ uk(C)+l, if r^O and t is even (mod 2).

i, if t = c - 1 and t is odd

The Theorem then follows from Theorem 2.2 (iii) and Corollary 4.1 (i).

COROLLARY 4.3. Let CGD(n,k), C/(l). Let dcd (C) = C, • • • C,
c, = | Swpp C, |, 1 S i S r. Write c,-l = (k- l)q, + r,, where 0 S r i g k - 2 ! l S i S
r. For eacfc 2 g / S fc - 2, /ef s, = | {rf 11 ̂  i S f, r, = /} |. If k is even, then

U (C) - uk (C) = 2 {S2P11 ^ p ^ (fc - 2)/2} (mod 2).

PROOF. As fc is even /)c(C) = 2;,1/ ) l(Ci) (mod2). By Theorem 4.2, fk(C) =
uk (C) + 2 {s2p 11 ^ p S (k - 2)/2} (mod 2).

THEOREM 4.4. Wiffi the notation of Corollary 4.3, if k is even and
2 {s2p 11 § p ^ (k - 2)/2} = 0 (mod 2), rhen fk (C) g Mk (C) un/exs C is a singfe
cycle of even length less than k, in which case fk(C) = 3.

PROOF. Apply Theorem 2.2 (iii) and Corollary 4.3.
The previous results allow us to restate the conclusion of Corollary 2.4 (ii)

when C^ (1) as

{
3 , if C is a transposition

M4(C)+1 , if s ,= l (mod 2)

u4(C), if 52 = 0 (mod 2)
where s2 is the number of cycles in dcd(C) whose lengths are divisible by 3.

A slight improvement of the inequality used in the proof of Corollary 2.4
(iii) can be obtained if consideration is given to the way that the cycles Kt

combine to yield the disjoint cycles C,. The intersection graph of a set {5,, • • •, Sm}
of distinct subsets of some set S has vertex set {S,, • • •, Sm} and St and S, are
adjacent if i V / and Sf fYS,^0 .

THEOREM 4.5. Let C <= Sn - {(1)}, dcd(C) = C, • • C, and c, = | Supp Q |,
l ^ i g r . If C = Kt • • • Km, where K, is a cycle of length kh 1 ^ i S m, then
S"»i (fci ~ 1) = (^'-i Ci) - p, where p is the number of connected components in the
intersection graph of {SuppK,, • • -,SuppKm}.

The proof is left to the reader.
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